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On basicity of some trigonometric system in
Banach Function Spaces

B.T. Bilalov∗, V.F. Salmanov, T. Hagverdi

Abstract. In this paper it is considered the trigonometric system {1; cosnx;
x sinnx}n∈N, which is a collection of eigenfunctions of one nonlocal spectral problem
for an ordinary second order differential operator. Let X (−π, π) be a Banach Function
Space (by Luxembourg classification) on (−π, π) with Lebesgue measure. A criterion
is obtained for the trigonometric system

{
1
2 ; cosnt; sinnt

}
n∈N to have the Riesz Prop-

erty in X (−π, π). It is proved that if the trigonometric system has the Riesz Property
in X (−π, π), then the system (T ) also forms a basis for X (−π, π). Some concrete
spaces, such as the weighted Lebesgue space Lp;w (−π, π), the weighted grand Lebesgue
space Lp);w (−π, π), Lebesgue space with variable exponent Lp(·) (−π, π), Morrey space
Lp;λ (−π, π), symmetric spaceX (−π, π) with Boyd indices αX ;βX ∈ (0, 1) are presented.
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1. Introduction

Consider the following trigonometric system

(T ) =
{
u+n (x) ;u−n+1 (x)

}
n∈Z+

,

where
u+n (x) ≡ cosnx; u−n+1 (x) = x sin (n+ 1)x, n ∈ Z+.

This system arises when we solve the following nonlocal boundary value problem
for a degenerate elliptic equation

ymuxx + uyy = 0, 0 < x < 2π, y > 0,
u (x, 0) = f (x) ; u (0, y) = u (2π; y) ,
ux (0; y) = 0, y > 0 ,

 (1)

∗Corresponding author.
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is considered by some authors (see e.g. [1, 2, 3, 4, 5, 6, 7, 8]), where m > −2
is some number. Solving this problem by the method of separation of variables
leads to the spectral problem with respect to the variable x:

Φ′′ (x) + λ2Φ (x) = 0, 0 < x < 2π,
Φ (0) = Φ (2π) ; Φ′ (0) = 0 .

}
(2)

It is not hard to see that (T ) is the system of all eigenfunctions of the spectral
problem (2). Note that the problem (1) has some features compared to the
general theory of elliptic equations. Therefore, when solving the problem (1) we
need to investigate the basis properties (completeness, minimality, basicity) of
the system (T ) in the corresponding Banach Function Space (BFS), associated
with the considered Banach-Sobolev space.

In this paper it is considered the trigonometric system {1; cosnx;
x sinnx}n∈N, which is a collection of eigenfunctions of one nonlocal spectral prob-
lem for an ordinary second order differential operator. Let X (−π, π) be a Banach
Function Space (by Luxembourg classification) on (−π, π) with Lebesgue mea-
sure. A criterion is obtained for the trigonometric system

{
1
2 ; cosnt; sinnt

}
n∈N

to have the Riesz Property in X (−π, π). It is proved that if the trigonometric
system has the Riesz Property in X (−π, π), then the system (T ) also forms a
basis for X (−π, π). Some concrete spaces, such as the weighted Lebesgue space
Lp;w (−π, π), the weighted grand Lebesgue space Lp);w (−π, π), Lebesgue space
with variable exponent Lp(·) (−π, π), Morrey space Lp;λ (−π, π), symmetric space
X (−π, π) with Boyd indices αX ;βX ∈ (0, 1) are presented.

2. Preliminaries

First, let us assume some notation. N be the set of natural numbers, Z+ =
{0} ∪ N; J = (0, 2π). R be the set of real numbers: C be the set of complex
numbers; L [M ] is a linear span of a set M . M̄ is a closure of the set M ⊂ R; |M |
is a Lebesgue measure of the setM ⊂ R. By L0 (J) we denote all measurable (in
Lebesgue sense) functions on J . Assume that L0 (J) is a linear space over a field
K (K ≡ R or K ≡ C). C∞

0 (J) is the set of all infinitely differentiable functions
on J with compact support in J .

So, let us recall the definition of BFS.

Definition 1. [9] ∥·∥X(J) : L0 (J) → R̄+ = [0,+∞] is called a Banach Function
norm, iff:

i) ∥·∥X(J) is a norm on L0 (J);
ii) f ; g ∈ L0 (J) : |f | ≤ |g| a.e. on J ⇒ ∥f∥X(J) ≤ ∥g∥X(J);
iii) Fatou property. |fn| ↑ |f | , n→ ∞ ⇒ ∥fn∥X(J) ↑ ∥f∥X(J);



96 B.T. Bilalov, V.F. Salmanov, T. Hagverdi

iv) ∀E ⊂ J (measurable in Lebesgue sense)⇒ ∥χE∥X(J) < +∞;
v) it holds the continuous embedding X (J) ⊂ L1 (J),

where Lp (J) , 1 ≤ p < +∞, denotes the ordinary Lebesgue space with the norm

∥f∥Lp(J)
=

(∫
J
|f |p dt

) 1
p

.

BFS X (J) is defined by

X (J) =
{
f ∈ L0 (J) : ∥f∥X(J) < +∞

}
.

X (J) with the norm ∥ · ∥X(J) is a Banach space. By X ′ (J) denote the asso-
ciate space of X (J), which is defined by the following Banach Function norm

∥g∥X′(J) = sup
∥f∥X(J)≤1

∫
J
|fg| dx.

Denote by µf (·) a distribution function of f ∈ L0 (J), i.e.

µf (λ) = |{x ∈ J : |f (x)| > λ}| , ∀λ ≥ 0.

If f ; g ∈ X (J): µf (λ) = µg (λ) , ∀λ > 0, ⇒ ∥f∥X(J) = ∥g∥X(J), then X (J)
is called a symmetric space.

More information about BFS one can get from the monographs [9, 10, 11].
We will also need some facts from the work [12]. First, we define the

Muckenhoupt class Ap (J) of weight functions w : J → R̄+, which is as-
sumed to be 2π-periodically extended to the entire real axis R. We say that
w ∈ Ap (J) , 1 < p < +∞, iff

sup
I⊂R

(
1

|I|

∫
I
w (x) dx

)(
1

|I|

∫
I
[w (x)]

− 1
p−1 dx

)p−1

< +∞,

where sup is taken over any interval I ⊂ R.
Consider the following classical trigonometric system{

1

2
; cosnx; sinnx

}
n∈N

. (3)

Let us make some comments regarding the basicity of the system (3) in the
weighted Lebesgue space Lp;w (J) with the norm

∥f∥Lp;w(J) =

(∫
J
|f |pwdx

) 1
p

.
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For a function f ∈ Lp;w (J) we denote by
{
f cn; f

s
n+1

}
n∈Z+

the Fourier coeffi-

cients of the function f on the trigonometric system (3):

ϑcn (f) = f cn =
1

π

∫ 2π

0
f (t) cosnt dt , ∀n ∈ Z+;

ϑsn (f) = fsn =
1

π

∫ 2π

0
f (t) sinnt dt , ∀n ∈ N. (4)

Let

Sn (f) (t) =
1

2
f c0 +

n∑
k=1

(f ck cos kt+ fsk sin kt) , n ∈ N,

be the partial sums of the Fourier sums of f on system (3). The following theorem
on the basicity of the system (3) in Lp;w (J) immediately follows from the results
of the work [12] .

Theorem 1. [12] The system (3) forms a basis in Lp;w (J), 1 < p < +∞, if and
only if w ∈ Ap (J).

In fact, the basicity of the system (3) in Lp;w (J) is equivalent to the basicity
of the same system in Lp;w0 (−π, π), where w0 (t) = w (t+ π) , t ∈ (−π, π). And
it is evident that w ∈ Ap (J) ⇔ w0 ∈ Ap (−π, π). Further, it directly follows from
the Theorem 8 in [12]. Note that basicity of the system (3) is understood in the
following sense

∥Sn (f)− f∥Lp;w(J) → 0, n→ ∞.

The following question arises: let the system (3) form a basis for Lp;w0 (−π, π),
1 < p < +∞. For ∀f ∈ Lp;w0 (−π, π) when the series

Sc (f) =
1

2
f c0 +

∞∑
k=1

f ck cos kt,

and

Ss (f) =
∞∑
k=1

fsk sin kt, (5)

converge in Lp;w0 (−π, π)?
For this purpose, we first define BFS X (−π, π) on (−π, π) by the relation

X (−π, π) = {f ∈ L0 (−π, π) : f (· − π) ∈ X (J)} ,

with the norm
∥f∥X(−π,π) = ∥f (· − π)∥X(J) .

Assume the following
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Definition 2. We will call BFS X (J) a (R)-space, if f (·) ∈ X (J) ⇒
f (2π − ·) ∈ X (J).

It is not difficult to check that (R)-space property of X (J) in term of BFS
X (−π, π) is equivalent to the condition

f (·) ∈ X (−π, π) ⇔ f (−·) ∈ X (−π, π) . (6)

That’s why, we will hold further discussion regarding the BFS X (−π, π).
Let the system (3) form a basis for X (−π, π). Denote

L
[
{cosnt}n∈Z+

]
≡ Xc (−π, π) ;L

[
{sinnt}n∈N

]
≡ Xs (−π, π) ,

where the closure is taken under the norm of X (−π, π). Let X (−π, π) be a
(R)-space. Take ∀f ∈ X (−π, π) and represent it in the form

f (t) = f+ (t) + f− (t) ,

where f+ (t) = f(t)+f(−t)
2 is an even, f− (t) = f(t)−f(−t)

2 is an odd part of f (·).
From (6) follows that f± ∈ X (−π, π). Expand the function f (·) on basis (3):

f (t) =
1

2
f c0 +

∞∑
k=1

(f ck cos kt+ fsk sin kt) ,

so that

∥Sn (f)− f (·)∥X(−π,π) → 0, n→ ∞.

Consider

Sc
n (f) =

1

2
f c0 +

n∑
k=1

f ck cos kt =
1

2
ϑc0 (f) +

n∑
k=1

ϑck (f) cos kt =

= ϑc0
(
f+
)
+

n∑
k=1

ϑck
(
f+
)
cos kt+ ϑc0

(
f−
)
+

n∑
k=1

ϑck
(
f−
)
cos kt =

/ due to the oddness of f− (·)/ = ϑc0 (f
+) +

∑n
k=1 ϑ

c
k (f

+) cos kt =

/ due to the evenness of f+ (·)/

= ϑc0
(
f+
)
+

n∑
k=1

(
ϑck
(
f+
)
cos kt+ ϑsk

(
f+
)
sin kt

)
= Sn

(
f+
)
, ∀n ∈ Z+.
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From here it directly follows that the sequence {Sc
n (f)}n∈Z+

converges for ∀f ∈
X (−π, π) in X (−π, π) and that’s why it is clear that the sequence {Ss

n (f)}n∈N
also converges, where

Ss
n (f) =

n∑
k=1

ϑsk (f) sin kt, n ∈ N.

As a result we obtain

f = S (f) = Sc (f) + Ss (f) , ∀f ∈ X (−π, π) , (7)

where

Ss (f) =
∞∑
k=1

ϑsk (f) sin kt.

It is evident that Sc (f) ∈ Xc (−π, π)&Ss (f) ∈ Xs (−π, π). Moreover, it is
obvious that Xc (−π, π)

⋂
Xs (−π, π) = {0}. Then from (7) follows that the

subspaces Xc (−π, π) and Xs (−π, π) are complemented in X (−π, π), moreover
it is valid the direct sum

X (−π, π) = Xc (−π, π) +̇Xs (−π, π) . (8)

Also from here it follows that regarding the system (3) in BFS X (−π, π) it is
true so called the Riesz Property, which we define as follows:

Definition 3. We will say that the trigonometric basis (3) of BFS X (−π, π) has
the Riesz property in X (−π, π), if ∃C > 0 : for ∀f ∈ X (−π, π) it holds

∥Sc
n (f)∥X(−π,π) ≤ C ∥f∥ , ∀n ∈ Z+,

∥Ss
n (f)∥X(−π,π) ≤ C ∥f∥ , ∀n ∈ N.

}
(9)

As a result, we obtain that if X (J) is a (R)-space, then the system (3) has
the Riesz Property.

Let us prove the converse, namely, let the system (3) form a basis forX (−π, π)
and it has the Riesz Property. Prove that then X (−π, π) is a (R)-space. Assume
X (−π, π) is not a (R)-space. Then there exists a function f ∈ X (−π, π) such
that f (−x) /∈ X (−π, π). Hence it follows that the series

S (f (−x)) (t) = 1

2
ϑc0 (f (−x)) +

∞∑
k=1

(ϑck (f (−x)) cos kt+ ϑsk (f (−x)) sin kt) ,

does not converge in X (−π, π). Since the system (3) has the Riesz Property , it
is evident that the series Sc (f) converges in X (−π, π). Then from the relation

Sc
n (f) = Sn

(
f+
)
, ∀n ∈ Z+,
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it follows that the series S (f+) converges in X (−π, π) and as a result from the
expression S (f+) = 1

2S (f)+ 1
2S (f (−x)) follows that the series S (f (−x)) also

converges in X (−π, π). Then from the basicity of the system (3) in X (−π, π) it
follows that f (−x) ∈ X (−π, π). We have arrived at a contradiction. Therefore,
it is valid the following

Proposition 1. Let the system (3) form a basis for BFS X (−π, π). Then this
system has the Riesz Property if and only if X (−π, π) is a (R)-space.

3. Main results

In this section we present one method for establishing the basicity of the
system (T ) in BFS X (J). To do this, we use the Riesz Property of the basis (3)
in X (−π, π). Thus, it is valid the following main

Theorem 2. Let BFS X (J) be a (R)-space, in which the set C∞
0 (J) is dense

and the trigonometric system (3) form a basis for it. Then the system (T ) also
forms a basis for X (J) and it has the Riesz Property, i.e. ∃C > 0, ∀f ∈ X (J)
it holds ∥∥∥∥∥

n∑
k=0

e+k (f) cos kx

∥∥∥∥∥
X(J)

≤ C ∥f∥X(J) , ∀n ∈ Z+,

∥∥∥∥∥
n∑

k=1

e−k (f) x sin kx

∥∥∥∥∥
X(J)

≤ C ∥f∥X(J) , ∀n ∈ N,

where
{
e+0 ; e

+
k ; e

−
k

}
k∈N ⊂ X∗ (J) is a system biorthogonal to the basis (T ).

We will prove this theorem using the basicity criterion in Banach spaces, i.e.
first we will establish the minimality and completeness of the system (T ) in
X (J) and then the uniformly boundedness of corresponding projectors.

3.1. Minimality

Consider the following system of functions

φ0 (x) =
2π − x

2π2
;φk (x) =

2π − x

π2
cos kx;ψk (x) =

1

π2
sin kx , k ∈ N,

and define the functionals

e+k (f) =

∫ 2π

0
f (x)φk (x) dx , ∀k ∈ Z+;
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e−k (f) =

∫ 2π

0
f (x)ψk (x) dx , ∀k ∈ N.

It is true the following

Lemma 1. The system (T ) is minimal in BFS X (J).

Proof. Directly by simple calculations one can verify the validity of the fol-
lowing relations

e+k (u+n ) = δkn, e+k

(
u−j

)
= 0;

e−i
(
u+k
)
= 0, e−i

(
u−j

)
= δij .

 (10)

Paying attention to the fact that the functions {φk;ψi} are uniformly bounded,
from continuous embedding X (J) ⊂ L1 (J) we immediately obtain

∣∣e±k (f)
∣∣ ≤ c

∫ 2π

0
|f (t)| dt ≤ c ∥f∥X(J) ,

for possible values of index k, where c > 0 is some constant independent of f .
From here it directly follows

{
e+k ; e

−
i

}
⊂ X∗ (J). Then the minimality of system{

u+i ;u
−
j

}
in X (J) follows from the relation (10).

Lemma is proved.

3.2. Completeness

Let us establish the completeness of the system (T ) in X (J). So, it is valid

Lemma 2. Let the set C∞
0 (J) be dense in BFS X (J). Then the system (T ) is

complete in X (J).

Proof. Since C∞
0 (J) is dense in X (J), it is sufficient to prove that any

function f ∈ C∞
0 (J) can be approximated by linear combination of the system

(T ). Take ∀f ∈ C∞
0 (J) and assume g (x) = 2π−x

π2 f (x). It is evident that
g ∈ C∞

0 (J). Consider

f+n =
1

π2

∫ 2π

0
f (x) (2π − x) cosnxdx =

∫ 2π

0
g (x) cosnxdx , n ∈ N.

Integrating by parts twice we have

f+n = − 1

n

∫ 2π

0
g′ (x) sinnxdx =

1

n2

∫ 2π

0
g′′ (x) cosnxdx ⇒
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⇒
∣∣f+n ∣∣ ≤ c

n2
, ∀n ∈ Z+,

where c > 0 is a constant independent of n. Similarly, we get∣∣f−n ∣∣ ≤ c

n2
, ∀n ∈ N.

As a result, it is established that the series

F (x) = f+0 +
∞∑
n=1

(
f+n cosnx+ f−n x sinnx

)
, (11)

uniformly converges to a function F ∈ C
(
J̄
)
on J . Due to the fact that the

system (T ) forms a basis (see, [5]) for L2 (J), it holds F (x) ≡ f (x). Then it
is not hard to see that the series (11) also converges to f in X (J). Hence, it
immediately follows the completeness of the system (T ) in X (J).

Lemma is proved.

3.3. Proof of Theorem 2

Paying attention to the Lemmas 1 & 2, it is sufficient to prove the uniformly
boundedness of the following projectors

Sn;m (f) =
n∑

k=0

e+k (f) cos kx+
m∑
k=1

e−k (f)x sin kx , ∀ (n;m) ∈ Z+ × N.

We have

e+0 (f) =
1

2π2
ϑc0 (g) , e

+
k (f) =

1

π2
ϑck (g) , ∀k ∈ N,

(ϑck (g) are the Fourier coefficients of g), where g (x) = (2π − x) f (x) , x ∈ J .
Taking into account these relations and the condition that X (−π, π) is a

(R)-space, using Proposition 1, we get

∥Sn;m (f)∥X(J) ≤
∥∥∥∥ 1

2π2
ϑc0 (g)

∥∥∥∥
X(J)

+
1

π2

∥∥∥∥∥
n∑

k=1

ϑck (g) cos kx

∥∥∥∥∥
X(J)

+4

∥∥∥∥∥x
m∑
k=1

ϑsk (f)

∥∥∥∥∥
X(J)

≤

≤ c ∥f∥X(J) , ∀ (n;m) ∈ Z+ × N, (12)

where the constant c > 0 is independent of (n;m) and f .
It directly follows from the inequality (12) that the system (T ) has the Riesz

property inX (J).
Theorem is proved.



On basicity of some trigonometric system 103

4. Concrete BFS

4.1. The weighted Lebesgue space Lp;w (J)

Let w ∈ Ap (J) , 1 < p < +∞, and w (2π − x) = w (x) hold, a.e. on
J . Assume w0 (t) = w (t+ π), ∀t ∈ (−π, π). For w0 (·) we obtain w0 (−t) =
w (−t+ π) = w (2π − (−t+ π)) = w (π + t) = w0 (t), ∀t ∈ (−π, π). Let
f ∈ Lp;w (−π, π). We have∫ π

−π
|f (t)|pw0 (t) dt =

∫ π

−π
|f (−t)|pw0 (−t) dt =

=

∫ π

−π
|f (−t)|pw0 (t) dt < +∞ ⇒ f (−t) ∈ Lp;w0 (−π, π) .

Consequently, Lp;w0 (−π, π) (at the same time Lp;w (J)) is a (R)-space. From
w ∈ Ap (J) it follows that ∃δ > 0 such that Lp+δ (J) ⊂ Lp;w (J). From here it
directly follows that the set C∞

0 (J) is dense in Lp;w (J). Then according to the
Theorem 2 we have the following

Corollary 1. Let w ∈ Ap (J) , 1 < p < +∞ and w (x) = w (2π − x) holds,
a.e. on J . Then the system (T ) forms a basis for Lp;w (J), which has the Riesz
property.

4.2. Lebesgue space with variable exponent Lp(·) (J)

Let p ∈ L (J)&p : J → R̄+. Assume 1 < p− = essinf
J

p ≤ p+ = ess sup
J

p <

+∞. Denote

Ip(·) (f) =

∫
J
|f (x)|p(x) dx.

Lp(·) (J) is a B-space, which is defined by relation

Lp(·) (J) =
{
f ∈ L0 (J) : ∥f∥Lp(·)(J)

< +∞
}
,

where

∥f∥Lp(·)(J)
= inf

{
λ > 0 : Ip(·)

(
f

λ

)
≤ 1

}
.

Let the exponent p (·) satisfy the following conditions:

i)p (x) = p (2π − x) , ∀x ∈ J ;

ii)∀x; y : |x− y| < 1
2 ⇒ |p (x)− p (y)| ≤ c

− ln|x−y| , for some constant c > 0
independent of x; y.
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As before we can easily check that if i) holds, then Lp(·) (J) is a (R)-space.
Moreover, from ii) it follows that the set C∞

0 (J) is dense in Lp(·) (J) (regarding
the related facts one can see, e.g. the monograph [13]). Under the condition ii)
from the results of the works [14, 15, 16, 17, 18, 19] it follows that the trigonomet-
ric system {1; cosnx; sinnx}n∈N forms a basis for Lp(·) (J). Then the following
corollary follows from Theorem 2.

Corollary 2. Let the exponent p (·) satisfies the conditions i), ii). Then the
system (T ) forms a basis for Lp(·) (J), which has the Riesz Property.

4.3. The weighted grand Lebesgue space Lp);w (J)

This a Banach space of L0 (J) functions with the norm

∥f∥Lp);w(J) = sup
0<ε<p−1

(
ε

∫
J
|f |p−εwdx

) 1
p−ε

, 1 < p < +∞,

for appropriate weight function w : J → R̄+. This is nonseparable space and
the closure of C∞

0 (J) in Lp);w (J) denote by Np);w (J). Regarding this separable
subspace it is valid the following proper and continuous embeddings

Lp);w (J) ⊂ Np;w (J) ⊂ Lp−ε0;w (J) , ∀ε0 ∈ (0, p− 1) .

In [19] it is proved that, if w0 ∈ Ap, then the system of exponent
{
eint
}
n∈Z (at

the same time the trigonometric system (3)) forms a basis for Lp);w0
(−π, π) , 1 <

p < +∞. In addition, if the weight function w0 (·) satisfies w0 (−x) = w (x),
a.e. on (−π, π), then according to the Proposition 1 the system (3) has the Riesz
Property in Lp);w0

(−π, π). As a result as a sequence of Theorem 2 we obtain the
validity of the following

Corollary 3. Let the weight function w ∈ Ap (J), 1 < p < +∞, satisfy w (x) =
w (2π − x), a.e. on J . Then the system (T ) forms a basis for Lp);w (J) and it
has the Riesz Property.

4.4. Morrey space Lp;λ (J)

This is a Banach space of L0 (J) functions with the norm

∥f∥Lp;λ(J)
= sup

I⊂J

(
1

|I|λ

∫
I
|f |p dx

) 1
p

, 1 < p < +∞, 0 ≤ λ < 1,

where sup is taken over all intervals I ⊂ J . For λ : 0 < λ < 1, this space
is nonseparable and the closure of C∞

0 (J) in Lp;λ (J) denote by Np;λ (J) (it
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is obvious Lp;0 (J) = Lp (J)). It is evident that the space Np;λ (−π, π) is a
(R)-space and as established in [20] (see also [21, 22, 23]) the system of expo-
nents

{
eint
}
n∈Z(at the same time the trigonometric system (3) forms a basis for

Np;λ (−π, π), 1 < p < +∞, 0 ≤ λ < 1. As follows from Proposition 1, the system
(3) has the Riesz Property in Np;λ (−π, π). Therefore, it is valid

Corollary 4. The system (T ) forms a basis for Np;λ (−π, π), 1 < p < +∞, 0 ≤
λ < 1, and it has the Riesz Property.

4.5. Symmetric spaces X (J)

Let X (J) be a symmetric space on J with Lebesgue measure m(one dimen-
sional). For f ∈ L0 (J) denote f̂ (x) = f (2π − x) , ∀x ∈ J . It is not hard to see

that mf (λ) ≡ mf̂ (λ) , ∀λ > 0, and therefore ∥f∥X(J) =
∥∥∥f̂∥∥∥

X(J)
, i.e. X (J) is a

(R)-space. Let αX and βX be the Boyd indices (lower and upper, respectively).
The closure of C∞

0 (J) in X (J) denote by Xs (J). It is known that under con-
dition αX ;βX ∈ (0, 1) the trigonometric system (3) forms a basis for Xs (−π, π)
(and it is evident that at the same time in Xs (J)). According to the above
discussion as follows from Proposition 1, this system has the Riesz Property in
Xs (−π, π) (see e.g. [9, 10]). Thus, from Theorem 2 we obtain

Corollary 5. Let X (J) be a symmetric space with Boyd indices αX ;βX ∈ (0, 1).
Then the system (T ) forms a basis in separable subspace Xs (J) and it has the
Riesz Property.

Let us recall that Lebesgue space, grand Lebesgue space, Orlicz space,
Marcinkiewicz space, Lorentz space and others belong to the class of symmetric
spaces. For completeness let us give the Boyd indices of some these spaces. Re-
garding the calculation of these indices one can see the monographs [9, 10, 11]
and the works [25, 26, 27].

1) Lebesgue space X (J) ≡ Lp (J) , 1 < p < +∞.

αp = βp =
1

p
.

2) Grand Lebesgue space X (J) ≡ Lp) (J) , 1 < p < +∞.

αp) = βp) =
1

p
.

3) Marcinkiewicz space Mp;λ (J) , 1 < p < +∞, 0 ≤ λ < 1.
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This is a Banach space of L0 (J) functions with the norm

∥f∥Mp;λ(J)
= sup

I⊂J

(
1

|I|λ

∫
I
|f |p dx

) 1
p

,

where sup is taken over all measurable (in Lebesgue sense) subsets I ⊂ J .
Mp;λ (J) is also nonseparable, but unlike Morrey space it is a symmetric space.
Boyd indices of this space are

αp;λ = βp;λ =
1− λ

p
.

5. Orlicz space LM (J).

Let us define this space.
Continuous convex on R function M (·) is called an N -function if it is even

and satisfies the conditions

lim
x→0

M (x)

x
= 0 ; lim

x→∞

M (x)

x
= ∞.

Denote by N the set of all N -functions.
For M ∈ N define a complementary to M (·) N -function by relation

M∗ (x) = max
y≥0

[y |x| −M (y)] , ∀x ∈ R.

The function M ∈ N satisfies ∆2-condition for large values of x, if ∃k >
0 & ∃x0 > 0 :

M (2x) ≤ kM (x) , ∀x ≥ x0.

Let

ρM (f) =

∫
J
M (f (x)) dx.

Assume
L̃M (J) = {f ∈ L0 (J) : ρM (f) < +∞} .

L̃M (J) is called an Orlicz space. Define Orlicz space LM (J) by expression

LM (J) =
{
f ∈ L0 (J) : |(f ; g)| < +∞ , ∀g ∈ L̃M∗ (J)

}
,

where

(f ; g) =

∫
J
f (x) g (x)dx,

M∗ (·) is a complementary toM (·) function.
It is known the following
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Statement 3. If M (·) satisfies the ∆2-condition, then LM (J) ≡ L̃M (J) and
the closure of the set of bounded (including continuous) functions coincides with
LM (J).

Let M ∈ L and by M−1 (·) denote its inverse function on R+. Assume

h (t) = lim sup
x→∞

M−1 (x)

M−1 (tx)
, t > 0.

The Boyd indices of LM (J) are

αM = − lim
t→∞

log h (t)

log t
;βM = − lim

t→+0

log h (t)

log t
.

More information concerning above facts one can get from, e.g. [25, 28]
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