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GENERALIZED ABEL TRANSFORMATION ON SOME
SEMI-DIRECT PRODUCT GROUP

N.Zoto Bi, K.Kinvi

Abstract. Let G be a connected Lie group, K a compact subgroup of the group of automorphisms of the
connected Lie group and § a unitary class of irreducible representations of K. In this work, we introduce
a generalized Abel transformation according to d and study its spherical Grassmannian.
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1. Introduction

The Abel transformation, named after the Norwegian mathematician Niels Henrik Abel
(1802-1829), finds its roots in Abel’s work on integral equations in the early 19th century. This
Abel transformation is a special case of the Radon transformation. It was initially developed
in the context of differential and integral equations; it was extended in the 20th century to
fields such as harmonic analysis, differential geometry, spectral theory, and physics. Harish-
Chandra in his papers [2] and [3] extended the notion of the Abel transformation on semisimple
Lie groups (1950-1960). Since the 1980s, the Abel transformation has been integrated into
Harmonic analysis with applications in representation theory. It is applied in the field of signal
processing in astrophysics, where it is used to analyze emission profiles of celestial objects with
spherical or cylindrical symmetry. Integrated signals along lines of sight are transformed to
reconstruct the spatial or spectral distribution. It is also seen as a topological isomorphism for
certain function spaces.

G. Warner (See [14]) generalized the notion of the Abel transformation on semisimple Lie groups
of type d in order to determine the spherical function of type § where ¢ is not necessarily trivial
and the spherical Fourier transform of type §. Thanks to this work, K.Kangni and S.Touré have
given some applications on the generalized Abel transformation on semisimple Lie groups (see
6], [7] and [3)). ] ]

The goal of this paper is to construct the Abel transformation of type § on G when G is a
Semi-direct product group of a connected Lie group G and a compact subgroup K of the group
of automorphisms of G, and to define an extension of this Abel transformation on reductive Lie
groups.

In Section 2, we construct the Abel transformation of type § on G = K x G and we give an
application of the Abel transformation to groups G' = SU(2) x Hy with K = SU(2).

Finally, we generalize the Abel transformation on reductive Lie groups.
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2. Generalized Abel Transformation on semi-direct product group

Let G be a connected Lie group and K be a compact subgroup of Aut(G), the group of
automorphisms of G.
The action of K on G is defined by:

a: K xG@—dG
(k,g) — k- g=k(g)

We set G = K x G, the semi-direct product of K and G with the group law. For all
(k1,91), (k2,92) € G, we put

(k1,91) (K2, g2) = (k1ka, g1, (92))
= (k1k2, g1k1 - g92)-

Let K denote the set of all equivalence classes of finite dimensional irreducible representations
of K. For any class 0 of K, let (5 be the character of 8, d(5) be the degree of § and x5 = d(6)(;.

Thanks to the orthogonality relations of Schur, we easily check that xs*xs = x5. We denote
by Mg(5)(C), the algebra of square matrices of order d(é) with complex coefficients. Let us

consider I.(G), the set of all K-central functions. f € I.(G) <= f:G — C is a continuous
function with compact support and

fkkk™ k-9 = f(k,§) Vie GV kkekK.

By identifying ys with a bounded measure on G, we set for any function f € I.s (@)

xs * f(k,§) = A{xg(kl)f(k/%,k.g) dk.

frxs(k,g) = /Kx(s(k‘l)f(kl%,g) dk.

Let Ig(é) be the set of all continuous, complex-valued function f on G with compact support
such that:

xexf=[fxxs=1[
Let us put I 5(G) = I.(G)NI5(G). I.5(G) is a subalgebra of I(G), where I(G) is the convolution
algebra of all continuous, complex-valued function on G with compact support.

For all f € I(G), we put:
fr(k,§) = / f(kkk™Y k- §)dk with k € K and § € G.
K

Let E be a finite-dimensional complex vector space. A spherical function ® (on é) of type ¢ is
a quasi-bounded continuous function on G with values in End¢(E) such that:

(i) ®(k(k,§)k= ') = ®(k,§) forall g€ G, ke K
(ii) xg*P =D =D xyxy

(iii) The map ug : f — [, f(2)®(x)ds(x) is an irreducible representation of the algebra
I.5(G).
The dimension of E is called the height of ®. If U is an irreducible Banach representation
of G over a space F such that § occurs m times in the restriction of U to K, then there
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exists a function qbg] defined on G which is spherical of type §. The function gbg] is said to
be associated to the representation U.

Let B be a commutative, involutive Banach algebra with identity element e, and X,,(B)
the set of all m-dimensional irreducible unitary representations of B.

For all f in B, a generalized Gelfand transform of f is a map G f of X,,(B8) onto the algebra
M,,(C) of square matrices of order m defined by:

g(f) = u(f), Vu € Xin(B).

The homomorphism f — gf of B onto M,,(C)*=8) is called the generalized Gelfand
transformation associated to B. Since B is commutative, then the irreducible unitary
representations of B are one dimensional, hence we identify them with characters of B. We
get the usual definition of Gelfand transformation.

Let G 5(G) be the set of all spherical functions of type § on G and height m. If ¢ is
a function of Qm,(;(é), then there exists a representation u? € Xm(Ic,(;(é)) such that

uf( f) = J& f(#)p(x) ds(x) and conversely. This result allows us to identify G, 5(G) with

Xm(I.5(G)) and then, we can define F f, the spherical Fourier transform of type ¢ of any

f € L5(C) by:
FI(6) = /G F(2) $aY) dz, Y6 € gms(C).

Let 0 be a contragredient representation of § and uz be arbitrary element in the equivalence
class of 6. We put F. 5 = Hom(Ej, E5) where Ej is the space of the representation ;.

Let us denote by %C(C;’, F3), the convolution algebra of continuous functions on G, with
compact support and with values in Fj. We set:

Ues(G) = {d € Co(G, Fy) : ¢(kn, (, §)k2) = uz(k1)p(k, G us(k2)}.

I.5(G) is isomorphic to U, 5(G), thanks to the map:

where

\116 : Ic,5(é) — Uc,é(é)
1)

Vj(E9) = [ sl Fl0- (o)

Let us denote by ¢.(G, Fj), the convolution algebra of continuous functions on G, with
compact support and with values in Fj.
We set :

Ues(G) = {0 € Co(G, Fy) : ¢k - §) = uz(k) p(7)us(k~)}.

Definition 2.1. Let § € K and uz € 5.
The Abel transformation of type 6 : f +——> ch is a linear mapping from I.5(K x G) into I.5(G)

where

9? defined by:

for all g € G, 03(3) = [ uglh") £k k- )
K

0‘} is called the Abel transform of f.

Rema

rk 2.2. Let § € K then I 5(K x G) is isomorphic to U, s(G).

Indeed, we can identify I. 5(K x G) with I.5(G). Moreover, I. 5(G) is isomorphic to U, s(G), so
I. (K x G) is isomorphic to U, s(G).
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Theorem 2.3. Let0: f +— 0? be an Abel transformation of type § then the following statements
hold:

(i) 0 is bijective

(i) for all f,g € I.5(K x G), 65

_po d
Feg = Gf *09.

Proof.

i) Let f € I s(K x G) then 63 = W . By definition we have:

9?‘( \II eKv )

/ Flk k- §)dk

S
-~
—

1
N}
SN—

|

|
xﬁo‘x &Leoq &Leoﬂ \E‘oq W\ 7\\’

<
[«
T

L
=
=
&
o
S
U
e

We prove now that 9? € U.5(G), that means 0?(]6 - g) = uz(k) Gg(g)u(;(k*l).
We have,

(

((k,ec)(ex, @) (K eq))
(k(eKveG)(eKag)(eK7eG)k_l)
5(K) U (exc, §)us (k™).

So 032 € U,5(G) for all f € I.5(G). Let us consider the map :

I
2
PN

B : IC,B(K X G) — UC,B(G)
fr—B(f) =63

The linearity of 3 is obvious. Let us show that f is injective.
Let f,g € I.5(G) such that B(f) = B(g).
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since f \If‘} is injective, then B(f) = B(g) = f =g. So f3 is injective.
We prove that J is surjective. Let ¢ € Ucs(G) and let us put W(k,g) = ¢(g)ug(k) for all
g € G,k € K, where ¥ € 6,.(G, F;). We prove now that ¥ € U, 5(G)

U(ki(k,g)ks) = ¥((k1,eq), (k,g)(k2,eq))

= ¢(k1 - g) us(k1kks2)

= uz(k1) 3(9) uz(ky Yuz(kr)us(k)us (ko)
us(k1) 9(g) us(k)us(ks)

us(k1) W (k, g)ug(kz).

~ Thus, ¥ € U.s(G). Since U, s(G) is isomorphic to I, 5(G), then ¥ € I, 5(G). For that reason,
B is surjective. . )
(ii) We prove now that g is a convolution algebra morphism. For f,g € I.5(G); we have

gl = |

v(k:_l)f x g(k, k- x)dk

53
>,

w7 ([ £k )y ol F ey
w0 ([ 5k o)) gl F ey by

ug(k™) f(kk, k- (zy)) g(k~' &k~ -y~ 1) dk dk dy

S

us(k V) f (ke <xy>>dk> g((F 1 F ) dRdy

(k,zy) g(k~ L k™ -y~ dk dy

—~S

(S N
_—

I I
—— 55—

S — S —

Remark 2.4. Let ug an irreducible unitary representation of K on Ej.
For an arbitrary endomorphism 7" of Ej, let us define o by: o(T) = d(0) tr(T). Then, thanks
to the Schur orthogonality relations, it follows that

T:/Kug(k_l)a(u(;(k)T)dk.

Let p be a semi-norm on K x G, let £ be a character on GG and u; be an element in the class
of §. Suppose that there exists M >0 such that
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1(2,9)] < Mp(g) for all § € G.

Let us put
os(f) = / (2,9) 03(3) dg with [ € 1,5(C).
G

Theorem 2.5. Let § € K, the map @5 defined from Ic’g(é) onto M5 (C) defines a spherical
Fourier transform of type 8 on G.

Proof.
Let f € I.5(G) and x5 * fx = f.

es(f) = | (£9)0%(3)dg

= [ .9 ( [ s g)dk) 45
oslf) = /K (2, )us (k=) (k. k - §)dkdg
es(f) = (2, g)us (k™ )xs * fxc(k, k- §)dkdg

(2, §yus (k™Y xs(k) fx (kk, kk - §)dkdkdg

 —

I
T F R e St
S I i S

/(2,§>u5(k1)x5(12:) </ f(k;lkllék,klk/%-g)dm) dkdkdg
K K

/ / (2, 9yus(k™ ) xs(k) f(kk, kikk - §)dk; dkdkdg

/@’gm'}’f“kl'g) (/K%(kl)x(s(klk;%kl)dk) dk1dkdg
:/G/K/K@,@f(l%,/%kl-g)ug(kl—l/%kl)dkld/%dg

:/G/Kf(zz;,g) (/K@,k—l-g>u$(k111}k1)dk1> dkdg

By setting ®5(k,§) = [i (2, k7§ Yug(ky 'k~ k1) dk1, we have

osh) = [ [ 5925 ((kg) ") dids

GJK

We prove now that the function ®5 defined on G is a spherical function of type §. We first show
that ®5 is K-central.

O5(k(k, §)k™") = ®5(kkk™", k - §)

(k- (k- )by (kR ™ R )k
K

:/ 2k k- g Yug (ki k™ k™ ey ) dky
K



= / Gkt g Dus(kT R ey ) dky
K

= @5(k,9).
Therefore, @4 is K-central.
We have
Xo * 5k, ) = | xa(k) ®s((k, §)k")dk

xs(k) ©5(k 1k, §)dk

=

5(k) ( [ -§-1>ug<k;1<k-1%>-1k1>dk1> o

<
>

(k) </K<z k! -§_1>u5(k111~c_1kk1)dk1> dk

xs(k) (2, kT - g Yug (ke ke ) dky die

Xo (kg D) (2, kT - g7 g (b thy Tk ) dky ds

X ((123k—1)—1)) kT g Mg (ky Yy ey )dley dis

s(ksk™1) (2, k7Y - G Vs (b ey Yy ) dieydics

=

NSRS SN

—
N>
N

=

g A (k) ( / u5<%51>tr<us<%3>ug<l%1>>dfs3) gy )k

—~
>
e

=

—_

T g (e ug (K ug () diey

R S A N S N SR S N S N R

okt g s (kR ey ) dEy

I
S 5

sk, q). For all k € Kand § € G.

So x5 * ®5(k, §) = ®5(k. 9)-
Furthermore ®; is quasi-bounded. In fact,

H%(E,ﬁ)

= H/ okt g Dus(kT R ey ) dky
K

<)o

H<I>5(~,§)H < M p(g). For alll;:GKandgeG.

R "us(kfl%*lkl)"dkl

Finally we prove that the map f + ¢s(f) is an irreducible representation of I, 5(G).

Let f and g € I.5(G).

os(f *g) = /G (2,2) 0%,y (2)dc()
= [ )0y @)deta)

85
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/:/zxefxy)e%ym<ma>

5
_/G</G<z z) 0% (z)dg (@ )) (2,9) b4(y)da(y)
:/G%(f)@,y))@g(y)da(y)
= @s5(f) es(9)-

Therefore the map f — ps(f) is a representation of the algebra Icy(g(é). Since u; is irreducible,
then f — @s(f) is irreducible. So f — ¢s(f) is a spherical Fourier transform of type . O

Remark 2.6. If ¢ is the trivial one dimensional and Z a unitary character on G, then

ﬂ:LA@wm$m@%:L@mem

where the map f — 6 defined from I.(K x G) into I.(G) is an Abel transformation.

Example
Let Hy = C? x R a Heisenberg group of dimension 5. The group law is defined by:

1
(z,t)(#,t) = (z + 2t 4+t + §Im(z 2’))

where I'm designate the imaginary part. Hs is a connected Lie group. Let w € C?, we define a
character x,, in Hs by:
Xw(zat) _ eiRe(w,z)

where Re designate the real part.

Let K = SU(2) be the special unitary group of order 2.
An element of SU(2) is written B
0 —b
Uap = (b a )

where a,b € C such that |a|> + |b]? = 1.
We observe that Ua_b1 = U;:b = Ug,—p and the action of U, in C? is given by:

. . Z1 . az — 622
Uap -2 =Uap (22) N <b 21+ &22) '
The action of SU(2) on Hy is:
Ua,b . (Z,t) = (Ua,b . Z,t).

Let P be the polynomial space on C? and W,, be a subspace of P of dimension n. We have:

n . .

W, ={P €P:P(z1,20 = ZC’i 21 25 % C; € C}.
i=0

The space W, is of dimension n + 1.
Let 7 a representation of SU(2) defined by:

(ﬁ(Umb)P) (zl, ,22) P(U (21, ,22)>
P(az1 — bz, bz + azz>
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By putting 7|y, = 7in, Ty is irreducible for all n>0.

Let G = SU(2) x Hy and K = SU(2). Let x,, be a character on Hs and 7, a representation on
SU(2).

Then, the function ®™ defined on G' = SU(2) x H; by:

o) (Ua,b, (z,t)) - /S R (Ual,bl, (z,t)) o (Ua—l}b1 Uas Ual,bl)dal db,

is a spherical function of type .
Let fel.s (SU(Q) X Ho, End(Wn)> Then, the Abel transform of f of type 7, is defined by:

61" (z,t) = /S v T (Uajg) f(UaJ), U (z,t)) da db

0 (2,1) = /S o o (en) £V UG 1)) dat

Thanks to the Abel transformation of type 7, defined on G, the spherical Fourier transform of
type 7, is then defined by:

F(f) @) = /H Xeo(2, 1) 857 (2, 1) dz dt

_ /HQ Xw(z,t)(/sm) Fo(Unt) S (U U - (2,1 dadb) dz dt

O ()

2.1. Generalized Abel Transformation on reductive Lie group

Let G be a locally compact group and K be a compact subgroup of G. Let us consider I(G),
the space of continuous complex-valued functions on G with compact support. By identifying
Xs with a bounded measure on G, we set for any function f € I.(G), sf(z) = x5 * f(z) =
[ xs(k) f(kx)dk and fs(z) = f = xs(z) = [; xo(k™1) f(zk)dk. Let I5(G) be the subspace
of I(G) consisting of all functions d-invariants i.e (I5(G) = {f € I(G),f = sf = fs}) and
Jo(G) = {f € I(G), f(zk) = f(kx),k € K,z € G} the set of functions f € I(G) which are
K-central. J.(G) is a subalgebra of I(G). The map f — fx defined by:

fr(z) = /Kf(kxkl)dk:

is a projection of I(G) onto J.(G).

We set: I.5(G) = J.(G) N I5(G). I.5(G) is a subalgebra of I(G) and the map f +— x5 * fx is a
projection of I(G) onto I.5(G). If 6 is a trivial representation class of dimension 1 of K, then
I.5(G) is thus identified with the algebra I(G) of continuous complex valued functions on G
with compact support and biinvariant by K.

Let G be a reductive Lie group with Lie algebra G. It is well-known that G = Z®[G,G] = 2 Yo
where % is the center of the Lie algebra G and Gis semisimple.

Let Z and G be the analytic subgroups associated to 2 and G. Let G be a connected
semisimple Lie group with finite center and, G = K AN, an Iwasawa decomposition of G, where
K a maximal compact subgroup, A is an abelian subgroup and NV is a nilpotent subgroup.
Let A = Lie(A). For all z € G, # = k(Z)exp(H(Z))n(z), where x(z) € K, H(z) € A and
n(z) € N*T.

G is written as semi-direct product of Z and G, G = Z x G.
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Any x belonging to G is of the form x = (2,%), where z € Z, Z € G. The action of K on G
is defined by:
a:KxG—G
(k,(2,%)) — k- (2,%) = (2,k - Z) with k- Z =kz kL.
Let X(Z) be the set of characters of Z i.e the set of all irreducible representations of Z
of dimension 1. Let U be a representation of G. Then, there exists a representation 7" of Z
and a representation L of G such that U(z,7) = T(z) L(Z). If U is irreducible then, U(z,z) =
(2,2)L(7), where £ is a character of Z (See [1]). The normalized Haar measure on G is defined by
de(7) = k¥ dk da(h) dy+(n).(x € G, = khn) where p denotes the sum of positives half-roots
associated to the pair (G,.A). We consider an invariant measure dz on G SllCh that dx = dz dz,
where x = (2,Z). Let v € A* and let ¥, be a zonal spherical function on G then:

/f(:f) () d:c:/Ff(h) WY da(h), f € 1(G)
G A

where the function f +— Fy from I.(G) into I.(A,C) is the Abel transformation on G (See [14]).
A spherical function on G is of the form ¢(z,z) = (2, 2) ¥, (Z), where ¥, is a zonal spherical
function on G.

Definition 2.7. Let f € I.(G).
The Abel transformation: f +—— F is a linear mapping from I.(G) into I.(Z x A, C) where F}
defined by:

for all (z,h) € Z x A, F(z,h) = hP(2,27") f(z,hn)dy+(n).
N+

Theorem 2.8. Let f € I.(G) and ¢ = (2,-) U, (-) be a spherical function on G. Then,

/Gf(x)w(x1)dx:/Z/Athf(%h)dA(h)dz,

Proof. Let 1 € A* such that y = —p —iv, ¥, (%) = [} e~ (W r20)(H@™IR) g with 2 € X(2).
Let f € I.(G). It follows that

/G F() oz ) do = / / 72, 7) 1) i d

_ / / (2 1y~ G2 HEE) g 4 s

i

N
@

/ f(z, k) (2, 271 e~ W20 HER) g qf dz

N
=
Q

F(z, @) (2,27 1) e W20 H@) gk dz dz

L,
:/Z/Gf(,277 Z)(2, 271 e~ Wt2H@) gz 4
:/Z/K/A/Mf(z,khn)@,z1>eﬂ2ph2pdsz(h)dN+dk
:/Z/K/A/Mf(z,k,hn)<z,z—1>h—ﬂdsz(h)dmd/.c
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I
NN

el
/

/Ahw ( ) f(z,hn) dN+> da(h)dz

/ f(z,hn) (2,27 YY W hP dz dk da(h) dpy+
N+

hS

flz,hn) (2,27 VY K hP dzd g (k) dy+
N+

hS

N+

The mapping f — Fy from I.(G) into I.(Z x A, C) is the extension of the Abel transformation
on reductive Lie group G and F} is the Abel transform of f. O

—~

Let U, s(G) be the space of p-spherical function on G where p = (uj, uz) is a double Banach
representation of K. Thanks to identification of I, 5(G) and U, ;5(G) by the isomorphism f — \If‘sf
with
W‘}(z,gj) = [ f(z,k7) ug(k~1)dk, we have a generalization of the Abel transformation by
putting:

F}S(z,h) =hP(z,27h) /N+ \Il‘}(z,hn) dn+(n)

, —1>/N+ (/ f(z,k:hn)ug(k_l)dk> dy+(n)

Ff(z h) = hP(z,2~ / / f(z khn)ug(k™Y)dk dy+ (n)

N

= hP(s

N

Definition 2.9. Let § € K, then the function FJ‘E is called the generalized Abel transform (of
type 9) of f.

Theorem 2.10. Let px € A*, the map g5 defined on I.5(G) by

ps(f) = / / hiP F}S(Z,h) da(h)dz
zJA
defines a spherical Fourier transform of type § on G.

Proof.

_ / / Bt B3 (2, h) da(h) dz

//hu+p (h/’ /N+/ Flkhn)ug(k )dde+(n)> da(h) dz
/ / /N / (2.2 VR f(z kb us(h ) dk dy+ (n)da(h) dz
:/ / (2,27 ) W = 9) us(r(y™)) dy dz
/// DR f(z kg R us(s(yT ") dy dz dk
/// (2,27 1) B! f(2,9) ug(w(k™ 'y~ k) dk dy d=
/Z/éf(z,y) <<2,z‘ >h“/KuS(/-i(k_1g_1 k))dk) dyj dz.
Let us put

iz 0) = (521 bt /K us((k g k) dk
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_ <2,z_1>/ ws(r(kL gt k) P TR g
K
os(f) = / /G F(2 ) B2, §)dz d. Tt follows that 5(f) = / /G F(25) B (2, §)dz d.
Z 7z

We prove now that the function @5, defined on G is a spherical function of type 4.
We first show that ®;, is K-central.

Therefore, @5, is K-central.
We have

X6 % Bau(z,7) = (2,271 /K xs(k1) /K us (k™ kg k1 k) eI R g gy
=(2,27") /K d(d) /K ug(k ™) ug(k) tr(us(r(k ™)) Us(r(y k))e M0 9D dle dk
=) g (0) [ @ trtusi ) el ) 4407 9 ) a
= [ e gt 1) D
= (2,271 /K us (k™1 g k) et T R) g
= ®5,(2,7)
So, X6 * (Ps,u(2,9)) = Ps,u(2, )
We prove now that ®;,, is quasi-bounded. Denote by Bs = {e1,e2,---eq(5)} a basis of Es.

A matrix of Us(k) in the basis Bs is: (bi;(k))1<i j<d(s)-

bij(k) = (ug(k)ei, e;)

= (i, us(k™e;)




For all 1 <i,j < d(0)

(<I>5,M(z,17))ij:<2,z—1>/K( s(s(k L k), eI ap

d(6)
= <2,zl>/ > bi(k1) by (k(g k) e H IR
K=
d(8)
= (2,27 [ bu(k™) by (r(gk)) e HIR) d
t=1 K
d(s)
=Y ) [ Bl (g ) e a
=1 K
d(s)
= <27271> Z(U*M 2p(3/ )btj7 btz)
t=1
d(5)
= <272_1>Z(bt]>U (y) btz)
t=1
d(5)
(s(2,9))ij = (2,271) Z(bm UH(7) bei)
t=1
d(5)
(@5, (2,9))is] = <2,z_1>2(btJ,U“(y) bei)
t=1
d(8)
< |(2,27Y)] Z(bth (¥) bes)
=1
d(s)
) Z”bt]HL?(K 1U*(9) beill 22 (k)
< O x UMy HZ”btJ”L?(K 16ill 2 (5
| (®s,u(2,9)) | < (2,27 1] x |U*@)] (Zzbmzm [bei]l 2 (k)
ij t=1
| @s,.(2,7)l
— —————— < 400
[U(@)]]

The quasi-boundedness of ®;, is there by established.
Let us show that the map

f s / £z )5 0z dy

(f € I.5(G)) is a representation of the algebra I, ;(G)

=1,
/Z/h’”pF‘; y) da(h)dz
I,

/ W (B2 ED) () da(h) d(2)

WP FLL (2, h) da(h) dz

|
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:/Z/Ahw (/ZAF;(yx—l)F;(x)dz> da(h) dz
—/ZA/ZAh“+pF?(zz1,hl~z1)F;(z,fz)dA(iL)dsz(h)dz

:////M_l)“”Ff(zf_lvhﬁ‘l)ﬁ““Fj(z,ﬁ)dA(ﬁ)dsz(mdz
ZJAJZJA

= (R 1yt (FY(zz7 Y hh™Y) ) da(h) dz | B*P FJ(z,h) da(h) dz
LI (L i ( )
(f)es(9)

= ws\J) ps
which proves that ¢s is a representation of I.s(G). Therefore, ®s, is a spherical function on G
of type 9.
In conclusion, the map f — ¢s(f) is a spherical Fourier transform of type ¢ of f. O

The author would like to thank the referee for his helpful suggestions.
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