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A reproducing kernel associated with vector fields

Anoh Yannick KRAIDI*, Kinvi KANGNI

Abstract. Let G be a Lie group, X(G) the space of infinitely differentiable vector fields
on G, C*°(G) the space of smooth complex-valued functions on G and let g denote the
Lie algebra of the group G. In this work, we consider a continuous evaluation functional
on X(G) together with an inner product on this space, with the aim of constructing
a positive definite reproducing kernel defined on C*°(G) x C°°(G). This construction
enables us to endow X(G) with the structure of a reproducing kernel Hilbert space. Since
g can be viewed as a Lie subalgebra of X(G), we also induce a structure of reproducing
kernel Hilbert space on g. Subsequently, we define a linear transformation from g into
F(C>(Q)), the space of complex-valued functions on C*°(G) in order to establish both
an inversion formula and the transform of a reproducing kernel associated with vector
fields on G.
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1. Introduction

The concept of reproducing kernel was first introduced through the works
of S. Bergman and S. Szegd (see [3, 17]). The theory was subsequently for-
malized and significantly developed by Nachman Aronszajn, whose contributions
had a profound impact across various areas of mathematics. Reproducing kernel
theory has since found applications in diverse fields such as machine learning,
statistics, signal processing, quantum mechanics, and interpolation theory (see
[6, 9, 13]). One of the foundational results established by Aronszajn is the bi-
jective correspondence between an RKHS and its reproducing kernel K (see [2]).
Specifically, if K is a positive definite kernel on an arbitrary set E, then there
exists a unique RKHS H of functions on E such that {K(z,) : = € E} C H.
Numerous examples of RKHSs can be found in [1, 15, 16], and many researchers
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have investigated structural properties of these spaces (see [1, 19]), including
tensor products, multipliers, and interpolations between different RKHSs. The
study of linear transformations and inversion formulas within RKHSs was no-
tably advanced by S. Saitoh (see [15, 16]). Beyond the classical theory, various
generalizations of RKHS have been proposed to accommodate broader settings.
For example, Canu et al. (2003) (see [5]) extended the concept to non-Hilbert
spaces via kernel-based point evaluations. In 2008, Jaeseong Heo (see [8]) further
extended the theory to C*-modules, which generalize Hilbert spaces by allowing
inner products to take values in a C*-algebra. He studied reproducing kernels
valued in a C*-algebra. In 2009, Haizhang Zhang, Yuesheng Xu, and Jun Zhang
(see [19]) generalized RKHS theory to Banach spaces by developing the frame-
work of semi-inner-product reproducing kernel Banach spaces. This framework
accommodates the absence of an inner product in Banach spaces and allows the
study of fundamental properties of reproducing kernel Banach spaces. In our
previous work [12, 11], we proposed an extension of RKHS theory to the Cartan
subalgebra of a semisimple Lie algebra, using the Killing form to define a posi-
tive definite kernel. Since the Killing form is non-degenerate on semisimple Lie
algebras, it naturally induces a valid RKHS structure.

In the present work, we propose a further extension of RKHS theory, focus-
ing on the case of vector fields on a Lie group G. Specifically, we construct a
reproducing kernel space on X(G), the space of smooth vector fields on G, us-
ing a continuous evaluation functional. Following the approach of S. Saitoh (see
[15, 16]), we establish an inversion formula for our kernel and characterize its
transformation under a linear operator, interpreted here as a representation of
the Lie algebra g. For this purpose, we draw on foundational results from Lie
theory, vector fields, and representation theory, as found in [4, 10, 14]. This pa-
per is organized as follows. Section 2 presents the preliminaries, and Section 3
contains the main results.

2. PRELIMINARIES

Definition 2.1 (See [7] p.11). Let (X,d) and (Y,d ) be metric spaces and f :
X =Y a map. f is said to be a Lipschitz map on X if there exists a constant
M > 0 such that

d(f(x), f(y)) < Mdx(z,y), Va,yeX.

We also say that f is an M-Lipschitz map.
The least such constant M is called the Lipschitz constant of f, denoted
: d (f(x), f(y))
Lip(f) := sup ————==.
( ) TH#Y d(ajv y)
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f is called a contraction mapping if Lip(f) < 1.

A reproducing kernel Hilbert space (RKHS) H on a set F is a Hilbert space of
functions f : £ — C such that for every x € E, the point evaluation functional

ez H—=C, fr f(x)

is continuous.
By the Riesz-Fréchet theorem, there exists a unique function K(-,z) € H for
each z € E such that

f($):<f>K(7:L‘)>Ha vaH
The function K : Ex EE — C is called the reproducing kernel of H, and it satisfies
K(z,y) =(K(y), K(~2))n, Vr,y€E.

Now let H be a Hilbert space with inner product (-,-)g. Let F(E) denote
the set of complex-valued functions on E. Let h : E — H be a function defined
by h(p) = hyp. Define a linear operator L : H — F(E) by

(Lf)(p) = (fs hp) i
Define the kernel K : E x E — C by
K(p.q) = (hg, hp) 1.
Let R(L) denote the range of L. Define a norm on R(L) by
1Fll ey = mt{[|fllm : Lf = F}.
The above results concerning RKHS can be found in [1].

Theorem 2.2 (See [16], p.21). Let K be as defined above. Then (R(L),(-,)r(r))
is a Hilbert space satisfying:

1. For each q € E, the function K(-,q) € R(L).

2. For every f € R(L) and every q € F,

f(Q) = <f~7 K(v q))R(L)'

Moreover, L is an isometry if and only if the family {h,,p € E} is complete
in H.
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From this theorem, we see that the range of the linear transform is a repro-
ducing kernel space.

Definition 2.3 (See [10]). A group G is called a Lie group if:
1. G is a group;
2. G is an analytic manifold;
2. The map (x,y) — 2y~ from G x G to G is analytic.

Let G be a Lie group with identity element e, and T.G the tangent space of
G at e. For each a € G, the left translation is defined by

L,:G— G, x+— ar.

It is a diffeomorphism on G.

Definition 2.4 (See [10]). A vector field X on G is called left-invariant if for
alla € G,
(TeLa)(X(e)) = X(a).
Proposition 2.5 (See [10]). Let X € T,G, and define a mapping X : G — TG
by
X(fw)=X(foLy), ¥peq,
for any analytic function f on G. Then X defines a unique left-invariant vector

field on G such that X (e) = X. )
Moreover, any left-invariant vector field is of the form X.

Let £(G) denote the set of all left-invariant vector fields on G. Then every
such vector field is uniquely determined by its value at the identity:

¢: L(G) = T.G, X+ X(e),
is a vector space isomorphism.

Proposition 2.6 (See [10]). Let X,Y € L(G) be left-invariant vector fields.
Then their Lie bracket [X,Y] is also in L(G).

Thus, the set £(G) forms a Lie subalgebra of X(G) (the space of smooth
vector fields on G). This Lie algebra is called the Lie algebra of G and is often
denoted by g. The tangent space T,G also inherits a Lie algebra structure via

[X,Y]:=[X,Y](e), VX,Y eT.G.

Therefore, the map ¢ : L(G) — TG is not only a vector space isomorphism but
also a Lie algebra isomorphism.
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3. RKHS Structure on Smooth Vector Fields (Haar Inner
Product)

Let X(G) denote the space of smooth vector fields on G. Each X € X(G)
acts on smooth functions f € C*(G):

X(f):G=C, zm Xu(f),

where X, is the vector at x € G.

Dense Set of Functions

Choose a countable dense set {f;}ien C C*°(G) with respect to the L?(G, p)
norm, where p is a Haar measure on G. Let {w; };cn be positive weights decaying
sufficiently fast to guarantee convergence of the series.

Inner Product

For XY € X(G), define the inner product
mxm:iméﬂmmwmmwm,
with associated norm
11 = > [ X ()@ dte).

This series might not converge, because there is no guarantee that the family
of integrals is uniformly bounded,and even if each term is finite, the infinite sum
may diverge. Therefore, we introduce positive weights {w;};

Dense Set of Functions

Choose a countable dense set {fi}ien C C(G) with respect to the L?(G, p)
norm, where p is a Haar measure on G. Let {w;};cn be positive weights decaying
sufficiently fast to guarantee convergence of the series. c€ N, chosen small enough
(decaying to 0 fast), to force absolute convergence of the series.

Hilbert Space H
Define H as the completion of X (G) under this norm:

H:={XecX (@) [ X|z <o)
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Evaluation Functionals and Riesz Representers
For each f € C°°(G@), define the linear functional
Ty H — L*(G), TyX):=X(f)

Since {f;} is dense, for any f we can approximate f ~ SN ¢ f;, giving

N

IX(N)lz2c) < 2; lesl 1IX (fi)ll 22y < Crll X -
i—

Hence T} is continuous.
Fix a non-zero vector ¢ € L?(G) and normalize it if convenient, i.e. assume
%]l 22(qy = 1. For each f € C°°(G) define the scalar-valued linear functional

ef: H—C, ep(X) = (X(f), V) r2(c)-

Using the estimate
IX(Nlle2c) < Crli XNl

(which follows from the density argument with the {f;} and the definition of
| - llzr), we obtain

e (X = [X(f), D)2 S NX Dz 1912y < Crlldll Lzl X N,

so €¢ is a bounded (continuous) linear functional on H. By the Riesz represen-
tation theorem there exists a unique vector Xy € H such that

er(X) = (X, Xp)m, VX € H.

Scalar Reproducing Kernel

Define a scalar kernel K : C*°(G) x C*(G) — C by

K(f,9) = (X, Xs)m-

Then K is Hermitian, and positive definite. Moreover, the reproducing identity
(for the scalarized evaluations) reads

(X(), V)2 =ep(X) = (X, Xp)w = (X, K( f))m, VX €H,

where we denote K (-, f) = X € H.
In particular, the map f + X identifies the space of scalarized evaluation
functionals with the reproducing kernel Hilbert space having kernel K.
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4. Lie algebra of a Lie group with reproducing kernel

Let g C X(G) be a (possibly infinite-dimensional) Lie subalgebra, and let
o =g"
be its closure in H. Equip gy with the inner product inherited from H:
(X, V)= (X, V), X,Ycgn.

For each f € C*°(G), the evaluation functional on gy has a (unique) representer,
again denoted Xy € gy, with

X(f) = <X7Xf>gv VXEQH
The induced kernel on C*°(G) is
Kqy(f,9) = <X97Xf>97

and (g, Ky) is a reproducing kernel Hilbert space with reproducing property
X(f) = <X7Kg('7f)>g? VXEQH

Let G1 and G2 be two Lie groups, g1, go their Lie algebras, respectively and
01, 9%y, their RKHS respectively. Let K : C°°(Gyp) x C*°(G1) — C be
the kernel function for g*p, . If we have Go C Gy, then the restriction of K
to C*°(Ga) x C*°(Ga) is also a kernel function and we can use K, to form a
reproducing kernel on go. The evaluation function for gy, will be the restriction
of the evaluation function Ty for g*y, on g*p,.

Let us consider a smooth linear operator ¢ from C*°(G2) to C*°(Gy), then
we define
K : C%(Ga) x C®(Gy) — C
denote the function given by

K (f,9) = Kg (6(),¢(g)) with f,g € C(Ga).

Theorem 4.1. If we consider ¢ : C*°(Ga) — C*(G1) linear and smooth, and
let Kjl : C®(G1) x C*(G1) — C be the kernel function for g*y,, then Kjl is
a reproducing kernel on C*°(Gg) x C*°(G2). The reproducing kernel space of the
kernel Kjl 1s a Lie subalgebra of go and will be denoted by

0y = {Xog: X gy}
For X € g‘f, we have

[Xllge = min{[|Xllg:,,, s X = X o6}
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Proof:
Let us consider fi,..., f, € C*°(G1) ; g1,...,.9n € C®(G2), let ¢1,...,c, € C

and let {f1,..., fp} = {0(91),...,0(gn)}, such that p < n.
Let Ay = {i: ¢(g:) = fr} and let by, = >7;c 4, ci- Then,

Z Eichgl(¢(gi),¢(9j)) = Z Z Z achgl(fkafl)

ij=1 k=1 i€ Ay, jEA,
p JE—
= > bbiKa(fu, 1)
k=1
> 0.

Therefore, Kjl is a reproducing kernel on C*(Gs2) x C*(Ga).

Let X € gy, and f1, fo € C*°(G1) with ||X||91H1 = ¢, then X'(fl)f((fg) <
2K g1 (f1, f2). Since we have this inequality, we see that

X 0 ¢(g1)X 0 d(g2) < Ky (d(g1), 8(g2)).

Hence, X 0 ¢ € g? with || X o ¢|| < ¢. That means there exists a contractive
linear map

Up: 9y, — g‘f given by Uy(X) = X o ¢. (see [18] theorem 3.11 p.44)

Let us set for g € C*°(Ga), (4(.) = K (6(.), ¢(g)), the kernel function for gf.
For ¢1,...,cp € C,if X =3, ¢y, then,

||Y”g<f =122 Cquls(g)Hngl-
That means there exists an isometry, V' :g“f — g'p, , satisfying
ViG) = Ké(g)’

then Uy oV is the identity on g(f. Hence, for any X € g‘f, X = V(X)) satisfies
X = X o ¢ with HXHg‘f = \|X||ng1.

Let us prove that g‘f is a Lie subalgebra of gs. Since g(f is a subspace of gs,
we have to prove that for any X,Y € g(f, [X,Y] e g‘f.
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Let a € Go, e2 be the identity element of the Lie group G, A(a) be the set
of analytic functions at points a and ¢ € A(a). We have:

[dL(a)][X, Ve,

I
B

s Yle, (9o Lg)

&)

I
|
N
==l
o
h
£
\
~
N
Ja
©
o
h
&

o
] QL
HHE
= = )
Q
5T SN\
S5
=l
NPRE~Y
h
K
=
>
s

so, [dL(a)][X,Y]e, = [X,Y]s. We proved that the reproducing kernel space
gf’ is a Lie subalgebra of go.

O
4.1. Inversion formula in vector fields with a reproducing kernel

Let g C X(G) be an infinite-dimensional Lie algebra. Consider the reproduc-
ing kernel Hilbert space gy with reproducing kernel Ky. Let F(C*°(G)) denote
the set of complex-valued functions on C°°(G), the space of all infinitely differ-
entiable complex functions on G.

Define a map

l:COO(G)—>gH, f'—)l(f):lf

We also consider the linear map
Jigg = F(C®(Q), X~ X=JX,
defined by
X(N) = X)) = (X.lp)s, VS €C(G), X €gn.
Next, define the kernel K for all f,g € C*°(G) by
K(f,9) = g, 1)g = Jg)(f)-

Since the inner product (-, )4 is sesquilinear, Hermitian, and positive definite,
the kernel K is positive definite. By the Aronszajn theorem, there exists a unique
Hilbert space ‘H g with reproducing kernel K such that, for all f € C*(G),

X(f):<X7K(7f)>'HK7 VXGHK
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Let R(J) denote the range of J. We define a norm on R(.J) by
IX | sy = mf{|| X[y : X = JX}.

Then R(J) is a Hilbert space satisfying the same properties as Hy (see [18],
Theorem 1, p.21). By uniqueness of reproducing kernel Hilbert spaces, we have
R(J) = Hg, and for all X € g and f € C*(G),

(JX)(f) = X(f) = (X, K (-, [))pse -

Theorem 4.2. If we consider for the Hilbert space grr, We consider {Xi}ieN be
an orthonormal basis of g under the scalar product inherited from H, X € Hg,
feC®(G) and X;(f) = (Xi,lf)g for all i. Then,

1) For any f,g € C=(G), K(f,9) = X2, Xi(f)Xi(g) and
[ X N7 < ICX L)) m g

2) Furthermore, if we assume that {ly, f € C*(G)} is dense in g then,
1 X2, = ||<X,l(-)>HK|]g and there exists a unique X* in g such that:

~ A~ — ~

X* = <X,l(')>HK = z‘oil<X7 <Xi7l(')>g>7'l1<

<

7.

Proof :

1) Let us consider f,g € C*°(G), and for all 1, <Kf,Xi>HK = <X¢,Kf)HK =

Xi(f). By the Parseval identity :

Xi(f) = (X, ly)g, then Iy = 3322, (Iy, Xi)o Xi = 321 Xi() X
Now, if we set [f = 3°7°, X;(f)X;, we have

()= X)X (1)
=1



Let X € Hi then, (X, 1)), = X320 (X, Xi())pee K and (£,10))

Let f € C*(G), since

then,

So, <X7 <lf’ l(')>g>7-lK = <<X7W>HK7 lf>9 :
The foregoing assumptions and the above equality lead us to:

X(f) = (X, K (5 ) me
= (X, (15, 1())a)rr
= <<Xaﬁ>7ﬁ<7 lf>9

Therefore,

X = J<X7W>'HK7 ||X||HK < ”<X7ﬂ>'HKH9
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For some X € g, for i = 1,2..,n and using (1),

We also have :

Then,

<X07 <X7m>7{1{>9 = <<X07l(')>97X>HK‘ (3)

If Xy € Ker(J), then we obtain (Xo,(-))g = L(X0)(-) = 0. We get in (3)
that (Xo, (X,1(-)) 1, )g = 0 and (X, 1(-))3, € [Ker(J)]*".

If {Is, f € C®(G)} is dense in g, then [Ker(L)]* = g, which implies that
J is an isometry between [Ker(J)]* and R(.J), then there exists a unique
X* € [Ker(J)]* such that, from (2):

~ A A

X* =T X = (RO and Xl = 157 g = 10X 1) w0 o
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For the adjoint J* of the isometry J between [Ker(J)]* and Hy, we have
J* = J~! hence, we obtain :

4.2. Transform of Reproducing Kernel defined in a vector field

We consider the kernel K defined on C*°(G) x C*°(G) by K(f,g) = (lg,lt)q
and assume that { iy, f € C*(G)} is dense in g.
For any f,g € C®(G) and X € Hg, if X(f) = (JX)(f) = (X,ls), then there
exists a unique X* € [Ker(J)]* such that:

X(f) = (X)) = (X1 1X g = 1X [l (4)
Secondly, we consider g the Lie algebra of the group G and a representation

7 of g on g and define the following positive kernel with = € g, that is: K, (f,g)
on C®(G) x C*°(G) defined by :

Ka, (f,9) = (malg, malp)g on CF(G) x C=(G).

For all x € g, K, is positive definite kernel, then by the theorem of
Aronszajn, there exists a reproducing kernel space that will be denoted by
Hp, = m.(g), whose kernel is K, .

Let us consider the linear transform defined by the following map

mgeoL: g — Hg,, (5)
X* s ﬂxOJ(X*):ﬂ'z(X):<X*,7T$l(-)>g

Let us set 775,;()2) = A,,z, for all X € Hpye such that for all f € C%(G),
Ty 0 J(X*)(f) = ma(X)(f) = Xa, (f) = (X*, malp)g
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Theorem 4.3. Taking x € g, we consider the mapping 7y : X — )A(,rz, from
Hi onto Hg, . Then we have :

XM = (1 X e, -

Note that we get the equality if and only if 7, is one-to-one, that is, if
{ mly, f € C®(G)} is dense in g.

In particular,
K1) 2 K, D). for all £ € C¥(G).
Proof:

Let us consider f € C®(G), X* € g, = € g, X, (f) = (X*,mls)q, then
[ X, ., < 1X7[lg and since [| X[l = | X*[|g-
we have

X = (1 X e, - (6)

If 7, is one-to-one, then { m,l¢, f € C°°(G)} is dense in g and we obtain the
equality.

We assume that 7, is one-to-one and { m,l¢, f € C°°(G)} is dense in g, then
the map considered in (5) is an isometry. When we consider the inversion formula
for m, for any X7 € Hg, , we take the unique X* € Hg such that

T X" = Xﬂ'z and ||X*||HK = HXW

Then,

A

Xn, (f) = (X, maly)g, X* € [Ker(mo)]*

T

and
X*(f) = (X", lp)g-
Note that the space [Ker(m,;)]" denotes the orthogonal complement in g of

the null space of m,. Then, we have X*(f) =< X*, 1 >g= <)A(ﬂz,7erf>HKﬂz,
using the isometry m, o J from g onto H, . Then for all f € C*(G),

Ky(f) =y lf)g
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Since, Ky(f) = K(f, f) = [IK(, £)I3,, then [ K, HFy, = 1K, (5 Ol

and

Gy Pllrge = 15, C Ol ., - (7)

In the case where { m,l¢, f € C°°(G)} is not dense in g or 7, is not one-to-one

then, K(f, f) = K. )Fy, = 1Kn, (- . - (using (6),(7))

0
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