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A Theorem on the Oscillation of Solutions to
Nonuniformly Degenerate Second-Order
Elliptic–Parabolic Equations
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Abstract. A class of second-order elliptic–parabolic equations of non-divergence struc-
ture with nonuniform power degeneration is considered in the paper. A theorem on the
oscillation of solutions of these equations, as well as an interior a priori estimate of the
Hölder norm, is proved.
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Let En and Rn+1 be Euclidean spaces of points x = (x1, . . . , xn), n ≥ 1
and (x, t) = (x1, . . . , xn, t),respectively, Ω ⊂ En be a bounded domain with the
boundary ∂Ω of class C2, QT = Ω × (−T, 0) be a cylinder of the given height
T > 0, ∂QT = ∂Ω× [−T, 0] be a lateral surface of the cylinder QT and Γ(QT ) =
{(x, t)|x ∈ Ω, t = −T} ∪ (∂Ω × [−T, 0]) is a parabolic boundary of QT . In QT

consider an elliptic-parabolic equation

Lu =
n∑

i,j=1

aij(x, t)uij + φ(0− t)utt − ut = 0. (1)

Here, ∥aij(x, t)∥ is a real symmetric matrix, moreover for all (x, t) ∈ QT

inf
QT

n∑
i=1

aii(x, t)

λi(x, t)
= γ, (2)

σ ≡ sup
QT

 n∑
i,j=1

a2ij(x, t)

λi(x, t)λj(x, t)

/(
n∑

i=1

aii(x, t)

λi(x, t)

)2
− 1

n− e2
< 0, (3)
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φ(z) ∈ C1 [−T, 0] , φ(z) ≥ 0, φ′(z) ≥ 0,

φ(0) = 0, φ′(0) = 0, φ(z) ≥ β1z · φ′(z), β1 > 0− is a constant. (4)

Here γ ∈ (0, 1] is a constant, u = u(x, t), ui = ∂u
∂xi

, uij = ∂2u
∂xi∂xj

,

i, j = 1, . . . , n, ut =
∂u
∂t , utt =

∂2u
∂t2

, e = inf
QT

n∑
i=1

aii(x,t)
λi(x,t)

/
sup
QT

n∑
i=1

aii(x,t)
λi(x,t)

, λi(x, t) =[
ω−1
i (ρ(x)+

√
|t|)

ρ(x)+
√

|t|

]2
, i = 1, . . . , n, ρ(x) =

n∑
i=1

ωi(|xi|). At that ωi(z) are strongly

monotonically increasing functions for z ∈ [0, diamQT ], ω
−1
i (z) are the function

inverse to ωi(z), besides for i = 1, . . . , n and sufficiently small z

α1 · ωi(Z) ≤ ωi(η · z) ≤ α2 · ωi(Z), (5)

(
ω−1
i (z)

z

)q−1

·

ω−1
i (z)∫
0

(
ωi(τ)

τ

)q

dτ ≤ A · z, (6)

where α1 > 1, α2 > 1, η > 0, A > 0 and q > n are some constants.
The aim of the paper is to prove an inner a priori estimate of Hòlders norm

of solutions of the equations (1). Note that the analogous result for second order
parabolic and elliptic equations of non-divergent structure has been obtained in
papers [1, 3, 4, 10, 11, 12, 14, 17]. Note that the analogous result for uniform
parabolic equations of divergent structure was obtained in [2, 15, 16]. A more
complete review of results on this theme one can find in [17, 5, 6, 7, 8, 9, 13].

First, we agree on some notation and definitions. We shall denote by Ex0

R (k)

the ellipsoid

{
x :

n∑
i=1

(xi−x0
i )

2

(ω−1
i (R))2

< k2
}
, Ct1,t2

R:k (x0) -a cylinder Ex0

R (k) × (t1, t2) .

Here R > 0, k > 0, t1 < t2 , x0 ∈ En . The function u(x, t) ∈ C2,2(QT ) is called
L-subelliptic-parabolic in QT , if Lu(x, t) ≥ 0 for (x, t) ∈ QT . A function u(x, t) is
called L-super elliptic-parabolic in QT , if -u(x, t) L-subelliptic-parabolic in QT .

Let C1 = C
− 9bR2

8
,0

R:17 (0), C2 = C
− bR2

16
,0

R:1 (0), C3 = C1 \ C2, where the constant
b ∈ (0, 1) will be chosen later.For S > 0 and β > 0 introduce the function

GS,β
R (x, t) =

 t−S · exp
[
− 1

4βt

n∑
i=1

x2
i

(ω−1
i (R) )2

]
, t > 0,

0 t ≤ 0.

The measure µ, determined in B-set E ⊂ C3 is called (s, β,R)-admissible, if∫
E

GS,β
R (x− y, t− τ)dµ(µ, τ) ≤ 1 for (x, t) /∈ E. The number P s,β

R (E) = supµ(E),
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where the least upper bound is taken on all (s, β,R) admissible measures, is called
an elliptic-parabolic s, β,R-capacity of the set E. The record C(· · · ) means that
a positive constant C depends only on the content of parenthesis.

Lemma 1. If the conditions (2)-(6) are fulfilled with respect to the coefficients
of the operator L, then there exist constants S(γ, n, b), β(γ, n, b) and R0(γ, n, b)
such that for R ≤ R0, (y, τ) ∈ C3

L(x,t)G
s,β
R (x− y, t− τ) ≥ 0, (x, t) ∈ C3 \ {(y, τ)}. (7)

Proof. We have for t > τ allowing for the conditions (2)-(6). For simplicity,

we will denote the function Gs,β
R (x, t) by G(x, t. We have

J =
LG(x− y, t− τ)

G(x− y, t− τ)
· (t− τ) =

=
1

4β2(t− τ)
·

n∑
i,j=1

aij(x, t) ·
(xi − yi) (xj − yj)

(ω−1
i (R) )2 · (ω−1

j (R) )2
−

− 1

2β
·

n∑
i=1

aii(x, t)

(ω−1
i (R) )2

+ S − 1

4β(t− τ)

n∑
i=1

(xi − yi)
2

(ω−1
i (R) )2

−

−φ(0− t) · S(S + 1)

t− τ
− (S + 1) · φ(0− t)

2β(t− τ)2
·

n∑
i=1

(xi − yi)
2

(ω−1
i (R) )2

+

+
φ(0− t)

16β2 · (t− τ)3
·

[
n∑

i=1

(xi − yi)
2

(ω−1
i (R) )2

]2
≥ 1

4β2(t− τ)
×

×

 n∑
i,j=1

a2ij(x, t)

λi(x, t) · λj(x, t)

1/2

×

×

 n∑
i,j=1

λi(x, t)λj(x, t) ·
(xi − yi)

2 · (xj − yj)
2

(ω−1
i (R) )4 · (ω−1

j (R) )4

1/2

−

− 1

2β
·

(
n∑

i=1

a2ii(x, t)

λ2
i (x, t)

)1/2

·

(
n∑

i=1

λ2
i (x, t) ·

1

(ω−1
i (R) )4

)1/2

+

+S − 1

4β(t− τ)
·

n∑
i=1

(xi − yi)
2

(ω−1
i (R) )2

+

+
(s+ 1)β1 · (0− t) · φ′(0− t)

2β · (t− τ)2
·

n∑
i=1

(xi − yi)
2

(ω−1
i (R) )2

≥
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≥ 1

4β2(t− τ)
·

n∑
i=1

aii(x, t)

λ
(
ix, t)

·
n∑

i=1

λi(x, t) ·
(xi − yi)

2

(ω−1
i (R) )4

−

− 1

2β
·

n∑
i=1

aii(x, t)

λ
(
ix, t)

·
n∑

i=1

λi(x, t)

(ω−1
i (R) )2

+

+s− 1

4β(t− τ)
·

n∑
i=1

(xi − yi)
2

(ω−1
i (R) )2

, (8)

on the other hand for (x, t) ∈ C3, |xi| ≤ 17 · ω−1
i (R), i = 1, . . . , n, ωi(|xi|) ≤

ωi(17ω
−1
i (R)) ≤ α2 · R, ρ(x) =

n∑
i=1

ωi(|xi|) ≤ nα2 · R,
√

|t| ≤
√

9b
8 · R ≤ 2R

therefore
ρ(x) +

√
|t| ≤ (n · α2 + 2)R. (9)

Analogously, if (x, t) ∈ C3, then either
n∑

i=1

x2
i

(ω−1
i (R))2

≥ 1 or |t| ≥ bR2

16 . In

the first case there will be found such i0, 1 ≤ i0 ≤ n that |xi0 | ≥ 1√
n
ω−1
i0

(R) or

|t| ≥
√
b
4 R. We conclude that

c1(n, b) ·
(
ω−1
i (R)

R

)2

≤ λi(x, t) ≤ c2(n, b) ·
(
ω−1
i (R)

R

)2

, i = 1, . . . , n. (10)

Allowing for (10) in (8) we get

J ≥ γ

4β2(t− τ)
· c1
R2

·
n∑

i=1

(xi − yi)
2

(ω−1
i (R))2

−

− n

γ · 2β
· c2
R2

+ S − 1

4β(t− τ)
·

n∑
i=1

(xi − yi)
2

(ω−1
i (R))2

≥

≥ 1

4β(t− τ)
·
(
γ · c1
β

− 1

)
·

n∑
i=1

(xi − yi)
2

(ω−1
i (R))2

+ S − nc2
2γβ

. (11)

Now it suffices assume

β = γc1, s =
nc2

2γ2 · c1
(12)

and the required inequality (7) follows from (11) - (12).

◀
In what follows, unless otherwise specified, we assume that the constants s

and β are chosen in correspondence with the equalities (12). For brevity, we shall

denote the function Gs,β
R (x, t) and P s,β

R by GR and PR respectively.
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Lemma 2. Let B = Ct0−ρ2R2,t0

R:ρ (x0), B ⊂ C3, ρ > 0, and R ∈ (0, 1]. Then

c3(s, β) · (ρR)2s ≤ PR(B) ≤ c4(s, β) · (ρR)2s. (13)

Proof. Let W (x, t) = G(x, t;x0, t0 − ρ2R2), (x, t) ∈ B. If t ≤ t0 − ρ2R2, then
W (x, t) = 0. If x /∈ Ex0

R (ρ), then

W (x, t) = (t− t0 + ρ2R2)−s × exp

[
− 1

4β(t− t0 + ρ2R2)
·

n∑
i=1

(xi − x0i )
2

(ω−1
i (R))2

]
≤

≤ (t− t0 + ρ2R2)−s · exp
[
− ρ2

4β(t− t0 + ρ2R2)

]
.

For v > 0 consider the function Z(v) = v−s ·exp
[
− ρ2

4βv

]
, and find the value at

which z(v) attains its maximum. We find from the equation Z ′(v) = 0, v = ρ2

4βs .

If t = ρ2

4βs + t0 − ρ2R2, x /∈ Ex0

R (ρ), then

W (x, t) =

(
ρ2

4βs

)−s

· exp(−s) = (4βs)s · (ρR)−2s ·R2s · exp(−s). (14)

Let t ≥ t0 and ρ > 0, t− t0 + ρ2R2 ≥ ρ2R2, then (t− t0 + ρ2R2)−s ≤ (ρR)−2s

exp

[
− 1

4β(t− t0 + ρ2R2)
·

n∑
i=1

(xi − x0i )
2

(ω−1
i (R))2

]
≤ 1,

and

W (x, t) ≤ (ρR)−2s. (15)

We conclude from (14) and (15) that

sup
Rn+1\B

W (x, t) ≤ a · (ρR)−2s, (16)

where a = max =
{
1; (4βs)s · e−s ·R2s

}
. Consider the measure µ(y, τ) concen-

trated at the center of the lower foundation of a cylinder B with density 1
a ·(ρR)2s.

If (x, t) /∈ B,∫
B

G(x, y; t, τ) dµ (y, τ) =

∫
{x0,t0−ρ2R2}

W (x, t) dµ
{
x0, t0 − ρ2R2

}
≤

≤ a · (ρR)−2s · µ
{
(x0, t0 − ρ2R2)

}
= 1.
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Consequently PR(B) = supµ(B) and

PR(B) ≥ µ(B) = µ
{
(x0, t0 − ρ2R2)

}
=

1

a
· (ρR)2s,

and the required estimate (13) is proved.

◀

Let C4 = C
− bR2

8
,0

R:9 (0), (x0, t0) ∈ Γ(C4), C5 = C5(x0, t0) =

Ct0−bR2,t0

R:8 (x0),C6 = C6(x0, t0) = C
t0− bR2

4
,t0

R:1 (x0), C7 = C7(x0, t0) =

C
t0−bR2,t0− bR2

2
R:1 (x0). Through S(C) will denote the lateral surface of the cylin-

der C, and through F (C) is its lowest base.
Choose and fix b so that the condition

bβs ≤ 49

4
(17)

be fulfilled.

Lemma 3. Let a domain D be contained in the cylinder C5 and have limit
points on Γ(C5) and intersecting C6. Then let continuous in D, and vanishing
in Γ = Γ(D) ∩ C5 positive L-subelliptic-parabolic function u(x, t) be determined
in D. Then if as to the coefficients of the operator L the conditions (2)-(6) are
fulfilled, there exist such η1(γ, n) that for R ≤ R0)

sup
D

≥
(
1 + η1 ·R−2s · PR(ER)

)
sup
D∩C6

u, where (18)

ER = C7 \D.

Proof. We can consider that PR(ER) > 0. Fix an arbitrary ε ∈ (0, PR(ER)),
and let the measure on ER, be such that

U(x, t) =

∫
ER

G(x− y, t− τ)dµ(y, τ) ≤ 1, (x, t) /∈ ER, (19)

µ(ER) > PR(ER)− ε. (20)

Let (y, τ) be an arbitrary fixed point from ER, S(C
5) a lateral surface of C5.

Now estimate the quantity sup
(x,t)∈S(C5)

G(x−y, t−τ). To this end we fix x ∈ ∂Ex0

R (8)

and find that value of t > τ , at which the function v(t) = G(x− y, t− τ) attains
its maximum. Setting v′(t) to zero, we get

t− τ =
1

4βs
·

n∑
i=1

(xi − yi)
2

(ω−1
i (R))2

. (21)



154 N.R. Amanova, A.I. Ismailov, R.A. Amanov, T.R. Muradov

But by Minkowski inequality(
n∑

i=1

(xi − yi)
2

(ω−1
i (R) )2

)1/2

≥

(
n∑

i=1

(xi − x0i )
2

(ω−1
i (R))2

)1/2

−

−

(
n∑

i=1

(yi − x0i )
2

(ω−1
i (R))2

)1/2

≥ 8− 1 = 7.

Besides t − τ ≥ 49
4βS , then from (17)

(
bR2 ≤ 49

4βS ≤ t− τ
)
and monotonicity

of v(t) up to the first maximum, we deduce

sup
(x,t)∈s(C5)

(y,τ)∈C7

G(x− y, t− τ) ≤ R−2S · bS · e−S . (22)

Now let’s estimate inf
(x,t)∈s(C6)

(y,τ)∈C7

G(x − y, t − τ) . Let x ∈ ∂Ex0

R (1), y ∈ ∂Ex0

R (1).

Then (
n∑

i=1

(xi − yi)
2

(ω−1
i (R))2

)1/2

≤

(
n∑

i=1

(xi − x0i )
2

(ω−1
i (R))2

)1/2

+

+

(
n∑

i=1

(yi − x0i )
2

(ω−1
i (R))2

)1/2

≤ 1 + 1 ≤ 2,

bR2

4 < t− τ < bR2 and

inf
(x,t)∈s(C6)

(y,τ)∈C7

G(x− y, t− τ) ≥ R−2S · e−s · e−
16s
49 . (23)

Let introduce an auxiliary function

W (x, t) = M
[
1− U(x, t) +R−2s · (be)−s · PR(ER)

]
− u(x, t), where

M = sup
D

u.

By Lemma 1, the functionW (x, t) - L-superelliptic-parabolic inD. According
to the inequality (22)W (x, t) ≥ 0 for (x, t) ∈ Γ(D)∩S(C5). MoreoverW (x, t) ≥ 0
for (x, t) ∈ Γ(D) ∩ C5 by virtue of the inequality (19). Finally W (x, t) ≥ 0 for
(x, t) ∈ F (C5), (x, t)∈ER. Thus W (x, t) ≥ 0 for (x, t) ∈ Γ(D). By the maximum
principle W (x, t) ≥ 0 in D and in particular, given (23) and (20)

sup
D∩C6

u(x, t) ≤ M

[
1− inf

D∩C6
U(x, t) +R−2S · (be)−S · PR(ER)

]
≤
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≤ M

[
1− (b)−S · exp

(
−16S

49

)
· (PR(ER)− ε) ·R−2S +

+R−2S · (be)−S · PR(ER)
]
=

= M

[
1− b−S ·

(
exp

(
−16S

49

)
− exp(−S)

)
×

×R−2S · PR(ER) + ε · b−S · exp
(
−16S

49

)
·R−2S

]
. (24)

Now allowing for that arbitrariness of ε, we arrive at the required inequality
(18) from (24).

◀

Corollary 1. If the conditions of Lemma 3 are fulfilled, and ER contains a

cylinder Ct′−ρ2R2,t′

R:ρ (x′), then sup
D

u(x, t) ≥ (1 + η2(γ, n, ρ)) · sup
D∩C6

u(x, t).

Lemma 4. Let the conditions of the previous Lemma 3 be fulfilled. Then there
exists such δ(γ, n) that if mesD ≤ δ ·mesC5 and R ≤ R0, then

sup
D

u(x, t) ≥ (1 + η3) · sup
D∩C6

u(x, t), where (25)

η3 =
b

2
.

Proof. Lets consider an auxiliary function

W1(x, t) = M

[
1 +

b

64
·

n∑
i=1

(xi − x0i )
2

(ω−1
i (R))2

+
t0 − t

R2
− b

]
− u(x, t).

If is easy to see that

LW1 ≤
(
bn · c2
32γ

+ 1

)
M

R2
=

M5 · c5(γ, n, b)
R2

. (26)

On the other hand W1(x, t)
∣∣∣
Γ(D)

≥ 0. Let’s consider the domain D1 ⊂ C5,

D ⊂ D1, C̃5 = Ct0−bR2,t0

R:8,5 (x0), D′ = D1 ∩ C̃5, mesD′ ≤ 2mesD and the function
ζ(x, t) such that ζ(x, t) = 1 for (x, t) ∈ D, ζ(x, t) = 0 for (x, t) /∈ D′.

Let Z(x, t) be a solution of the following first boundary value problem
LZ = − c6

R2
· ζ(x, t), (x, t) ∈ C̃5;

Z
∣∣∣
Γ(C̃5)

= 0.
(27)
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By a maximum principle Z(x, t) ≥ 0 for (x, t) ∈ C̃5. Besides, by A.D. Alexan-
drov - N.V.Krylov inequality [11]

sup
C̃5

Z(x, t) ≤
c7(n, γ) ·

[
mesEx0

R (8, 5)
]1/(n+1)

(
inf
C̃5

det(aij(x, t))

)1/(n+1)
·
∥∥∥∥ζ · c6R2

∥∥∥∥
Ln+1(C̃5)

≤

≤ c8(n, γ) · (2bδ)1/(n+1). (28)

Now if we put W2(x, t) = W1(x, t) + M · Z(x, t), then by virtue of (26) the

function W2(x, t) is L-superelliptic-parabolic in D, W2(x, t)
∣∣∣
Γ(D)

≥ 0 and by the

maximum principle, allowing for (28)

sup
D∩C6

u(x, t) ≤ M

[
1− 47b

64
+ c8 · (2bδ)1/(n+1)

]
. (29)

Choose δ such that c8 · (2bδ)1/(n+1) ≤ 15b
64 .

Then the inequality (25) follows from (29).

◀

Corollary 2. Let the conditions of Corollary 1 be satisfied with respect to the
region D and let in D define a positive L superelliptic-parabolic function v (x, t)
continuous in D and equal to unity on Γ(D) ∩ C5. Then, if R ≤ R0, then

inf
D∩C6

v(x, t) ≥ η′′2 =
η′2

1 + η′2
, (30)

where η′2 =
η2
2 , R0 = R0(γ, n).

Proof. Let

D′ =
{
(x, t)

∣∣∣ (x, t) ∈ D, v(x, t) < 1
}
.

Consider the function u(x, t) = 1− v(x, t) for (x, t) ∈ D′. Applying Corollary
1 to the function u(x, t), we get

1− inf
D′

v ≥ (1 + η′2) ·
(
1− inf

D′∩C6
v

)
, i.e.

inf
D′∩C6

v(x, t) ≥ η2
1 + η′2

. (31)

Now it is enough to remark that the required estimate of (30) is also proved.

◀
Analogously it is proved
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Corollary 3. Let the conditions of Lemma 4 be satisfied with respect to the
region D and in D defined a positive L-superelleptic-parabolic function v(x, t),
continuous in D and turning to unity on Γ(D) ∩ C5. Then if R ≤ R0, then

inf
D∩C6

v(x, t) ≥ η′′3 =
η′3

1 + η′3
. (32)

where η′3 = η3/2 and R0 = R0(γ, n).

Lemma 5. Let a domain D be contained in the cylinder C5 and have limit points
on Γ(C5) and intersect C6. Then let continuous in D, and turning to unity on
Γ(D) ∩ C5 positive L-supereliptic-parabolic function v(x, t) be determined in D.
Then if ER = C7 \D, mesER ≥ σ1 ·mesC7, σ1 > 0 and R ≤ R0, then

inf
D∩C6

v(x, t) ≥ η4(γ, n, σ1). (33)

Proof. Consider a cylinder

C7(ρ0) = C
t0−b(1−ρ0)R2,t0− b

2
(1+ρ0)R2

R:1−ρ0
(x0), ρ0 ∈

(
0,

1

4

]
.

We choose and fix ρ0 > 0 such that mes(C7 \ C7(ρ0)) =
σ1
2 ·mesC7.

It is clearly shown that ρ0 depends only on n and σ1. Let us denote by E0

the set of interior intersection points of ER ∩ C7(ρ0). Then

mesE0 ≥ mesER −mes(C7 \ C7(ρ0)) ≥

≥ σ1 ·mesC7 − σ1
2

·mesC7 =
σ1
2

·mesC7. (34)

Let (x′, t′) be an arbitrary point from E0, and

C5
ν (x

′, t′) = C
t′−b(νR)2,t′

R:8ν (x′), C6
ν (x

′, t′) = C
t′− b

4
(νR)2,t′

R:ν (x′),

C7
ν (x

′, t′) = C
t′−b(νR)2,t′− b

2
(νR)2

R:ν (x′)

where ν ∈ (0, ρ0] is such that C5
ν (x

′, t′) ∈ C7. We denote by ν(x′, t′) the exact
upper edge of those ν ∈ (0, ρ0] for which the following is true mes(D∩C5

ν (x
′, t′)) ≤

δ ·mesC5
ν (x

′, t′), where δ is the constant of Lemma 4.

There are two possible cases:

1. ν(x′, t′) = ρ0,

2. ν(x′, t′) < ρ0.
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Let case 1. take place. Then according to Corollary 3 either D∩C6
ρ0(x

′, t′) =
∅, either, inf

D∩C6
ρ0

(x′,t′)
v(x, t) ≥ η′′3 .

Let D′ = {(x, t) : (x, t) ∈ D, v(x, t) < η′′3}. From the above, it follows that

C7 \D′ contains a cylinder C6
ρ0(x

′, t′). Applying to the function v(x,t)
η′′3

Corollary

3, we obtain inf
D′∩C6(x′,t′)

v(x,t)
η′′3

≥ η′′2 , and the constant η′′2 only depends on γ, n and

σ1. Given that v(x, t) ≥ η′3 for (x, t) ∈ D \D′, we conclude inf
D∩C6

v(x, t) ≥ η′′2 · η′′3 .
Thus, if case 1. holds, then Lemma 5 is proved.
Let case 2. take place. If for some other point (x′′, t′′) ∈ E0 the case 1. is

satisfied, then again Lemma 5 is proved.
So it remains to consider the situation when for any point (x, t) ∈ E0 there

is a case 2. Let’s cover E0 with cylinders C6
ν(x,t)(x, t) ∈ E0 and choose from

this coverage the countable under covered
{
C6
νk
(xk, tk)

}
, k = 1, 2, ..., of finite

multiplicity q1(n) so that at that

mes

[ ∞⋃
k=1

(D ∩ c5νk(x
k, tk))

]
≤ q2(n)mes

[ ∞⋃
k=1

(D ∩ c6νk(x
k, tk))

]
.

By Corollary 3 for every natural k, either D ∩ C6
νk
(xk, tk) = ∅, either

inf
D∩C6

νk
(xk,tk)

v(x, t) ≥ η′′3 .

Moreover, in consideration of the (34)

mes

[ ∞⋃
k=1

(D ∩ C6
νk
(xk, tk))

]
≥ 1

q2
mes

[ ∞⋃
k=1

(D ∩ C5
νk
(xk, tk))

]
≥

≥ 1

q1q2
·

∞∑
k=1

mes(D ∩ C5
νk
(xk, tk)) =

=
δ

q1q2
·

∞∑
k=1

mesC5
νk
(xk, tk) ≥

=
δ

q1q2
·

∞∑
k=1

mesC6
νk
(xk, tk) ≥

≥ δ

q1q2
·mesE0 ≥ δσ1

2q1q2
·mesE7 (35)

We denote v(x,t)
η′′3

by v1(x, t) and let D1 = {(x, t) : (x, t) ∈ D, v1(x, t) < 1}.
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Then if E1
R = C7 \D1, then according to the condition on ER and (35)

mesE1
R ≥ σ1 ·mesC7 +

δσ1
2q1q2

·mesC7 = σ1 · (1 +
δ

2q1q2
) ·mesC7.

Therefore, the estimate (33) is proved.

◀
Let’s apply to the function v1(x, t) the same procedure as for the func-

tion v(x, t). Then we can prove either Lemma 5 or we obtain that if D2 ={
(x, t) : (x, t) ∈ D, v1(x,t)

η′′3
< 1
}
, E2

R = C7 \D2, then

mesE2
R ≥ σ1 ·

(
1 +

δ

q1q2

)2

·mesC7.

Let’s continue the process following. Clearly, in this chain, alternative 2.
cannot repeat more than l0(n, δ, σ1) times, where l0 is the smallest natural number
for which

σ1 ·
(
1 +

δ

2q1q2

)l0

> 1.

Corollary 4. Let in the cylinder C5 be a arranged a domain D having limit points
on Γ(C5) and intersecting C6. Let u(x, t) be a positive L-subelliptic-parabolic
function, continuous in D, and vanishing on Γ(D) ∩ C5. Then if ER = C7 \D,
mesER ≥ σ1 ·mesC7, σ1 > 0, and R ≤ R0, then

sup
D

u(x, t) ≥ (1 + η4) · sup
D∩C6

u(x, t). (36)

Proof. Let v(x, t) = 1− u(x,t)
M , where M = sup

D
u(x, t). Applying Lemma 5 to

the function v(x, t), we obtain that 1−
sup

D∩C6
u

M ≥ η4. Hence the required estimate

of (36) follows. Let C8 = C
−bR2,− 3b

4
R2

R:9 (0).

◀

Lemma 6. Let a domain D having limit points on Γ(C3) and intersecting C4

be arranged on C3. Then let a continuous in D and vanishing on Γ(D) ∩ C3

positive L - subelliptic-parabolic function u(x, t) be determined on D. Then if the
conditions (2)-(2) are fulfilled with respect to the coefficients of an operator L,
and HR = C8 \D, mesHR ≥ σ ·mesC8, σ > 0, R ≤ R0, then

sup
D

u(x, t) ≥ (1 + η(γ, n, σ)) · sup
D∩Γ(C4)

u(x, t). (37)
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Proof. Without loss of generality, we may assume that sup
D∩Γ(C4)

u(x, t) = 1.

Let (x∗, t∗) ∈ D ∩ Γ(C4) be the point at which u(x∗, t∗) = 1. Suppose at the

beginning that (x∗, t∗) ∈ F (C4), i.e., (x∗, t∗) = (x∗, t0), where t0 = − bR2

8 . On
F (C4), choose the minimum number of points (x1, t0), . . . , (xm, t0) such that

1. C8 ⊂
m⋃
i=1

C7(xi, t0);

2. one of the points (xi, t0) coincides with the point (x∗, t0);

3. for any i, 1 ≤ i ≤ m, will be found j, 1 ≤ j ≤ m such that xj ∈ ∂Exi

R
Am

(1),

where the constant A(n) > 1 will be selected later.

Clearly, the number m depends only on n. From the properties of the coating
it follows, that for any i0, 1 ≤ i0 ≤ m, there is a chain (xi1 , t0), . . . , (xik , t0) such

that (xik , t0) = (x∗, t0),xie+1 ∈ ∂Exil
R

Am
(1), l = 0, 1, . . . , k − 1. From the condition

on HR we conclude the existence of i0, 1 ≤ i0 ≤ m such that

mes
(
HR ∩ C7(xi0 , t0)

)
≥ mesHR

m
≥ σ

m
mesC8. (38)

It is easy to see that mesC8 ≥ mesC7(xi0 , t0). Therefore, from the (38) it
follows that

mes
(
HR ∩ C7(xi0 , t0)

)
≥ σ

m
·mesC7(xi0 , t0). (39)

Let δ1 = η4
2(1+η4)

, where the constant is η4 of Lemma 5 is taken at σ1 = σ
m .

Let’s assume that sup
D∩C6(xi0 ,t0)

u(x, t) ≥ 1− δ1 .Then according to Corollary 4 and

(39)

sup
D

u(x, t) ≥ (1 + η4) sup
D∩C6(xi0 ,t0)

u(x, t) ≥ (1 + η4) · (1− δ1) =

= 1 +
η4
2

= (1 +
η4
2
) · sup

D∩Γ(C4)

u(x, t),

and in this case the statement of Lemma 6 is proved.

Now, let’s say u(x, t) < 1− δ1, (x, t) ∈ D ∩ C6(xi0 , t0).

Consider the function v1(x, t) = u(x, t)− 1 + δ1. It is not difficult to see that
the function v1(x, t) is L- subelliptic-parabolic in D, since δ1 < 1.

Let D1 = {(x, t) : (x, t) ∈ D, v1(x, t) > 0}. The assumption is that the cylin-
der C6(xi0 , t0) located in addition to D1.
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For (x′, t′) ∈ Γ(C4) denote by Ci
R′(x′, t′) cylinder Ci(x′, t′), i = 5, 6, 7 high-

lighting that in it R = R′. Let’s find one now A > 1, that C5
R(x

′, t′) ⊂ C6
AR(x

′, t′).
Clearly, it is enough for the inclusion to be fair that

bR2 ≤ b · (AR)2

4
, 8ω−1

i (R) ≤ ω−1
i (AR), i = 1, . . . , n.

The last inequalities are satisfied if we fix A = max{2, α1}.
Now, let’s say (xi1 , t0), . . . , (xik , t0) above-mentioned chain. By construction

C7
R
A

(xi1 , t0) \D1 contains a cylinder C
t′−b(R

A
·ρ1)2,t′

R
A
:ρ1

(x′), where ρ1 depends only on
n.

Let’s assume that σ0 =
η2

2(1+η2)
, where the constant η2 of Corollary 1 is taken

at ρ = ρ1.
Let’s assume that

sup
D1∩C6

R
A

(xi1 ,t0)

v1(x, t) ≥ δ1(1− σ0), i.e.

sup
D1∩C6

R
A

(xi1 ,t0)

u(x, t) ≥ 1− δ1σ0.

Using Corollary 1, we obtain

sup
D1∩C6

R(xi1 ,t0)

v1(x, t) ≥ (1 + η2) sup
D1∩C6

R
A

(xi1 ,t0)

v1(x, t) ≥

≥ (1 + η2) · δ1 · (1− σ0).

Thus

sup
D

u(x, t) ≥ sup
D1∩C6

R(xi1 ,t0)

u(x, t) ≥ (1− δ1) +

+(1 + η2) · δ1 · (1− σ0) = 1 +
δ1η2
2

=

=

(
1 +

δ1η2
2

)
· sup
D∩Γ(C4)

u(x, t),

and in this case the statement of Lemma 6 is proved.
Let u(x, t) < 1 − δ1σ0, (x, t) ∈ D1 ∩ C6

R
A

(xi1 , t0), then consider L-

subelliptic-parabolic in D function v2(x, t) = u(x, t) − (1 − δ1σ0). Let D2 ={
(x, t)

∣∣∣(x, t) ∈ D, v2 > 0
}
. The assumption is that the cylinder C6

R
A

(xi1 , t0) is

located in addition to D2. If now

sup
D1∩C6

R
A2

(xi2 ,t0)

v2(x, t) ≥ δ1σ0(1− σ0), i.e.
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sup
D1∩C6

R
A2

(xi2 ,t0)

u(x, t) ≥ 1− δ1σ
2
0,

then, applying Corollary 1, we obtain

sup
D

u(x, t) ≥ sup
D∩C6

R
A2

(xi2 ,t0)

u(x, t) ≥ 1− δ1σ0 +

+(1 + η2)δ1σ0(1− σ0) = 1 +
δ1σ0η2

2
=

=

(
1 +

δ1σ0η2
2

)
· sup
D∩Γ(C4)

u(x, t),

and in this case the statement of Lemma 6 is proved.
If, however u(x, t) < 1− δ1σ

2
0, (x, t) ∈ D ∩C6

R
A2

(xi2 , t0), then we will continue

the process as follows. No later than the k-th step, we prove Lemma 6, since
u(xik , t0) = u(x∗, t0) = 1. So Lemma 6 is proved if (x∗, t∗) ∈ F (C4).

Now, let’s say (x∗, t∗) ∈ S(C4) and t∗ > t0. Clearly x∗ ∈ ∂E0
R(9). From the

above considerations it follows that either Lemma 6 is proved, either u(x, t) <
1− δ1σ

m
0 for (x, t) ∈ D ∩ C6

R
Am

(x∗, t0).

Let’s choose on the segment I, connecting the points (x∗, t0) and (x∗, t∗),
minimum number of points (x∗, t1), . . . , (x∗, tp) so that

4. I ⊂
p⋃

i=1
C

6
R

Am
(x∗, ti); tp = t∗;

5. at the intersection of C
6
R

Am
(x∗, ti) ∩ C

6
R

Am
(x∗, ti+1) cylinder is contained

C7
R

Am
(x∗, ti+1),i = 0, 1, . . . , p− 1.

Clearly, p depends only on n. Consider the function W1(x, t) = u(x, t)− 1 +

δ1 · σm
2 , where σ2 = min

{
σ0,

η2
2(1+η2)

}
,η2-constant η2 of Corollary 1, taken at

ρ = A−1.

Let D1 =
{
(x, t)

∣∣∣(x, t) ∈ D,W1(x, t) > 0
}
. By assumption, the cylinder

C6
R

Am
(x∗, t0) is located in the supplement of D1. If

sup
D1∩C6

R
Am

(x∗,t1)

W1(x, t) ≥ δ1 · σm
2 · (1− σ2), i.e.

sup
D1∩C6 R

Am (x∗,t1)

u(x, t) ≥ 1− δ1 · σm+1
2 ,

then applying Corollary 1, we obtain

sup
D1∩C6

R
Am−1

(x∗,t1)

W1(x, t) ≥ (1 + η2) · δ1 · σm
2 · (1− σ2).
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Thus

sup
D

u(x, t) ≥ sup
D1∩C6

R
Am−1

(x∗,t1)

u(x, t) ≥ 1− δ1 · σm
2 +

+(1 + η2) · δ1 · σm
2 · (1− σ2) ≥ 1 +

δ1σ
m
2 · η2
2

=

=

(
1 +

δ1σ
m
2 · η2
2

)
sup

D∩Γ(C4)

u(x, t),

and in this case the statement of Lemma 6 is proved. If u(x, t) < 1 − δ1σ
m+1
2 ,

(x, t) ∈ D1 ∩ C6
R

Am
(x∗, t1), then we continue the process as follows. At the latest

p-step, we prove Lemma 6, since u(x∗, tp) = u(x∗, t∗) = 1.
The estimate (37) is completely proved.

◀

Theorem 1. Let a domain D have limit points on Γ(C3) and intersect C4 be
arranged on C3. Then let a continuous in D and vanishing on Γ(D)∩C3 positive
L-subelliptic-parabolic function u(x, t) be determined on D. Then if mesHR ≥
σ ·mesC8, σ > 0, and R ≤ R0, then sup

D
u(x, t) ≥ (1 + η) · sup

D∩C4

u(x, t).

We denote by Cλ(D), 0 < λ < 1 the Banach space of functions u(x, t) defined
on D, with finite norm

∥u∥Cλ(D) = sup
D

|u|+ sup
(x,t),(y,τ)∈D
(x,t)̸=(y,τ)

|u(x, t)− u(y, τ)|(
|x− y|+

√
|t− τ |

)λ .
Let‘s osc

QT

u(x, t) = sup
QT

u(x, t) − inf
QT

u(x, t),ρ > 0, Cρ(x, t) = C
t− bR2

8
,t

ρ:9 (x), C1 ⊂

D, Dρ = {(x, t)|(x, t) ∈ D,Cρ(x, t) ⊂ D} .

Theorem 2. Let in domain D ⊂ Rn+1 a solution u(x, t) of the equation (1)
be determined, moreover as to the coefficients of the operator L, the conditions
(2)-(4) be fulfilled, n ≥ 1 and (0, 0) ∈ D. Then if R ≤ R0 is such that C1 ⊂ D.
Then

osc
C1

u(x, t) ≥
(
1 +

η

2

)
osc
C4

u(x, t), (40)

where η is the constant of Theorem 1 at σ = 1
2 .

Proof. In the proof suggested below, only Theorem 1 will be used. In this
plan, if M1 = sup

C1

u(x, t), m1 = inf
C1

u(x, t),M2 = sup
C4

u(x, t), m2 = inf
C4

u(x, t) and
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the inequality of the form (40) is valid for the function v(x, t) = u(x, t)− M2+m2
2 ,

then it is fulfilled for the function u(x, t). But

sup
C4

v(x, t) = sup
C4

u− M2 +m2

2
= M2 −

M2 +m2

2
=

M2 −m2

2
,

inf
C4

v(x, t) = inf
C4

u− M2 +m2

2
= m2 −

M2 +m2

2
= −M2 −m2

2
,

Furthermore, it can always be considered thatM2−m2 > 0, otherwise inequal-
ity (40) is obvious. Therefore, without loss of generality, we will supposed that the
M2 = 1,m2 = −1, i.e. osc

C4
u(x, t) = 2. Let D+ = {(x, t)|(x, t) ∈ C1, u(x, t) ≥ 0},

D− = {(x, t)|(x, t) ∈ C1, u(x, t) < 0}.Obviously, both of these sets are not empty.

At least one of the following inequalities is satisfied:

1. mes(C8 \D+) ≥ 1
2mesC8,

2. mes(C8 \D−) ≥ 1
2mesC8.

Let the case 1. take place for definiteness. We note that alternative 2. re-
duces to 1. multiplying the solution u(x, t) by (−1). Let’s denote by D′ that
connected component of the set D+ which contains the point (x0, t0) ∈ Γ(C4),
where u(x0, t0) = 1. By applying Theorem 1 to the function u(x, t) in D′ with
the constant σ = 1

2 , we obtain that

M1 ≥ (1 + η)M2 = 1 + η, i.e.

M1 −m1 ≥ 1 + η −m1 ≥ 1 + η −m2 = 2 + η =

= 2
(
1 +

η

2

)
=
(
1 +

η

2

)
· (M2 −m2),

and the required estimate of (40) is proved.

◀

Corollary 5. Let CR(x
0, t0) = C

t0− bR2

8
,t0

R:9 (x0), ν = max
{
3, α2

α1

}
. Then, if the

conditions of Theorem 1 are satisfied and CνR(0, 0) ∈ D, then at R ≤ R0

osc
CνR(0,0)

u(x, t) ≥
(
1 +

η

2

)
osc

CR(0,0)
u(x, t). (41)

For the proof it is enough to notice that at the chosen ν there is an inclusion
of C1 ⊂ CνR(0, 0).
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Corollary 6. An estimate of the form (41) is also valid in cylinders CνR(x
0, t0)

and CR(x
0, t0) respectively, unless R ≤ R0 and CνR(x

0, t0) ⊂ (D ∪ γ(D)). Here
γ(D) is the top cover of the region D.

Theorem 3. Let u(x, t) of the equation (1) be defined in the region D, whose
coefficients satisfy the conditions (2)-(4). Then for any ρ > 0 there exist constants
λ(γ, n), C9(γ, n, ρ) such that

∥u∥Cλ(Dρ) ≤ C9 · ∥u∥C(D). (42)

Proof. Let (x1, t1) and (x2, t2) be two arbitrary points from the Dρ. For
definiteness we will assume that t2 < t1. Let us fix an arbitrary small enough
ρ > 0. Two cases are possible:

1. (x2, t2) ∈ Cρ(x
1, t1),

2. (x2, t2) /∈ Cρ(x
1, t1).

Let us first consider case 1. Let for m = 0, 1, 2, . . . C(m) denote the cylinder
Cρν−m(x1, t1). Clearly, there exists a non-negative integer m0 for which

(x2, t2) ∈ C(m0), (x2, t2) /∈ C(m0 + 1). (43)

It follows from (43) that either x2 /∈ Ex1

ρν−m0−1(9), either t
1 − t2 ≥ bρ2ν−2m0−2

8 .

If x2 /∈ Ex1

ρν−m0−1(9), then
n∑

i=1

(x1
i−x2

i )
2

(ω−1
i (ρν−m0−1))2

≥ 81. Thus there you’ll find

i0, 1 ≤ i0 ≤ n such that |x1i0 − x2i0 | ≥
9√
n
· ω−1

i0
(ρν−m0−1). So, in any case

|x1 − x2|+
√
t1 − t2 ≥ 9√

n
· ω−1

i (ρν−m0−1) +

+

√
b

8
ρν−m0−1 ≥ c10(γ, n)ω

−1
i (ρν−m0−1). (44)

Applying now successively Theorem 2 to the function u(x, t) in cylinders c(i)
and c(i+ 1),i = 0, 1, . . . ,m0 − 1, we obtain

osc
C(0)

u(x, t) ≥
(
1 +

η

2

)m0

· osc
C(m0)

u(x, t), i.e.

osc
C(m0)

u(x, t) ≤ 1(
1 + η

2

)m0
· osc
C(0)

u(x, t) ≤

≤
1 + η

2(
1 + η

2

)m0+1 · osc
D
u(x, t) ≤

2
(
1 + η

2

)(
1 + η

2

)m0+1 · ∥u∥C(D).
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Thus, taking into account (43), we conclude that∣∣u(x1, t1)− u(x2, t2)
∣∣ ≤ c11(γ, n)(

1 + η
2

)m0+1 · ∥u∥C(D). (45)

Let us denote p = 1+ η
2 , then pm0+1 = νlogν pm0+1

= ν(m0+1) logν p = ν(m0+1)λ,
where λ = logν p. Taking into account (44), we obtain

p−(m0+1) = ν−(m0+1)λ =

[
c10 · ω−1

i (ρ · ν−m0−1)
]λ

ν(m0+1)λ ·
[
c10 · ω−1

i (ρν−m0−1)
]λ ≤

≤

[
|x1 − x2|+

√
t1 − t2

]λ
[
c2.2 · νm0+1 · ω−1

i (ρν−m0−1)
]λ .

Using the latter estimate in (45), we arrive at the inequality

∣∣u(x1, t1)− u(x2, t2)
∣∣ ≤ c11 ·

[
|x1 − x2|+

√
|t1 − t2|

]λ
· ∥u∥C(D)[

c10 · νm0+1 · ω−1
i (ρν−m0−1)

]λ . (46)

Let alternative 2. now take place. Then either x2 /∈ Ex1

ρ (9), either t1 − t2 ≥
bρ2

8 . Proceeding in the same way as in deriving equation (44), we obtain that in
any case

|x1 − x2|+
√
t1 − t2 ≥ c12(γ, n) · ω−1

i (ρ). (47)

Therefore, taking into account (47), we have∣∣u(x1, t1)− u(x2, t2)
∣∣ ≤ 2∥u∥C(D) ≤

≤ 2(|x1 − x2|+
√
t1 − t2)λ

(c12 · ω−1
i (ρ) )λ

· ∥u∥C(D). (48)

From (46) an (48) we conclude

|u(x1, t1)− u(x2, t2)|
(|x1 − x2|+

√
t1 − t2)λ

≤ c13 · ∥u∥C(D), (49)

where c13 = max

{
c11

[c10·νm0+1·ω−1
i (ρν−m0−1)]

λ ,
2

[c12·ω−1
i (ρ) ]

λ

}
. Now it is enough to

consider the arbitrariness of points (x1, t1) and (x2, t2) from Dρ, and from (49)
follows the required estimate (42) with c9 = c13 + 1.

◀
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