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A Queueing Inventory System with Two Classes of
Customers Demanding Processed or Unprocessed
Items
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Abstract. We study a single-server queueing inventory system with two types of cus-
tomers, governed by a positive lead time (s, .S) inventory policy. Type 1 customers require
processed items and join a queue of infinite capacity for service, while Type 2 customers
demand unprocessed items and are served instantly. If the excess inventory level is zero,
Type 1 customers are blocked from joining the queue, whereas Type 2 customer demands
are backlogged up to a certain limit b. Arrivals follow independent Poisson processes,
with rates A\; for Type 1 and Ay for Type 2. Service time for a Type 1 customer is
exponentially distributed with rate p and replenishment occurs after an exponentially
distributed lead time with rate 8. The system is modeled as a quasi birth and death
process (QBD process) and the matrix geometric method is applied to obtain steady-
state distributions. We derive the stability condition, the waiting time distribution for
Type 1 customers, and the backlog distribution for Type 2 customers. Also, we develop a
cost function based on the performance measures. We provide numerical illustrations to
analyze the effect of various parameters on performance measures and the cost function.
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1. Introduction

A queueing inventory system combines the flow of customer service with the
availability and restocking of inventory. For service to continue, there must be
both a free server and available stock. In this case, service may be blocked by
stockouts, which is different from a classical queueing system where delays are
only caused by server congestion. Also, unlike a traditional inventory system
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where demand immediately depletes supply and unmet demand is either lost
or backordered, inventory here is consumed through the service process. When
the server is busy or stock is unavailable, customers may build queues. So, the
performance of a queueing inventory system depends on both the service capacity
and the rules for managing inventory.

Simchi-Levi and Sigman [1] were among the first to introduce the notion of
inventory systems with positive service times. Around the same period, Melikov
and Molchanov [2] independently developed a similar model. Neuts [3, 4] laid the
foundation for structured solution techniques in Markovian environments. Bolch
et al. [5] , and Chakravarthy et al.[6] made significant advances, while Asmussen
[7] and Gross et al. [8] extended general queueing frameworks to address inventory
related problems.

Recently, researchers have investigated models incorporating features such as
bulk arrivals, backordering and differentiated services. Schwarz et al. [9] analyzed
systems with stochastic lead times and partial backordering. Berman and Kim
[10] explored inventory management in service facilities using probabilistic mod-
eling, while Berman and Sapna [11] studied systems with perishable inventory
and limited backlog capacity.

Queueing inventory systems with different classes of customers are studied by
several researchers. For example, Kocer et al. [12] studied systems where cus-
tomers are served according to priority rules, while Almagbali et al. [13] studied
models involving multiple customer classes and batch service rules across multiple
servers. Melikov et al. [14] investigated a mathematical model for inventory man-
agement in counter-stream serving systems with stochastic supply and demand,
deriving both exact and approximate methods to determine optimal situational
inventory policies. A comprehensive survey on queueing inventory models is pro-
vided in [15].

This paper introduces a single server queueing inventory model with two types
of customers: Type 1 and Type 2, where:

e Type 1 customers demand processed items and join a queue for service.
Their service times are exponentially distributed.

e Type 2 customers demand unprocessed items. If excess inventory is positive,
they are served instantly, otherwise their demands are backlogged with a
maximum limit of b units.

Inventory is managed with an (s,.S) inventory policy with exponentially dis-
tributed lead times. When inventory drops to the level s or below, an order is
placed to replenish to level S and fulfill all outstanding Type 2 demands.

Zhao et al. [16] have examined a similar queueing inventory system with two
classes of customers, where the server needs to prioritize one class of customer
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over the other. But here we address a queueing inventory system with two types
of customers where one requires a positive service time and the other requires
negligible service time. In addition, a backlog of customers is also introduced in
the absence of excess inventory in the system.

The model discussed in this paper is motivated by real life scenarios such as:

e Healthcare logistics, where critical treatments (Type 1) need time to pre-
pare, while routine care (Type 2) uses ready-to-use supplies.

e Retail systems, where online orders (Type 1) require processing and pack-
aging, while in-store customers (Type 2) take items directly if available, or
wait if not.

We model the system as a continuous-time Markov chain with two state vari-
ables and analyze its long-term behavior using matrix-geometric method [3]. This
allows us to calculate important performance measures such as the average num-
ber of customers, inventory levels, waiting times, and the chances of lost demand.
We also develop a cost function that combines contributions from these perfor-
mance measures and analyze its sensitivity over various system parameters.

The rest of the paper is organized as follows: Section 2 presents the mathe-
matical formulation of the model. Section 3 focuses on the steady-state analysis
using matrix-geometric methods. Section 4 discusses key performance measures.
Sections 5 and 6 examine the waiting time distribution for Type 1 customers and
the backlog behavior of Type 2 customers, respectively. Section 7 introduces a
cost function based on the performance measures. Section 8 provides numerical
illustrations that show how various parameters affect system performance mea-
sures. Section 9 discusses the sensitivity of the cost function over the system
parameters.

2. Mathematical Formulation of the Model

We consider a single-server queueing inventory system where two distinct
types of customers arrive at a service station. Each arriving customer is indepen-
dently classified as either Type 1, who demand a processed item, or Type 2, who
require an unprocessed item. Type 1 customers arrive according to a Poisson
process with rate A;, while Type 2 customer arrivals follow a Poisson process
with rate Ao. Both types of customers require exactly one unit from a common
inventory pool.

Upon arrival, Type 1 customers join an infinite-capacity queue. When taken
for service, each Type 1 customer is provided with one unit of the processed item.
The items remaining in inventory are referred to as excess inventory. The
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service time for Type 1 customers follows an exponential distribution with rate
w. It is assumed that Type 1 arrivals are blocked whenever the excess inventory
level is zero.

A Type 2 customer demands one unit of the unprocessed item and requires
negligible service time when the excess inventory level is positive. If the excess
inventory level drops to zero, their demands are backlogged, with the backlog
limited to a maximum of b units. The system employs an (s, S) inventory replen-
ishment policy, where restocking occurs after an exponentially distributed lead
time with rate 5. Once replenishment arrives, all accumulated Type 2 backlogs
are cleared instantly, and the excess inventory is replenished up to the level S.

We model the system as a two dimensional Continuous Time Markov Chain
(CTMC) X = {(X(¢),Y(t)); t > 0}, where X (¢) denotes the number of Type 1
customers in the system at time ¢, and Y (¢) is defined as follows:

1 if the excess inventory level is ¢ > 0 and the server is busy,

i*  if the excess inventory level is ¢ > 0 and the server is idle,

0  if the excess inventory is zero and the server is busy,

0* if the excess inventory is zero and the server is idle,

0; if the excess inventory is zero with j backlogged Type 2 demands,
and the server is busy,

0% if the excess inventory is zero with j backlogged Type 2 demands,

and the server is idle.

We organize the state space using the first coordinate n as the level index, and
define it as follows:

[o¢]
Q=] 2w
n=0
where £(n) denotes the n level of the process X defined for n = 1,2,3,... as :
L(n) ={(n,i)| i =0p,0,05_;,0p—1,...,07,01,0%,0,1,2...,S}.
The level £(0) corresponding to zero Type 1 customers is given by:
L£(0) ={(0,7)| i =0;,04_4,...,07,07,0%,1%,2% .../ S*}
The process undergoes the following transitions:

1. Transition due to the arrival of Type 1 customers:

(n,i) 2% (n+1,i) forn=0,1,2,...; € {1%1,2%,2,...,5% S}
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2. Transition due to the arrival of Type 2 customers:

A2

(a) (n,i) = (n,i—1) forn=0,1,2,...; i=12,...,8
(b) (n,i*) 22 (n, (i —1)*) forn=0,1,2,...; i=1,2,...,8
(€) (n,0%) 22 (n,0%) forn=0,1,2,...

(d) (n,0) 2% (n,0;) forn=0,1,2,...

() (n,0%) 2% (n,0%,,) forn=0,1,2,...; j=12...b—1
(£) (n,0;) 22 (n,0;41) forn=0,1,2,...; j=1,2,...,b—1

3. Transitions due to service of Type 1 customers

(a) (n,i) 5 (n—1,i—1) forn=1,2,3,...; i=1,2,...,5
(b) (n,0) = (n—1,0%) forn=1,2,3,...
(¢) (n,0;) 25 (n—1,01) forn=1,2,3,...; j=1,23,...b

4. Transitions due to replenishment

(a) (n,1) N (n,S) forn = 1,2,3,...5 14 €
{05, 00,071,051, 05,01,0%,0,1,2, ...}

(b) (0,i) 25 (0,8%) for i€ {0F,0p 1,...,0%0% 1525 .}
Let Q be the infinitesimal generator matrix of the CTMC X. Using lexicograph-

ical sequence for the states, the generator matrix Q can be expressed in terms of
sub matrices as follows:

Ago Aot
A A1 A
= Ay A A

Az Ay Ao

where Ay is a square matrix of order S +b+ 1, Ag; is of size (S +b+ 1) x
(S+2b+2), and Ajg is of size (S +2b+2) x (S + b+ 1). The matrices Ag, A1
and Aj are all square matrices of order S 4 2b + 2. The (i, j)*" entry of the sub
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matrices are as follows:

Ao forj=i—1;i=2,3,....,S+b+1
8 forte=1,2,...,s+b+1;, j=5+b+1
—p fori=45=1
(A00);; = 4 —(Aa + 0) fori=75=2,3,...,b+1
—(M+XA+B) fori=j=b+2b+3,....,s+b+1
—(A1 4+ o) fori=j=s+b+2,s+b+3,....,5+b+1
0 otherwise
A forj=i+b+1;,i=b0+2,0+3,...,5+2b+2
(Am)ij - {0 otherwise

poforj=2%;i=24,6,...,2b+2
(A10);j = qp forj=i—b—2; i=2b+3,2b+4,...,5+2b+2

0 otherwise

Ao forj=1—-2;,1=3,4,...,2b+ 2
Ao forj=i—1; i=2b4+3,2b+4,...,5S +2b+2
B8 fori=1,2,...,84+2b+2; j=5S+2b+2
—B fori=j5=1

(Ay),, = —(u+B) fori=7=2

K —(A2+B) fori=4=3,5,7,...,2b+1

—(u+ X2+ B) fori=7j=4,6,8,...,2b+2
—M+X+pu+p) fori=7j=2b+3,2b+4,...,8+2b+2
(A1 + A+ p) fori=j=5+2b+3,5s+2b+4,...,5+2b+2
0 otherwise

\

(Ao). = A fori=yj; i=20+3,204+4,...,5+2b+2
0Jij = 0  otherwise

p o forj=i—1;i=24,6,...2b+2
(Ag)ij: p o forj=i—1;,i=2b+3,2b+4,...,54+2b+2

0 otherwise
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3. Steady state analysis

Let m = (ﬂ—og?/ﬂob’ﬂ-oi_l7ﬂ-0b717 ce ,7T0f1f,7r()1,7ro*,7r(),7T1,7T2, ey Mgy Mgy e e - ,7TS)
be the steady state probability vector of the matrix A = Ay + A; + Ay. Then,
We have wA = 0 and we = 1. The components of 7t are obtained as follows.

Define the constants:

At R RN A Y s M
- X | 2. r=—"""> o= ) Y= 7 )
Ao+ B+ p Ao+ Ao+ B B
Tor = ——p
B+ A2
T = QT W*:LT( = IU)\2 T
01 0 07 ,8+)\2 01 (/3+)\2)()\2+M) 0

- 2y for j=2...b—1
T B gy I T

BRI 'm*’_ﬁ(ﬁJru)(Aeru)b !
7rj:< 8 )r_jﬂo, forj=1,...,s
BS—5) 1 hatn

W:( B
T\ BS =)+ X+ p

Normalization condition:

)7“_871'0, forj=s+1,...,8

b—1 b—1 S
Dm0, D oy o, + oy + Tor o, +Top 7m0+ Y75 = 1
J=1 J=1 J=1

Substituting each term in terms of my, we get:

mo 1+b§ioﬂ bi L ety 5 v M
- = (B+ %) (Aa + p) i BB+ ) (A2 +m)>=t B+ Ao

A2 _j s —s| _
et (B4 A2)(A2 + ) +;( S —s) +)\2+M>T j+(5_8)<ﬁ(5—5)+)\2+ﬂ)r =1

1

Hence,
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Y A2 g pAS u
= [1+) o+ + +
70 ZO‘ Z B2 0oty T8+ BB+ 1) a + b1 " B+ A

-1
M)\Q > 5 —j . 5 —s
ERNEES SRS (= ms) 46 (s rra)

1

3.1. Stability Condition
Theorem 1. The process X = {(X(t),Y (t));t > 0} is stable if and only if

b
1—>i—170; — Tor
A < 5 )
1- Z] 1705 — Zj:l Tj — Tor

Proof. The process under consideration is a Level Independent Quasi Birth
Death (LIQBD) process. According to Neuts ( see [3]), stability is achieved if and
only if TAge < mAqe, where 7 is the steady-state distribution of the generator
matrix A and e is a column vector of the ones with dimension S + 1. Through

computation we obtain mAge = A\ (1 - Z Tor — Z LT — 7'['[]*) and mAze =

b
wll=> mos — o~ |- Applying the condition mApge < wAse and simplify, we
=1
obtain the condition as stated in the theorem.

3.2. Steady state Probability vector of the system

Suppose that the system is stable. Let x denote the steady-state probability
vector of the generator (). Then we have

x@Q@ =0 and xe=1

Partitioning x according to the level of the state space as : x = (xg,x1,X2, ...).
Then, the above set of equations reduce to :

xoAoo + 1410 =0

xoAo1 + 141 + 2242 =0
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Tn_1A0 + xnA1 + xpy1A42 =0 forn=2,3,4,...

Under the assumption that the stability condition holds, x is obtained as in [3]
Xn = 21 R" ' n=2,3,4,..., where R is the minimal non-negative solution to
the matrix quadratic equation RZAy+ RA; 4+ Ag = 0 and the boundary equations
are given by xgAgp + 1410 = 0, z9Ao1 + z1(A1 + RA3) = 0. The normalizing
condition gives

xo[I+K(I-R) 'e=1

where K = —Ag; (Al + RAQ)_l

4. Some performance measures

1. Expected number of Type 1 customers in the system

[o.¢]
Ex = E nx,e
n=0

2. Expected number of backlogged Type 2 demands

b

oo b
Bs =335 (%a(0,) +2a(05)) + 3 jio(03)

n=1j=1 j=1
3. Expected inventory level in the system
o S S
Er=> > jxa(i)+ Y ixo(j")
n=0 j=1 j=1
4. Expected reorder rate
o o0
Ep = uan(s—i- 1) —i-)\gan(s—F 1)
n=1 n=1

5. Expected loss rate of Type 1 customers

o b b
B = [ 30 [#a(0)) + (03] + - w0(05)
n=1j=1 j=1

6. Expected loss rate of Type 2 customers

Egype 2 = )\2 (Z [(lln(Ob) + xn(oz] + xo(0§)>

n=1
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5. Distribution of waiting time of a Type 1 customer

In this section, we derive the waiting time distribution for a Type 1 customer.
To this end, we consider a tagged Type 1 customer who joins the queue as the
r*" customer at the time of arrival. We refer to this position as the rank of the
tagged customer. The rank progressively decreases as customers ahead of the
tagged customer leave the system after receiving service.

We consider the Markov process W = {(X(¢),I(t));t > 0 }, where X(¢)
denotes the rank of the tagged customer at time ¢, and I(t) denotes the inventory
level at time t. We define X (¢) = r to mean that there are r — 1 customers ahead
of the tagged customer in the system; thus, the tagged customer is said to have
rank r. The state space of the process W is given by

{(TL,’L), ne {T7T_17T_27 s 71}7 1€ {OZ>Ob70(b—1)*70b—17 T 30*>O7 L2, 75}}U{A}

where A is the absorbing state, indicating that the tagged customer has been
selected for service. The possible transitions and corresponding rates are given
in the Table 1

Table 1: Transitions and corresponding rates for W

From To Rate | Conditions

(n,i) | (n—1,i—1) i ne{r,r—1,r—2,...,2}, i€{1,2,3,...,5}

(1,4) A n | ie{l,2,3,...,5}

(n,q) (n,S) B n € A{rnr — 1Lr — 2,...,1}, ¢« €
{05, 0,01y, 0p_1,- -+ ,0%,0,1,2,- -, S}

(n,1) (n,i—1) X |n e A{rr — Lir — 2,...,1}, i €
{05, 05, 05_1)+, Op_1, -+ ,0%,0,1,2, -~ , S}

The infinitesimal generator Qw of W is of the form :
(T T
where T, is a square matrix of size r(S + 2b + 2), T is a column vector of size
(S +2b+2), and 0 is a row vector of zeros of size r(S + b+ 2). We have :

D M
D M



67

where the sub-blocks D and M are square matrices of size S+ 2b+ 2, defined
as follows:

pw forj=i1—-1; 1 =2,4,6,...,2b+2
(Mij)ij: pw forj=i—-1;i=204+3,2b+4,...,5+2b+2

0 otherwise

Ao for j=i—2; i=3,4,...,2b+2
Ao forj=i—1;i=2b+3,2b+4,...,5+2b+2
I3 fori=1,2,...,54+2b+2; j=5S+2b+2
-0 fori=45=1

(D) =4 W HP) fori=j=2

t —(A2 + B) fori=75=23,5,7,...,2b+1

—(p+ X2+ B) fori=j=4,6,8,...,2b+2
—M+X+pu+p) fori=7=2b+3,2b+4,...,8+2b+2
M+ X+ p) fori=j=s+2b+3,s+2b+4,...,S+2b+2
0 otherwise

\

and T? is a column vector of size (S + 2b + 2) whose j*" entry is given by

0 otherwise

(To)j:{ﬂ for j=@r—1)2b+5+2)+b+2), (r—1)(2b+S5+2)+(b+3),--,

Let p, denote the probability that a tagged customer has rank 7, which is given
by pr = x,e, where e is a column vector of ones of size b+ .5 4+ 1. Define y, = %.
Now, the probability vector o, = €1 ® y,, ( where the vector e; is an r-tuple with
a 1 in the first entry and 0 in all other entries ) defines the initial distribution for

the Markov chain W.

Theorem 2. The expected waiting time of a general Type 1 customer is given by

WTypel Zpr r—zpr r )

Proof. For a given rank r, the waiting time of the tagged customer until it
reaches the absorbing state A is the time to absorption in the continuous-time
Markov chain W with generator 7T.. The expected absorption time for initial
distribution «,. is

E,. = —arTr_le.

r(2b+ S +2)
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Since the overall waiting time distribution is a mixture over possible ranks r (with
weights p,), the expected waiting time is

WType 1 ZprE = Zpr OZTT e

This completes the proof.

6. Distribution of Type 2 demands (backlogs)

When there is no inventory, Type 2 demands accumulate as backlogs, though
these backlogs cannot exceed the finite capacity b. Consider the Markov process
{B(t);t > 0} , where B(¢) is the number of unmet Type 2 demands at time ¢.
The state space of the process is {0,1,2,...,b}.

The infinitesimal generator Qg of the process is given by

—A2 A2
B —(N+B) A
Op = : : .
B —(X2+B) A
B -

Let & = (&o0,&1,&2,...,&) be the steady-state probability vector associated with
the generator matrix Qg. This vector must satisfy the set of equations

£Qp =0 and e = 1.
The stationary condition £Qpr = 0 leads to the following set of equations:

1. For & :

b
—)\2504-525]' =0

j=1

2. For &; j=1,2,...,b—1:
M&i—1— (M +B)& =

3. For &:
A2&p—1 — B =0
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Using the normalizing condition £e = 1, we derive:

_ B
Ao+ 8

o

Solving the recurrence relation for ; gives the general form:

IYERY .
;= f =1,2,...,b—1
5] ()\2+B> 50 OI'] < 9

The final component &, is determined as:

5 B & < )\2 )b—l
T B \ntB

Theorem 3. Under the condition of stability, the steady-state probabilities &; of
having j Type 2 backlogs (j = 0,1,2,...,b) are given by:

_ g A ! .
& = <)\2+5> <)\2+5) forj=0,1,2,....b—1

5 B & < )\2 )b—l
"T B \+p

7. Cost function

and

Based on the performance measure, we define a cost function as follows:
K = C1Ey + CoE; + C3Eg + C4Ep™™ ' 4+ C5 B
, Where:
1. C1 = Holding cost of Type 1 customers per unit time
2. C'2 = Holding cost of inventory
3. C3 = Reordering cost
4. C4 = Cost due to loss of Type 1 customers

5. Cs = Cost due to loss of Type 2 customers
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8. Numerical Illustrations

In this section, we present numerical results to illustrate the behavior of the
proposed queueing-inventory model under various parameter settings. The per-
formance measures examined include the expected number of Type 1 customers
in the system (Ey), the expected inventory level (Ef), the expected reordering

rate (ER), and the expected loss rates for both types of customers (E;**°" and
EType 2)
3 :

Figure 1 shows how MA; affects the system performance measures

En, Eg, ET, Egype ! and E}:ype 2 As A increases, the expected number of Type
1 customers, Fy, increases rapidly, indicating increased system congestion. Both
Er and ER steadily rise with increasing values of A1, indicating increased stock
and replenishment frequency. The expected loss rate for Type 1 customers,
Egyp ¢l rises roughly linearly with A;. For Type 2 customers, on the other hand,
it increases at first but then decreases as A1 increases. This trend could be because

the faster replenishment effectively addresses their demand.

Figure 1: Effect of A1 on performance measures (Fix values: S = 100,s = 40,b = 30, A2 = 10,8 =

20, 1 = 30).

Figure 2 illustrates the effect of the service rate p on system performance

6 — 60 —— 0.6
5 50 Y05
1 40 0.4

= 3 &y 30 & 0.3
2| : 20 X 0.2 R
1 : 10, i 0.14 R
0

Al
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10 14 18 22 26

Al

0 L |
1014 18 22 26

(] 1 1
10 14 18 22 26

A1

T T

2 1 |
1014 18 22 26

A1

D 1 |
10 14 18 22 26
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measures. With an increase in u, the performance measures En, Er and Epr
show a decreasing trend, which aligns with expectations. However the loss rates
Egype ! and Egype % increase gradually. This suggests that a higher service rate
1 accelerates service and reduces congestion in the system.

r
0.3
49 .
2 e 021 B}
& )
2 - B 3
0.1 -
)
0 | L | 0 0 |
18 22 26 30 34 18 22 26 30 34 18 22 26 30 34
7 H "
| |
]
20 1 10 s
s 8
= o
X 20 X gl B
b (2}
£ 10 Ea
M mog L o
0 . 0
18 22 26 30 34 18 22 26 30 34

I3 H

Figure 2: Effect of u on performance measures (Fix values: S = 100,s = 40,b = 30, A1 = 15, A2 =
10,8 =20).

Figure 3 displays the effect of Ay on EN,EI,ER,EEype ! and Egype . Fig-
ure shows that Ao does not affect queue length. The reorder rate Er increases
gradually, while the average inventory Ej decreases slightly, reflecting a small
rise in consumption as Ao grows. The expected loss of Type 1 customers Egype !
increases steadily, though at a very small scale, while the expected loss of Type
2 customers Egype 2 grows more sharply, indicating their sensitivity to rising de-
mand. Overall, higher Ay mainly increases reorder activity and loss probabilities,

with minimal effect on queue size.
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Figure 3: Effect of A2 on performance measures (Fix values: S = 100,s = 40,b = 30,A; = 15,8 =
20, =30 ).

From Figure 4, it is clear that the replenishment rate, 3, has a strong in-
fluence on the loss measures while leaving other performance measures largely
unaffected. The expected number of customers Ey remains constant, showing
that replenishment speed does not change queue length. The average inventory
level E; and reorder rate Eg increase only slightly with 3, indicating a stable
inventory position. In contrast, the expected loss of Type 1 customers Egype !
decreases rapidly on a logarithmic scale, as faster replenishment ensures stock
availability for their demand. A similar but even sharper decline is seen for Type
2 losses Egype 2, which fall drastically as 8 increases. Overall, higher replenish-
ment rates greatly reduce customer losses while keeping other system measures

almost unchanged.
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Figure 4: Effect of 3 on performance measures (Fix values: S = 100, s = 40,b = 30, A\, = 15, A2 =
10,4 =30).

From Figure 5, we observe that as b increases, the expected backlog Eg rises
slowly since more Type 2 customers are allowed to wait. However, the expected
losses of both customer types, especially Egy P 62, decrease sharply because a
larger backlog capacity reduces the chance of lost demand. The inventory level
FEr and reorder rate F'g remain almost unchanged, showing that backlog mainly
influences customer-related measures rather than stock movement. Overall, in-
creasing b improves service for Type 2 customers by reducing losses, but at the

cost of slightly higher backlog accumulation.
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Figure 5: Effect of b on performance measures (Fix values: S = 100,s = 40, A1 = 15,2 = 10,8 =
20, = 30 ).

9. Cost Analysis

The cost function K = C1Ex + CoE; + C3ER + C’4Egype 1y C'g)Egype 2 com-
bines contributions from expected queue length, inventory level, reorder rate,
and customer loss measures. The sensitivity plots (Figure 6) reveal how the sys-
tem parameters influence this aggregate cost. As the service rate p increases,
K decreases sharply due to reduced congestion and losses, highlighting the effi-
ciency gains from faster service. In contrast, variations in the backlog cap b have
only a marginal effect on K, showing that enlarging the backlog limit beyond
a moderate threshold yields diminishing returns. Increasing the arrival rate of
Type 1 customers, A1, causes K to grow rapidly, reflecting the higher congestion
and customer losses in the system. On the other hand, the cost K decreases
slightly with higher Type 2 arrival rate Ag, since instantaneous service for these
customers avoids significant buildup in the system. Finally, as the replenishment
rate ( rises, K grows gradually with a concave trend, suggesting that while faster
replenishment improves availability, it also increases holding and ordering costs,
leading to a net moderate increase in K.
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Figure 6: Sensitivity of the cost function K with respect to the parameters A1, A2, p, 3, b (Fixed
values: S = 100, s = 40).

Figure 7 illustrates the variation in total cost as a function of S, across various
values of s. The results show that for a fixed s, the cost increases steadily with
the values of S. This is due to increasing S generally raises the inventory holding
expenses. The minimum cost is observed when both s and S are at their lowest
tested values, suggesting that adopting a smaller reorder level s in combination
with a moderate value of S yields the most cost-efficient policy.
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Figure 7: Cost function for different values of s and S

These numerical results validate the model and provide practical guidance for
selecting optimal inventory control parameters in real-world systems.

10. Conclusion

This study examined a queueing-inventory system with two types of cus-
tomers—those requiring processed items with service time, and those requesting
unprocessed items that may be backlogged if inventory is unavailable. The system
follows an (s, .S) inventory policy, with restocking delays modeled as exponentially
distributed lead times. We used a continuous-time Markov chain and the matrix-
geometric method to analyze the system’s long-term behavior and computed key
performance measures such as the expected queue length, inventory level, the
waiting time distribution for Type 1 customers, and the backlog distribution for
Type 2 customers. A cost function was also developed to combine these measures
and illustrated its sensitivity over various parameters of the system.
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