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On estimates for the number of sheets of coverings
defined by the system of equations

A. Gasimova∗, J. Abdullayev

Abstract. We consider the general case of manifolds of an arbitrary nature given by a
system of equations with definite smoothness, and investigate the local behaviour of the
manifold. The research demonstrates that the number of covering sheets is determined by
the interaction between the local behavior of the manifold—characterized by the minors
of the Jacobian matrix—and the linear dimensions of the domain containing the manifold.
By applying the implicit function theorem and analysing the structure of tensor fields,
the paper provides a series of upper bounds:
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1. Introduction

In the literature [1], estimates for the number of covering sheets is studied in
connection with fundamental groups acting on the manifold. There, manifolds are
studied by the methods of algebraic topology. We shall not use algebraic methods.
There is a great gap between algebraic varieties and manifolds defined by maps to
Rn, in principle. The main difference is caused by that the algebraic varieties are
defined in Zariski topology. This is a topology different from topologies that are
commonly used in real or complex analysis, and it is not Hausdorff. The system
of algebraic equations is included in the definition of the notion of algebraic
manifold. To show the equivalence of these two notions, it is necessary to solve
the system of equations in open sets, which demands the satisfaction of definite
conditions. Moreover, we shall consider the more general case of manifolds which
may be non-algebraic.
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Estimates for the number of sheets are very valuable in applications where the
manifolds defined by the system of equations arise. The basic tool in studying
of manifolds, given by the system of equations, serves the theorem on implicit
functions. But this theorem defines the manifold locally. By this reason, the
number of sheets demands special methods of investigation, due to its global
character. In the works mentioned above [2], two theorems are proven on the
number of sheets of coverings.

Note that in algebraic geometry [3], the number of connected components of
algebraic varieties was also investigated. The number of components has a weak
connection to the number of covering sheets and is not so substantive in metric
questions, investigated here. Moreover, developed methods concern the algebraic
varieties only.

There are principal differences between definitions of algebraic varieties and
manifolds defined by maps into the space Rn (we shall call it the functional def-
inition). To establish, in the concrete situation, the equivalence of two notions,
it required the solution of the system of equations. But the question is sensitive,
and demands definite conditions. Moreover, our objects of investigation are gen-
eral manifolds which may not be algebraic. If the maps defining coverings are
not bijective, the question of the number of sheets naturally arises.

In this work, we consider arbitrary manifolds of definite smoothness. Note
that one of the essential parameters, influencing the number of sheets, are the
linear sizes of domains, in which the system of equations defining the manifold is
given. Local behavior of manifolds is determined by minors of the Jacobi matrix
of the system of functions, entering to the left hand sides of equations defining
the manifold. The number of sheets are defined by two factors: local behavior of
the minors and the sizes of domains (see the example below).

Main tools in our investigations are the results established in [4,6,9,10,11],
devoted to the study of the structures of tensor fields. In these works, the metric
questions of the theory of manifolds, defined by the system of equations, are
studied. The established results demand new angle of a view to the theory of
surface integrals, extended to the manifolds serving the solution for the system of
equations. There, the surface integrals are defined not in ordinary meaning, but
in some improper sense, which eliminates difficulties connected with very complex
structure of intersection of the manifolds with the boundary of the Jordan domain,
containing it. The obtained results show an actuality some questions of the
Riemann integral theory, despite that this theory is completed over 100 years
ago.
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2. Basic notions and auxiliary results

To pass to considering the main results, we briefly mention some basic notions.

Let us consider two regular manifolds of equal dimensions M and N. f :
M → N is some their map.

Definition 1. This map is called a covering if the following conditions are
satisfied:

1. The Jacobian of the map f is distinct from zero in every point of the
manifold M .

2. For every point y ∈ N there exists a neighborhood y ∈ U ⊂ N such that
the preimage

f−1(U) ⊂ M

consists of finite or infinite number of non-intersecting domains

f−1 (U) = V1

⋃
V2

⋃
· · · ,

for which the map f : Vj → U is diffeomorphism;

3. The set M is covered by a finite or denumerable family of such domains
U .

The manifold N is called a base of the covering, and M is called to be space
of the covering.

In the cases of algebraic or analytic manifolds, the question of estimating the
number of sheets is investigated, due to coverings’ connections with some groups
of transformations of manifolds [1]. In the works mentioned above, there were
proven following two theorems were proven, concerning estimates for the number
of sheets of coverings. For the formulation of these theorems, we need some
notations.

Suppose we are given some closed Jordan domain Ω, included in other open
domain Ω0 in n-dimensional space Rn. Suppose that in the domain Ω0, some
continuous function f(x̄) = f(x1, ..., xn) and continuously differentiable functions

fj(x̄) = fj(x1, ..., xn), j = 1, ..., r, r < n

are given. Let the Jacobi matrix

∂(f1, ..., fr)

∂(x1, ..., xn)

to have everywhere in Ω0 maximal rank. Consider in Ω the system of equations

fj(x1, ..., xn) = 0, j = 1, ..., r, r < n. (1)
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Then in some neighbourhood of an arbitrary inner point of the domain Ω, this
system defines a manifold of dimension n− r. Later we call the Jacobi matrix of
this system of functions as the Jacobi matrix of the system of equations (1).

How we can define the covering considering the system of equations? Let
us examine, for this purpose, an example. Take in the open rectangle (0, 4π) ×
(1/4, 3/4) the equation y2 + cos2 x = 1. This equation defines manifolds given
by the equalities y = ± sinx (we suffice with the sign ’+’), being taken in differ-
ent intervals : (arcsin(1/4), arcsin(3/4)),(π− arcsin(3/4), π− arcsin(1/4)),(2π+
arcsin(1/4), 2π+arcsin(3/4)), (3π − arcsin(3/4), 3π − arcsin(1/4)). The same
map y = sinx, in agree with the definition above, defines a covering with the
base (1/4, 3/4). Passing, from one part of the manifold to other one, can be
performed by continuously moving the variable x. This situation arises due to
the periodicity of the function y = sinx. In general, a similar situation can occur
in non-periodic cases.

Consider the general case of the systems of the form (1). Denote by Π the set
of solutions of this system. Taking some minor of the Jacobi matrix, suppose that
the columns of this matrix are placed on the first r columns, and it is distinct from
zero in some subdomain of Ω. Suppose that the projection of this subdomain into
the subspace Rn−r, includes some cube B. This projection defines the covering
π : Π → B, by applying the theorem on implicit functions and solving the system.
In algebraic geometry, where the basic field is supposed to be algebraically closed,
the number of sheets of this covering is studied by a group of transformations,
defined on Π. In the general case, when the main field is real, we shall use other
methods of investigation.

Theorem 1. Suppose the conditions above are satisfied and the system of
equations defines some covering with the base B, B ⊂ Rn−r being a cube. Then,
for the number of sheets |Γ| of covering, the following inequality is satisfied

|Γ| ≤ |B|−1
∫
Π
ds,

where Π denotes the surface of solutions for the system (1), and |B| denotes the
volume of the domain B.

This theorem is a result of the type of work [2], and it gives an answer to
the given question. But in the right-hand side, the surface integral, extended to
the manifold of solutions, stands. The following theorem, in some cases, may be
more useful.

Theorem 2. In the conditions of Theorem 1, the following inequality holds
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true for the number of covering sheets:

|Γ| ≤ |B|−1 lim
h→0

1

hr

∫
0 < f1 < h

· · ·
0 < fr < h

√
Gdx1 · · · dxn.

Proof of Theorems 1 and 2. Consider the surface integral∫
Π
ds,

extended to the surface Π, defined by the system of equations (1). Surface element
on Π has a view (

√
G/M)du1 · · · dun−r, and here M denotes the minor, distinct

from zero, allowing solve the system (1) with respect to some r variables, denoting
free variables in the base B by u1, ..., un−r. Trivially, we have the inequality√
G/M ≥ 1. Since the system of equations (1) defines a manifold with the base

B, we can separate exactly |Γ| number of parts (sheets) of the surface Π, and
write

|Γ| |B| ≤
∑
j≤|Γ|

∫
Bj

√
G

M
dxr+1 · · · dxn ≤

∫
Π
ds =

∫
Π

√
G

ds√
G
,

where Bj for j = 1, . . . , |Γ|, denotes the parts of the manifold Π, being differ-
ent preimages of the covering with the base B. Therefore, Theorem 1 is true.
Applying Lemma 3 [4,6,9,10,11], we can rewrite the relation above as follows:

|Γ| ≤ |B|−1 lim
h→0

1

hr

∫
0 < f1 < h

· · ·
0 < fr < h

√
Gdx1 · · · dxn.

The relation of Theorem 2 is proven.

As it is seen from the formulation of Theorem 2, in the right-hand side of
the inequality, the integral taken along a n-dimensional part of the space stands,
instead of the surface integral of Theorem 1. Estimates of such an integral can be
reduced to the estimates of volumes in n-dimensional space, where the estimates
of the work [4] on the structure of tensor fields can be useful.

3. Estimates involving the linear sizes

From the said above it stands clear that we study manifolds in some wider
domain (the dimension of which is greater than the dimension of the manifold),
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including all solutions of the system. By this reason, naturally, the number
of covering sheets defined by this system of equations depends on size of the
considered domain. To clarify this statement, consider, for example, the manifold
given by a simple equation. Take in the rectangle (0, a) × (0, 1/2) the manifold
defined by the equation y2 + cos2 x = 1. Solving this equation with respect to y,
we find one of its solutions: y = sinx. This map defines a covering with the base
(0, 0.5) (for this purpose, we can take any interval from the segment [-1, 1]). The
number of sheets depends on the parameter a, that is, on the size of the domain
in which we consider the given equation. If, instead of this equation, considering
the equation y − sin 2x = 0, then the number of corresponding covering sheets
will be dependent on the multiplier 2 (the number of oscillations will increase),
apart from the sizes of the domain in which we consider the minors of the Jacobi
matrix, that is, the components of the vector (−2 cos 2, 1).

These notes give a scheme for estimating the number of sheets. From theorems
1 and 2, it is clear that the upper bound for this number (during the base of the
covering remains unchanged) depends on the value of the maximal minor of the
Jacobi matrix and the linear sizes of the domain. We have to estimate the volume
of the domain in which the values of the functions, standing in the left-hand sides
of the system, fall into determined segments.

To formulate our basic results on the number of sheets, consider the system of
equations (1) and suppose that it defines a covering with the base B. We suppose
that the Jacobi matrix of the system (1) has in Ω maximal rank. Note that
surface integral of the theorem 1 is extended to all solutions of the system (1).
By this reason, the sheets of the covering defined by this system take part in the
integration along the surface.

Theorem 3. Let the conditions and designations of Theorem 1 be satisfied.
Suppose that the domain Ω is enclosed in the cube [0,K]n. Then, for the number
of sheets defined by the system of equations (1) the inequality

|Γ| ≤
(

n
r

)3/2

|B|−1Kn−r

holds true.

Proof. We begin to prove the theorem with the notes below. Solving the
system (1) we parameterize every sheet by various values of independent variables
remaining after of application of the theorem on implicit functions. For example,
if in some subdomain the minor placed in the first columns of the Jacobi matrix,
is distinct from zero, then in this subdomain the system is possible to solve with
respect to the variables x1, ..., xr, moreover, due to uniqueness of the solution
we get one sheet parameterized by other independent variables xr+1, ..., xn in
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some subdomain of the space Rn−r. We can accept that the variables xr+1, ..., xn
are varying in the base of the covering. By analogy, we define another part of
the solution, that is, another sheet taking a new subdomain of variation of the
variables xr+1, ..., xn. By compactness, we find a finite number of subdomains in
Rn−r parameterising all sheets of the covering.

In the conditions of the theorem, in every point of the domain Ω, one of the
minors of maximal rank is distinct from zero. Therefore, the domain Ω can be

dissected into no more than l =

(
n
r

)
connected subdomains, in every of which

one of the minors of the Jacobi matrix takes maximal absolute values among all
other minors. Denote these subdomains as Ω1,. . . ,Ωl. Then, the surface integral
of Theorem 1 can be represented as a sum of surface integrals extended to these
subdomains: ∫

B
ds =

∫
B,Ω1

ds+ · · ·+
∫
B,Ωl

ds.

Supposing that the first integral in the right-hand side has a maximal value. So,
we have ∫

B
ds ≤ l

∫
B,Ω1

ds.

The surface element ds in the subdomain Ωi can be represented as
(
√
G/Mi)dui1 · · · duin−r, where Mi denotes the maximal minor in the subdomain

Ωi and ui1, ...., uin−r are denoting independent variables in this subdomain. Since
Gram’s determinant can be represented as a sum of squares of all minors ([5 ]),
then we have

G =
∑
j

G2
j ,

where Gj , j = 1, ..., l denotes the minors of the Jacobi matrix. So, denoting
maximal minor as M, we obtain

G =
∑
j

G2
j ≤ lM2.

Consequently,

√
GM−1 ≤

√(
n
r

)
.

Then, denoting the minimal value of Gram’s determinant by G0, we have∫
B,Ω1

ds =

∫
B,Ω1

√
GM−1dui1 · · · duin−r
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≤

√(
n
r

)∫ K

0
dui1 · · · duin−r ≤ Kn−r

√(
n
r

)
.

Therefore, ∫
B
ds ≤ lKn−r

√(
n
r

)
.

So, we have

|Γ| ≤
(

n
r

)3/2

|B|−1Kn−r.

Theorem 3 is proven.

4. Estimates involving singular numbers

Denote by fij = ∂fi/∂xj . The matrix A0 = (fij) is a Jacobi matrix of the
system (1). Arranging the entries of all columns consequently in a line, we take
the Jacobi matrix of the resulting system of functions, denoting it as A1 (see
[4]). Define the parameter L as a maximal value for the Euclidean norms of the
matrices A0 and A1. Denote by G1, as in [4], the minimal value of the product
of last n − r singular numbers of the matrix A1, when they are arranged in
descending order. Now we prove new bound for the number of sheets, supposing
that all the functions considered above are continuously differentiable in Ω0.

Theorem 4. In conditions above, the following bound holds true:

|Γ| ≤ cr |B|−1 LrG−1
1

where cr =
∑∞

s=1 s
r−12−s .

Proof. As it was made above, we can dissect the domain Ω into no more
than l connected subdomains, in every of which one of minors of the Jacobi
matrix takes maximal absolute values among all other minors. Taking one of
these subdomains, we suppose that the minor placed at the first r columns of the
Jacobi matrix is maximal. Let us make the change of variables under the integral
in the relation of Theorem 2, using formulae

u1 = f1(x1, ..., xn), . . . , ur = fr(x1, ..., xn), ur+1 = xr+1, . . . , un = xn.
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Jacobian of this exchange is as follows∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂f1
∂x1

· · · ∂fr
∂x1

0 · · · 0
...

...
...

...
...

...
∂f1
∂xr

· · · ∂fr
∂xr

0 · · · 0

0 · · · 0 1 · · · 0
...

...
...

...
...

...
0 · · · 0 0 · · · 1

· · ·

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= M1.

So, we have ∫
0 < f1 < h

· · ·
0 < fr < h

√
Gdx1 · · · dxn =

=

∫ h

0
· · ·

∫ h

0

∫
f1 = u1

· · ·
fr = ur

√
GM−1

1 du1 · · · du1dxr+1 · · · dxn.

Consider the inner integral. Let this integral to take the maximal value for some
u1 = u′1, . . . , ur = u′r (we denote by Π1 the corresponding surface). Then,
applying the mean value theorem, we can write:∫

0 < f1 < h
· · ·

0 < fr < h

√
Gdxr+1 · · · dxn = hr

∫
f1 = u′1

· · ·
fr = u′r

√
GM−1

1 dxr+1 · · · dxn.

Since the Jacobi matrix has the maximal rank, then the maximal minor M 1 is
distinct from zero in the closed domain Ω1. From the representation of the Gram
determinant G as a sum of squares of all minors, it follows that

√
GM−1

1 ≤ l1/2.

So, ∫
0 < f1 < h

· · ·
0 < fr < h

√
Gdxr+1 · · · dxn ≤ hr

√
l

∫
f1 = u′1

· · ·
fr = u′r

dxr+1 · · · dxn.

For the estimation of the last integral we begin with estimating the volume
of the domain defined by the inequality:

a1(xr+1, ..., xn)...ar(xr+1, ..., xn) ≤ H,
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for positive H ; here the aj(xr+1, ..., xn) denotes the j -th singular number of the
Jacobi matrix, which we denote by A0 as in [4, p.87], moreover, the first r coordi-
nates are defined as a functions of xr+1, ..., xn. Since from linear algebra it is best
known, that aj(xr+1, ..., xn) ≤ L, j = 1, ..., r (in designations from [4, 87]). In [4]
(see Corollary 1), it was shown that the map ui = ai(xr+1, ..., xn), i = 1, ..., r, is
one-to-one. Denote by W (ū) the Jacobi matrix of this transformation. Extending
the integration to more wider domain of integration with respect to ū, we obtain:∫

Π1

dxr+1...dxn ≤
∫

0 < u1...ur ≤ H
u1 ≤ ... ≤ ur ≤ L

|detW (ū)|−1 du1...dur, (2)

where the matrix W (ū) defined by the equality:

W (ū) =

∥∥∥∥∥∥∥
∂u1

∂xr+1
... ∂u1

∂xn

...............
∂ur

∂xr+1
... ∂ur

∂xn

∥∥∥∥∥∥∥ , ū ∈ Π1,

where u1, ..., ur are the singular number of the matrix A0, being looked as a
matrix with entries depending on ū. Let the system of vectors t̄1(ū), ..., t̄n(ū)
and q̄1(ū), ..., q̄n−r(ū) be singular bases for the matrix A0 (see [6]), moreover,
t̄1(ū) ∈ Rn, j = 1, ..., n, q̄i(ū) ∈ Rn−r, i = 1, ..., n− r.

We have the following equations

uj = (A0t̄j , q̄j), A0t̄j = uj q̄j ,
tA0t̄j = uj t̄j , (3)

for j = 1, . . . , n− r. Then

duj
∂xi

=

(
∂A0

∂xi
t̄j , q̄j

)
+

(
A0

∂t̄j
∂xi

, q̄j

)
+

(
A0t̄j ,

∂q̄j
∂xi

)
=

=

(
∂A0

∂xi
t̄j , q̄j

)
+

(
∂t̄j
∂xi

, tA0q̄j

)
+

(
A0t̄j ,

∂q̄j
∂xi

)
.

By using of the equalities (3) and the fact, that(
∂c̄

∂xi
, c̄

)
= 0,

(see [1, pp.53]), for every normed vector c̄(ū) we have the substantive relation

duj
∂xi

=

(
∂A0

∂xi
t̄j , q̄j

)
j = 1, ..., n− r, i = 1, ..., n− r,
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which shows that the vectors of the singular bases behave themselves, at time
of differentiation of the singular spectrum, as fixed vectors. Moreover, those
relations show that

W (ū) = A′
0ū · T

where A′
0ū is a transposed Jacobi matrix of the system of functions, getting by

location of the lines of A0 into a line ([7])

f11, . . . , f1n−r, f21, . . ., f2n−r, . . ., fn1, . . ., fnn−r. (4)

Here, fij are considering as functions of ū, and T is a matrix of the size n(n −
r)× (n− r), consisting of the columns t̄1⊗ q̄1, ..., t̄n−r⊗ q̄n−r lying into the tensor
product Rn−r ⊗Rn. Applying reasoning of the work [4], we obtain

(detW (ū))2 = det
(
A′

0ū · tA′
0ū

)
. (5)

Denote by υ1 ≥ υ2 ≥ · · · ≥ υn−r the singular numbers of the matrix A′
0ū,

(we note that the singular numbers of tA′
0ū and A′

0ū are the same), then by
the theorem of Courant and Fisher ([8, p.115]) the 1+i –th singular number
υi(0 ≤ i ≤ n− r − 1) can be represented in the form

υ2i+1 = min
Vr−1

max
ν∈Vr−1

R(w̄), 0 ≤ i ≤ n− r − 1, (6)

where the Vr−i denote any n− r− i dimensional subspace of Rn−r, and ū –takes
all the values from this subspace, and R(w̄) is a Relay relation (see [8, p. 107]):

R(w̄) =

(
A′

0ū · tA′
0ūw̄, w̄

)
(w̄, w̄)

.

As it is clear, the matrix tA′
0ū is a Jacobi matrix of the system (4) (the differ-

entiation is taken over ū). Therefore, it can be represented as t(D(x̄)· tA1(x̄)),
where D(x̄) is a matrix of a view∥∥∥∥∥∥∥∥

φ11...φ1n−r 1 0...0
φ21...φ2n−r 0 1...0
.................................
φr1...φrn−r 0 0...1

∥∥∥∥∥∥∥∥ , (7)

and the matrix A1 is a Jacobi matrix of the system of functions (4) in which
now the differentiation is taken with respect to x̄. Then A′

0ū=
tA1(x̄) · tD(x̄) and

putting ω̄ = tD(x̄)·w̄ we can represent the relation R(w̄) by the following equality

R(w̄) =
(A1 · tA1ω̄, ω̄)

(ω̄, ω̄)
· (ω̄, ω̄)
(w̄, w̄)

= R1(ω̄) ·
(ω̄, ω̄)

(w̄, w̄)
. (8)
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It is obvious, that ω̄ ∈ Rn and the lines of the matrix D(x̄) are orthogonal to
the gradients of the functionsfi(x̄) from the system (1) (this is best known from
the analysis). The relations (6) now can be written as follows

υ2i+1 = min
Wr−1

max
ω̄∈Wr−1

R1(ω̄) ·
(ω̄, ω̄)

(w̄, w̄)
,

where Wr−i is an image of Vr−i by the mapping ω̄ = tD(x̄) · ῡ. Therefore, it
is a subspace of a dimension r-i in Rn, being orthogonal to the gradients of the
functions fj , j = 1, . . . , n− r and ω̄ is any point of this subspace. From the view
of the matrix D(x̄)(see(7)) it is obvious that

(ω̄, ω̄) = (tDw̄, tDw̄) = (w̄, w̄) + (D0w̄,̄) ≥ (w̄, w̄), (9)

where D0 is non –negatively defined matrix of the size r × r:

D0 =

∥∥∥∥∥∥
φ11 · · · φ1n−r

· · · · · · · · ·
φr1 · · · φrn−r

∥∥∥∥∥∥ ·

∥∥∥∥∥∥
φ11 · · · φr1

· · · · · · · · ·
φ1n−r · · · φrn−r

∥∥∥∥∥∥ .
From (8) and (9) we deduce

R′(w̄) ≥ R1(ω̄)

and therefore,

υ2i+1 = min
Wr−i

max
ω̄∈Wr−i

(A1 · tA1ω̄, ω̄)

(ω̄, ω̄)
. (10)

If we omit the condition of orthogonality of Wr−i to the gradients of the functions
fj j=1,. . . , n-r, then by that the min on the right side of (8) can only stand
more less. Consequently, we have

υ2i+1 ≥ min
Wr−1

max
ω̄∈Wr−1

(A1 · tA1ω̄, ω̄)

(ω̄, ω̄)
,

where W ′
r−i is any r− i dimensional subspace of Rn. Then the right-hand side of

the last inequality by the theorem of Courant and Fisher gives us n−r+1+i–the
characteristic number of the matrix1 · tA1. Therefore,

ν1...νr ≥ a′n−r+1...a
′
n,

where a′1 ≥ a′2 ≥ · · · ≥ a′n are the singular numbers of the matrix A1 (in particular
the singular numbers of the matrix A′

0ū are non–zero). So we have proved the
inequality

|detW (ū)| ≥ G1(x̄).
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From (7) we get∫
Π1

dξ1...dξr ≤ G−1
1

∫
0 < u1...ur ≤ H
u1 ≤ ... ≤ ur ≤ L

du1...dur.

The integral on the right side we dissect into sums of integrals of the form

Is =

∫
H2−s < u1...ur ≤ H21−s

u1 ≤ ... ≤ ur ≤ L

du1...dur, s = 1, 2....

We have H2−s < u1L
r−1, or u1 ≥ H2−sL1−r. Hence,

Is ≤
∫ L

H2−sL1−r

du1...

∫ L

H2−sL1−r

dur−1

∫ H21−su−1
1 ...u−1

r−1

H2−su−1
1 ...ur−1−1

dur =

= H2−s(log 2sLrH−1)r−1.

From the said above it follows that we can take H = Lr. Then we represent the
estimate found above as follows:

Is ≤ Lr2−ssr−1.

By summing over the all n, we obtain the estimation:∫
Π1

dξ1...dξr ≤ crL
rG−1

1 ,

where cr =
∑∞

s=1 s
r−12−s. It is useful to note that the estimate of Theorem 3 is

appropriate when the system of equations defining the manifold contains periodic
functions. Here, the linear sizes play an essential role. The conditions of Theorem
4 are more restrictive, and the linear size here is not so substantive.
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