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A reproducing kernel associated with vector fields
Anoh Yannick KRAIDI∗, Kinvi KANGNI

Abstract. Let G be a Lie group, X(G) the space of infinitely differentiable vector fields
on G, C∞(G) the space of smooth complex-valued functions on G and let g denote the
Lie algebra of the group G. In this work, we consider a continuous evaluation functional
on X(G) together with an inner product on this space, with the aim of constructing
a positive definite reproducing kernel defined on C∞(G) × C∞(G). This construction
enables us to endow X(G) with the structure of a reproducing kernel Hilbert space. Since
g can be viewed as a Lie subalgebra of X(G), we also induce a structure of reproducing
kernel Hilbert space on g. Subsequently, we define a linear transformation from g into
F(C∞(G)), the space of complex-valued functions on C∞(G) in order to establish both
an inversion formula and the transform of a reproducing kernel associated with vector
fields on G.
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1. Introduction

The concept of reproducing kernel was first introduced through the works
of S. Bergman and S. Szegő (see [3, 17]). The theory was subsequently for-
malized and significantly developed by Nachman Aronszajn, whose contributions
had a profound impact across various areas of mathematics. Reproducing kernel
theory has since found applications in diverse fields such as machine learning,
statistics, signal processing, quantum mechanics, and interpolation theory (see
[6, 9, 13]). One of the foundational results established by Aronszajn is the bi-
jective correspondence between an RKHS and its reproducing kernel K (see [2]).
Specifically, if K is a positive definite kernel on an arbitrary set E, then there
exists a unique RKHS H of functions on E such that {K(x, ) : x ∈ E} ⊂ H.
Numerous examples of RKHSs can be found in [1, 15, 16], and many researchers
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have investigated structural properties of these spaces (see [1, 19]), including
tensor products, multipliers, and interpolations between different RKHSs. The
study of linear transformations and inversion formulas within RKHSs was no-
tably advanced by S. Saitoh (see [15, 16]). Beyond the classical theory, various
generalizations of RKHS have been proposed to accommodate broader settings.
For example, Canu et al. (2003) (see [5]) extended the concept to non-Hilbert
spaces via kernel-based point evaluations. In 2008, Jaeseong Heo (see [8]) further
extended the theory to C∗-modules, which generalize Hilbert spaces by allowing
inner products to take values in a C∗-algebra. He studied reproducing kernels
valued in a C∗-algebra. In 2009, Haizhang Zhang, Yuesheng Xu, and Jun Zhang
(see [19]) generalized RKHS theory to Banach spaces by developing the frame-
work of semi-inner-product reproducing kernel Banach spaces. This framework
accommodates the absence of an inner product in Banach spaces and allows the
study of fundamental properties of reproducing kernel Banach spaces. In our
previous work [12, 11], we proposed an extension of RKHS theory to the Cartan
subalgebra of a semisimple Lie algebra, using the Killing form to define a posi-
tive definite kernel. Since the Killing form is non-degenerate on semisimple Lie
algebras, it naturally induces a valid RKHS structure.

In the present work, we propose a further extension of RKHS theory, focus-
ing on the case of vector fields on a Lie group G. Specifically, we construct a
reproducing kernel space on X(G), the space of smooth vector fields on G, us-
ing a continuous evaluation functional. Following the approach of S. Saitoh (see
[15, 16]), we establish an inversion formula for our kernel and characterize its
transformation under a linear operator, interpreted here as a representation of
the Lie algebra g. For this purpose, we draw on foundational results from Lie
theory, vector fields, and representation theory, as found in [4, 10, 14]. This pa-
per is organized as follows. Section 2 presents the preliminaries, and Section 3
contains the main results.

2. PRELIMINARIES

Definition 2.1 (See [7] p.11). Let (X, d) and (Y, d′) be metric spaces and f :
X → Y a map. f is said to be a Lipschitz map on X if there exists a constant
M ≥ 0 such that

d
′(f(x), f(y)) ≤ M dX(x, y), ∀x, y ∈ X.

We also say that f is an M -Lipschitz map.
The least such constant M is called the Lipschitz constant of f , denoted

Lip(f) := sup
x ̸=y

d
′(f(x), f(y))
d(x, y) .
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f is called a contraction mapping if Lip(f) < 1.

A reproducing kernel Hilbert space (RKHS) H on a set E is a Hilbert space of
functions f : E → C such that for every x ∈ E, the point evaluation functional

εx : H → C, f 7→ f(x)

is continuous.
By the Riesz-Fréchet theorem, there exists a unique function K(·, x) ∈ H for

each x ∈ E such that

f(x) = ⟨f,K(·, x)⟩H , ∀f ∈ H.

The function K : E×E → C is called the reproducing kernel of H, and it satisfies

K(x, y) = ⟨K(·, y),K(·, x)⟩H , ∀x, y ∈ E.

Now let H be a Hilbert space with inner product ⟨·, ·⟩H . Let F(E) denote
the set of complex-valued functions on E. Let h : E → H be a function defined
by h(p) = hp. Define a linear operator L : H → F(E) by

(Lf)(p) = ⟨f, hp⟩H .

Define the kernel K : E × E → C by

K(p, q) = ⟨hq, hp⟩H .

Let R(L) denote the range of L. Define a norm on R(L) by

∥f̃∥R(L) = inf{∥f∥H : Lf = f̃}.

The above results concerning RKHS can be found in [1].

Theorem 2.2 (See [16], p.21). Let K be as defined above. Then (R(L), ⟨·, ·⟩R(L))
is a Hilbert space satisfying:

1. For each q ∈ E, the function K(·, q) ∈ R(L).

2. For every f ∈ R(L) and every q ∈ E,

f̃(q) = ⟨f̃ ,K(·, q)⟩R(L).

Moreover, L is an isometry if and only if the family {hp, p ∈ E} is complete
in H.
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From this theorem, we see that the range of the linear transform is a repro-
ducing kernel space.

Definition 2.3 (See [10]). A group G is called a Lie group if:

1. G is a group;

2. G is an analytic manifold;

2. The map (x, y) 7→ xy−1 from G×G to G is analytic.

Let G be a Lie group with identity element e, and TeG the tangent space of
G at e. For each a ∈ G, the left translation is defined by

La : G → G, x 7→ ax.

It is a diffeomorphism on G.

Definition 2.4 (See [10]). A vector field X on G is called left-invariant if for
all a ∈ G,

(TeLa)(X(e)) = X(a).

Proposition 2.5 (See [10]). Let X ∈ TeG, and define a mapping X̃ : G → TG
by

X̃(f)(p) = X(f ◦ Lp), ∀p ∈ G,

for any analytic function f on G. Then X̃ defines a unique left-invariant vector
field on G such that X̃(e) = X.

Moreover, any left-invariant vector field is of the form X̃.

Let L(G) denote the set of all left-invariant vector fields on G. Then every
such vector field is uniquely determined by its value at the identity:

ϕ : L(G) → TeG, X̃ 7→ X̃(e),

is a vector space isomorphism.

Proposition 2.6 (See [10]). Let X̃, Ỹ ∈ L(G) be left-invariant vector fields.
Then their Lie bracket [X̃, Ỹ ] is also in L(G).

Thus, the set L(G) forms a Lie subalgebra of X(G) (the space of smooth
vector fields on G). This Lie algebra is called the Lie algebra of G and is often
denoted by g. The tangent space TeG also inherits a Lie algebra structure via

[X,Y ] := [X̃, Ỹ ](e), ∀X,Y ∈ TeG.

Therefore, the map ϕ : L(G) → TeG is not only a vector space isomorphism but
also a Lie algebra isomorphism.
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3. RKHS Structure on Smooth Vector Fields (Haar Inner
Product)

Let X(G) denote the space of smooth vector fields on G. Each X ∈ X(G)
acts on smooth functions f ∈ C∞(G):

X(f) : G → C, x 7→ Xx(f),

where Xx is the vector at x ∈ G.

Dense Set of Functions

Choose a countable dense set {fi}i∈N ⊂ C∞(G) with respect to the L2(G,µ)
norm, where µ is a Haar measure on G. Let {wi}i∈N be positive weights decaying
sufficiently fast to guarantee convergence of the series.

Inner Product

For X,Y ∈ X(G), define the inner product

⟨X,Y ⟩H :=
∞∑

i=1
wi

∫
G
X(fi)(x)Y (fi)(x) dµ(x),

with associated norm

∥X∥2
H =

∞∑
i=1

wi

∫
G

|X(fi)(x)|2 dµ(x).

This series might not converge, because there is no guarantee that the family
of integrals is uniformly bounded,and even if each term is finite, the infinite sum
may diverge. Therefore, we introduce positive weights {wi}i

Dense Set of Functions

Choose a countable dense set {fi}i∈N ⊂ C∞(G) with respect to the L2(G,µ)
norm, where µ is a Haar measure on G. Let {wi}i∈N be positive weights decaying
sufficiently fast to guarantee convergence of the series. c∈ N, chosen small enough
(decaying to 0 fast), to force absolute convergence of the series.

Hilbert Space H

Define H as the completion of X(G) under this norm:

H := {X ∈ X(G) : ∥X∥H < ∞}∥·∥H
.
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Evaluation Functionals and Riesz Representers

For each f ∈ C∞(G), define the linear functional

Tf : H → L2(G), Tf (X) := X(f).

Since {fi} is dense, for any f we can approximate f ≈
∑N

i=1 cifi, giving

∥X(f)∥L2(G) ≤
N∑

i=1
|ci| ∥X(fi)∥L2(G) ≤ Cf ∥X∥H .

Hence Tf is continuous.
Fix a non-zero vector ψ ∈ L2(G) and normalize it if convenient, i.e. assume

∥ψ∥L2(G) = 1. For each f ∈ C∞(G) define the scalar-valued linear functional

εf : H → C, εf (X) := ⟨X(f), ψ⟩L2(G).

Using the estimate
∥X(f)∥L2(G) ≤ Cf ∥X∥H

(which follows from the density argument with the {fi} and the definition of
∥ · ∥H), we obtain

|εf (X)| = |⟨X(f), ψ⟩L2(G)| ≤ ∥X(f)∥L2(G)∥ψ∥L2(G) ≤ Cf ∥ψ∥L2(G)∥X∥H ,

so εf is a bounded (continuous) linear functional on H. By the Riesz represen-
tation theorem there exists a unique vector Xf ∈ H such that

εf (X) = ⟨X,Xf ⟩H , ∀X ∈ H.

Scalar Reproducing Kernel

Define a scalar kernel K : C∞(G) × C∞(G) → C by

K(f, g) := ⟨Xg, Xf ⟩H .

Then K is Hermitian, and positive definite. Moreover, the reproducing identity
(for the scalarized evaluations) reads

⟨X(f), ψ⟩L2(G) = εf (X) = ⟨X,Xf ⟩H = ⟨X,K(·, f)⟩H , ∀X ∈ H,

where we denote K(·, f) = Xf ∈ H.
In particular, the map f 7→ Xf identifies the space of scalarized evaluation

functionals with the reproducing kernel Hilbert space having kernel K.
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4. Lie algebra of a Lie group with reproducing kernel

Let g ⊂ X(G) be a (possibly infinite-dimensional) Lie subalgebra, and let

gH := gH

be its closure in H. Equip gH with the inner product inherited from H:

⟨X̃, Ỹ ⟩g := ⟨X̃, Ỹ ⟩H , X̃, Ỹ ∈ gH .

For each f ∈ C∞(G), the evaluation functional on gH has a (unique) representer,
again denoted X̃f ∈ gH , with

X̃(f) = ⟨X̃, X̃f ⟩g, ∀ X̃ ∈ gH .

The induced kernel on C∞(G) is

Kg(f, g) := ⟨X̃g, X̃f ⟩g,

and (gH ,Kg) is a reproducing kernel Hilbert space with reproducing property

X̃(f) = ⟨X̃,Kg(·, f)⟩g, ∀ X̃ ∈ gH .

Let G1 and G2 be two Lie groups, g1, g2 their Lie algebras, respectively and
g1H1 , g2H2 their RKHS respectively. Let Kg1 : C∞(G1) × C∞(G1) −→ C be
the kernel function for g1H1 . If we have G2 ⊆ G1, then the restriction of Kg1

to C∞(G2) × C∞(G2) is also a kernel function and we can use Kg1 to form a
reproducing kernel on g2. The evaluation function for g2H2 will be the restriction
of the evaluation function Tf for g1H1 on g2H2 .

Let us consider a smooth linear operator ϕ from C∞(G2) to C∞(G1), then
we define

Kϕ
g1 : C∞(G2) × C∞(G2) −→ C

denote the function given by

Kϕ
g1(f, g) = Kg1(ϕ(f), ϕ(g)) with f, g ∈ C∞(G2).

Theorem 4.1. If we consider ϕ : C∞(G2) −→ C∞(G1) linear and smooth, and
let Kϕ

g1 : C∞(G1) × C∞(G1) −→ C be the kernel function for g1H1, then Kϕ
g1 is

a reproducing kernel on C∞(G2) ×C∞(G2). The reproducing kernel space of the
kernel Kϕ

g1 is a Lie subalgebra of g2 and will be denoted by

gϕ
1 = {X̃ ◦ ϕ : X̃ ∈ g1H1}.

For X ∈ gϕ
1 , we have

∥X∥
gϕ

1
= min

{
∥X̃∥g1H1

; X = X̃ ◦ ϕ
}
.
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Proof:
Let us consider f1, ..., fp ∈ C∞(G1) ; g1, ..., gn ∈ C∞(G2), let c1, ..., cn ∈ C

and let {f1, ..., fp} = {ϕ(g1), ..., ϕ(gn)}, such that p ≤ n.
Let Ak = {i : ϕ(gi) = fk} and let bk =

∑
i∈Ak

ci. Then,

n∑
i,j=1

cicjKg1(ϕ(gi), ϕ(gj)) =
p∑

k,l=1

∑
i∈Ak

∑
j∈Al

cicjKg1(fk, fl)

=
p∑

k,l=1
bkblKg1(fk, fl)

≥ 0.

Therefore, Kϕ
g1 is a reproducing kernel on C∞(G2) × C∞(G2).

Let X̃ ∈ g1H1 and f1, f2 ∈ C∞(G1) with ∥X̃∥g1H1
= c, then X̃(f1)X̃(f2) ≤

c2Kg1(f1, f2). Since we have this inequality, we see that

X̃ ◦ ϕ(g1)X̃ ◦ ϕ(g2) ≤ c2Kg1(ϕ(g1), ϕ(g2)).

Hence, X̃ ◦ ϕ ∈ gϕ
1 with ∥X̃ ◦ ϕ∥ ≤ c. That means there exists a contractive

linear map

Uϕ : g1H1 −→ gϕ
1 given by Uϕ(X̃) = X̃ ◦ ϕ. (see [18] theorem 3.11 p.44)

Let us set for g ∈ C∞(G2), ζg(.) = Kg1(ϕ(.), ϕ(g)), the kernel function for gϕ
1 .

For c1, ..., cn ∈ C , if X =
∑

i ciζg, then,

∥X∥
gϕ

1
= ∥

∑
i ciK

1
ϕ(g)∥g1H1

.

That means there exists an isometry, V :gϕ
1 −→ g1H1 , satisfying

V (ζg) = K1
ϕ(g),

then Uϕ ◦V is the identity on gϕ
1 . Hence, for any X ∈ gϕ

1 , X̃ = V (X) satisfies
X = X̃ ◦ ϕ with ∥X∥

gϕ
1

= ∥X̃∥g1H1
.

Let us prove that gϕ
1 is a Lie subalgebra of g2. Since gϕ

1 is a subspace of g2,
we have to prove that for any X,Y ∈ gϕ

1 , [X,Y ] ∈ gϕ
1 .
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Let a ∈ G2, e2 be the identity element of the Lie group G2, A(a) be the set
of analytic functions at points a and φ ∈ A(a). We have:

[dL(a)][X,Y ]e2φ = [X,Y ]e2(φ ◦ La)
= Xe2(Y (φ ◦ La)) − Y e2(X(φ ◦ La))
= Xe2(Y φ ◦ La) − Y e2(Xφ ◦ La)
= dL(a)Xe2(Y φ) − dL(a)Y e2(Xφ)
= Xa(Y φ) − Y a(Xφ)
= [X,Y ]aφ

so, [dL(a)][X,Y ]e2 = [X,Y ]a. We proved that the reproducing kernel space
gϕ

1 is a Lie subalgebra of g2.
□

4.1. Inversion formula in vector fields with a reproducing kernel

Let g ⊂ X(G) be an infinite-dimensional Lie algebra. Consider the reproduc-
ing kernel Hilbert space gH with reproducing kernel Kg. Let F(C∞(G)) denote
the set of complex-valued functions on C∞(G), the space of all infinitely differ-
entiable complex functions on G.

Define a map
l : C∞(G) → gH , f 7→ l(f) = lf .

We also consider the linear map

J : gH → F(C∞(G)), X̃ 7→ X̂ = JX̃,

defined by

X̂(f) = (JX̃)(f) := ⟨X̃, lf ⟩g, ∀f ∈ C∞(G), X̃ ∈ gH .

Next, define the kernel K for all f, g ∈ C∞(G) by

K(f, g) := ⟨lg, lf ⟩g = J(lg)(f).

Since the inner product ⟨·, ·⟩g is sesquilinear, Hermitian, and positive definite,
the kernel K is positive definite. By the Aronszajn theorem, there exists a unique
Hilbert space HK with reproducing kernel K such that, for all f ∈ C∞(G),

X̂(f) = ⟨X̂,K(·, f)⟩HK
, ∀X̂ ∈ HK .
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Let R(J) denote the range of J . We define a norm on R(J) by

∥X̂∥R(J) := inf{∥X̃∥g : X̂ = JX̃}.

Then R(J) is a Hilbert space satisfying the same properties as HK (see [18],
Theorem 1, p.21). By uniqueness of reproducing kernel Hilbert spaces, we have
R(J) = HK , and for all X̃ ∈ g and f ∈ C∞(G),

(JX̃)(f) = X̂(f) = ⟨X̂,K(·, f)⟩HK
.

Theorem 4.2. If we consider for the Hilbert space gH , We consider {X̃i}i∈N be
an orthonormal basis of g under the scalar product inherited from H, X̂ ∈ HK ,
f ∈ C∞(G) and X̂i(f) = ⟨X̃i, lf ⟩g for all i. Then,

1) For any f, g ∈ C∞(G), K(f, g) =
∑∞

i=1 X̃i(f)X̃i(g) and
∥X̂∥HK

≤ ∥⟨X̂, l(·)⟩HK
∥g.

2) Furthermore, if we assume that {lf , f ∈ C∞(G)} is dense in g then,
∥X̂∥HK

= ∥⟨X̂, l(·)⟩HK
∥g and there exists a unique X̃∗ in g such that:

X̃∗ = ⟨X̂, l(·)⟩HK
=

∑∞
i=1⟨X̂, ⟨X̃i, l(·)⟩g⟩HK

X̃i.

Proof :

1) Let us consider f, g ∈ C∞(G), and for all i, ⟨Kf , X̂i⟩HK
= ⟨X̂i,Kf ⟩HK

=
X̂i(f). By the Parseval identity :

K(f, g) = ⟨Kg,Kf ⟩HK
=

∞∑
i=1

⟨Kg, X̂i⟩HK
⟨Kf , X̂i⟩HK

=
∞∑

i=1
X̂i(f)X̂i(g).

X̂i(f) = ⟨X̃i, lf ⟩g, then lf =
∑∞

i=1⟨lf , X̃i⟩gX̃i =
∑∞

i=1 X̂i(f)X̃i.

Now, if we set lf =
∑∞

i=1 X̂i(f)X̃i, we have

l(·) =
∞∑

i=1
X̂i(·)X̃i. (1)
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Let X̂ ∈ HK then, ⟨X̂, l(·)⟩HK
=

∑∞
i=1⟨X̂, X̂i(·)⟩HK

X̃i and ⟨X̂, l(·)⟩HK
∈ g.

Let f ∈ C∞(G), since

⟨lf , l(·)⟩g = ⟨
∞∑

i=1
X̂i(f)X̃i,

∞∑
i=1

X̂i(·)X̃i⟩g

=
∞∑

i=1
X̂i(f)X̂i(·),

then,

⟨X̂, ⟨lf , l(·)⟩g⟩HK
= ⟨X̂,

∞∑
i=1

X̂i(f)X̂i(·)⟩HK

=
∞∑

i=1
X̂i(f)⟨X̂, X̂i(·)⟩HK

,

⟨⟨X̂, l(·)⟩HK
, lf ⟩g = ⟨

∞∑
i=1

⟨X̂, X̂i(·)⟩HK
X̃i, lf ⟩g

= ⟨
∞∑

i=1
⟨X̂, X̂i(·)⟩HK

X̃i,
∞∑

i=1
X̂i(f)X̃i⟩g

=
∞∑

i=1
⟨X̂, X̂i(·)⟩HK

X̂i(f)

So, ⟨X̂, ⟨lf , l(·)⟩g⟩HK
= ⟨⟨X̂, l(·)⟩HK

, lf ⟩g .
The foregoing assumptions and the above equality lead us to:

X̂(f) = ⟨X̂,K(·, f)⟩HK

= ⟨X̂, ⟨lf , l(·)⟩g⟩HK

= ⟨⟨X̂, l(·)⟩HK
, lf ⟩g

Therefore,

X̂ = J⟨X̂, l(·)⟩HK
, ∥X̂∥HK

≤ ∥⟨X̂, l(·)⟩HK
∥g. (2)



150 Anoh Yannick KRAIDI , Kinvi KANGNI

2) For some X̃0 ∈ g, for i = 1, 2.., n and using (1),

⟨X̃0, ⟨X̂, l(·)⟩HK
⟩g = ⟨X̃0,

∞∑
i=1

⟨X̂, X̂i(·)⟩HK
X̃i⟩g

=
∞∑

i=1
⟨X̂, X̂i(·)⟩HK

⟨X̃0, X̃i⟩g.

We also have :

⟨X̃0, l(·)⟩g = ⟨
∞∑

i=1
⟨X̃0, X̃i⟩gX̃i, l(·)⟩g

= ⟨
∞∑

i=1
⟨X̃0, X̃i⟩gX̃i,

∞∑
i=1

X̂i(·)X̃i⟩g

=
∞∑

i=1
⟨X̃0, X̃i⟩gX̂i(·).

Then,

⟨⟨X̃0, l(·)⟩g, X̂⟩HK
=

∞∑
i=1

⟨X̂i(·), X̂⟩HK
⟨X̃0, X̃i⟩g

=
∞∑

i=1
⟨X̂, X̂i(·)⟩HK

⟨X̃0, X̃i⟩g.

We obtain finally :

⟨X̃0, ⟨X̂, l(·)⟩HK
⟩g = ⟨⟨X̃0, l(·)⟩g, X̂⟩HK

. (3)

If X̃0 ∈ Ker(J), then we obtain ⟨X̃0, l(·)⟩g = L(X̃0)(·) = 0. We get in (3)
that ⟨X̃0, ⟨X̂, l(·)⟩HK

⟩g = 0 and ⟨X̂, l(·)⟩HK
∈ [Ker(J)]⊥.

If {lf , f ∈ C∞(G)} is dense in g, then [Ker(L)]⊥ = g, which implies that
J is an isometry between [Ker(J)]⊥ and R(J), then there exists a unique
X̃∗ ∈ [Ker(J)]⊥ such that, from (2):

X̃∗ = J−1X̂ = ⟨X̂, l(·)⟩HK
and ∥X̂∥HK

= ∥X̃∗∥g = ∥⟨X̂, l(·)⟩HK
∥g.
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For the adjoint J∗ of the isometry J between [Ker(J)]⊥ and HK , we have
J∗ = J−1 hence, we obtain :

J−1X̂ = X̃∗ =
∞∑

i=1
⟨X̃∗, X̃i⟩gX̃i

=
∞∑

i=1
⟨X̂, JX̃i⟩HK

X̃i

=
∞∑

i=1
⟨X̂, ⟨X̃i, l(·)⟩g⟩HK

X̃i.

□

4.2. Transform of Reproducing Kernel defined in a vector field

We consider the kernel K defined on C∞(G) × C∞(G) by K(f, g) = ⟨lg, lf ⟩g
and assume that { lf , f ∈ C∞(G)} is dense in g.
For any f, g ∈ C∞(G) and X̂ ∈ HK , if X̂(f) = (JX̃)(f) = ⟨X̃, lf ⟩g, then there
exists a unique X̃∗ ∈ [Ker(J)]⊥ such that:

X̂(f) = (JX̃∗)(f) = ⟨X̃∗, lf ⟩g, ∥X̃∗∥g = ∥X̂∥HK
. (4)

Secondly, we consider g the Lie algebra of the group G and a representation
π of g on g and define the following positive kernel with x ∈ g, that is: Kπx(f, g)
on C∞(G) × C∞(G) defined by :

Kπx(f, g) = ⟨πxlg, πxlf ⟩g on C∞(G) × C∞(G).

For all x ∈ g,Kπx is positive definite kernel, then by the theorem of
Aronszajn, there exists a reproducing kernel space that will be denoted by
HKπx

= πx(g), whose kernel is Kπx .
Let us consider the linear transform defined by the following map

πx ◦ L : g −→ HKπx

X̃∗ 7−→ πx ◦ J(X̃∗) = πx(X̂) = ⟨X̃∗, πxl(·)⟩g
(5)

Let us set πx(X̂) = X̂πx , for all X̂ ∈ HK such that for all f ∈ C∞(G),
πx ◦ J(X̃∗)(f) = πx(X̂)(f) = X̂πx(f) = ⟨X̃∗, πxlf ⟩g.
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Theorem 4.3. Taking x ∈ g, we consider the mapping πx : X̂ −→ X̂πx, from
HK onto HKπx

. Then we have :

∥X̂∥HK
≥ ∥X̂πx∥HKπx

.

Note that we get the equality if and only if πx is one-to-one, that is, if
{ πxlf , f ∈ C∞(G)} is dense in g.

In particular,

K(f, f) ≥ ∥Kπx(·, f)∥2
HKπx

for all f ∈ C∞(G).

Proof:

Let us consider f ∈ C∞(G), X̃∗ ∈ g, x ∈ g, X̂πx(f) = ⟨X̃∗, πxlf ⟩g, then
∥X̂πx∥HKπx

≤ ∥X̃∗∥g and since ∥X̂∥HK
= ∥X̃∗∥g.

we have

∥X̂∥HK
≥ ∥X̂πx∥HKπx

. (6)

If πx is one-to-one, then { πxlf , f ∈ C∞(G)} is dense in g and we obtain the
equality.

We assume that πx is one-to-one and { πxlf , f ∈ C∞(G)} is dense in g, then
the map considered in (5) is an isometry. When we consider the inversion formula
for πx, for any X̂πx ∈ HKπx

, we take the unique X̂∗ ∈ HK such that

πxX̂
∗ = X̂πx and ∥X̂∗∥HK

= ∥X̂πx∥HKπx
.

Then,

X̂πx(f) = ⟨X̂∗, πxlf ⟩g, X̂∗ ∈ [Ker(πx)]⊥

and

X̂∗(f) = ⟨X̃∗, lf ⟩g.

Note that the space [Ker(πx)]⊥ denotes the orthogonal complement in g of
the null space of πx. Then, we have X̂∗(f) =< X̃∗, lf >g= ⟨X̂πx , πxKf ⟩HKπx

,
using the isometry πx ◦ J from g onto HKπx

. Then for all f ∈ C∞(G),

Kf (f) = ⟨lf , lf ⟩g
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= ⟨Jlf , Jlf ⟩HK

= ⟨Kf ,Kf ⟩HK

= ⟨πxKf , πxKf ⟩HKπx

= ∥Kπx(·, f)∥2
HKπx

Since, Kf (f) = K(f, f) = ∥K(·, f)∥2
HK

, then ∥K(·, f)∥2
HK

= ∥Kπx(·, f)∥2
HKπx

and

∥K(·, f)∥HK
= ∥Kπx(·, f)∥HKπx

. (7)

In the case where { πxlf , f ∈ C∞(G)} is not dense in g or πx is not one-to-one
then, K(f, f) = ∥K(·, f)∥2

HK
≥ ∥Kπx(·, f)∥2

HKπx
. (using (6),(7))

□

Acknowledgments

The authors thank the anonymous referee for valuable comment

References

[1] Alpay, D. (2000). Reproducing kernel spaces and applications. Springer Basel
AG.

[2] Aronszajn, N. (1950). Theory of reproducing kernels. Transactions of the
American Mathematical Society, 68(3), 337–404. https://doi.org/10.
2307/1990404
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[8] Heo, J. (2008). Reproducing kernel Hilbert C∗-modules and kernels as-
sociated with cocycles. Journal of Mathematical Physics, 49 (10), 103507.
https://doi.org/10.1063/1.3000574.

[9] Jorgensen, P., & Tian, F. (2017). Reproducing kernels and choices
of associated feature spaces, in the form of L2-spaces. arXiv preprint
arXiv:1708.04992.
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