

A Theorem on the Oscillation of Solutions to Nonuniformly Degenerate Second-Order Elliptic-Parabolic Equations

N.R. Amanova, A.I. Ismailov, R.A. Amanov*, T.R. Muradov

Abstract. A class of second-order elliptic-parabolic equations of non-divergence structure with nonuniform power degeneration is considered in the paper. A theorem on the oscillation of solutions of these equations, as well as an interior a priori estimate of the Hölder norm, is proved.

Key Words and Phrases: nonuniformly degenerate, oscillation solutions, elliptic-parabolic equation

2010 Mathematics Subject Classifications: 35K65, 35J70

Let E_n and R_{n+1} be Euclidean spaces of points $x = (x_1, \dots, x_n)$, $n \geq 1$ and $(x, t) = (x_1, \dots, x_n, t)$, respectively, $\Omega \subset E_n$ be a bounded domain with the boundary $\partial\Omega$ of class C^2 , $Q_T = \Omega \times (-T, 0)$ be a cylinder of the given height $T > 0$, $\partial Q_T = \partial\Omega \times [-T, 0]$ be a lateral surface of the cylinder Q_T and $\Gamma(Q_T) = \{(x, t) | x \in \Omega, t = -T\} \cup (\partial\Omega \times [-T, 0])$ is a parabolic boundary of Q_T . In Q_T consider an elliptic-parabolic equation

$$Lu = \sum_{i,j=1}^n a_{ij}(x, t)u_{ij} + \varphi(0 - t)u_{tt} - u_t = 0. \quad (1)$$

Here, $\|a_{ij}(x, t)\|$ is a real symmetric matrix, moreover for all $(x, t) \in Q_T$

$$\inf_{Q_T} \sum_{i=1}^n \frac{a_{ii}(x, t)}{\lambda_i(x, t)} = \gamma, \quad (2)$$

$$\sigma \equiv \sup_{Q_T} \left[\sum_{i,j=1}^n \frac{a_{ij}^2(x, t)}{\lambda_i(x, t)\lambda_j(x, t)} \right] \left/ \left(\sum_{i=1}^n \frac{a_{ii}(x, t)}{\lambda_i(x, t)} \right)^2 \right] - \frac{1}{n - e^2} < 0, \quad (3)$$

*Corresponding author.

$$\begin{aligned}\varphi(z) &\in C^1[-T, 0], \varphi(z) \geq 0, \varphi'(z) \geq 0, \\ \varphi(0) &= 0, \varphi'(0) = 0, \varphi(z) \geq \beta_1 z \cdot \varphi'(z), \beta_1 > 0 - \text{is a constant.}\end{aligned}\quad (4)$$

Here $\gamma \in (0, 1]$ is a constant, $u = u(x, t)$, $u_i = \frac{\partial u}{\partial x_i}$, $u_{ij} = \frac{\partial^2 u}{\partial x_i \partial x_j}$, $i, j = 1, \dots, n$, $u_t = \frac{\partial u}{\partial t}$, $u_{tt} = \frac{\partial^2 u}{\partial t^2}$, $e = \inf_{Q_T} \sum_{i=1}^n \frac{a_{ii}(x, t)}{\lambda_i(x, t)} \left/ \sup_{Q_T} \sum_{i=1}^n \frac{a_{ii}(x, t)}{\lambda_i(x, t)} \right.$, $\lambda_i(x, t) = \left[\frac{\omega_i^{-1}(\rho(x) + \sqrt{|t|})}{\rho(x) + \sqrt{|t|}} \right]^2$, $i = 1, \dots, n$, $\rho(x) = \sum_{i=1}^n \omega_i(|x_i|)$. At that $\omega_i(z)$ are strongly monotonically increasing functions for $z \in [0, \text{diam } Q_T]$, $\omega_i^{-1}(z)$ are the function inverse to $\omega_i(z)$, besides for $i = 1, \dots, n$ and sufficiently small z

$$\alpha_1 \cdot \omega_i(Z) \leq \omega_i(\eta \cdot z) \leq \alpha_2 \cdot \omega_i(Z), \quad (5)$$

$$\left(\frac{\omega_i^{-1}(z)}{z} \right)^{q-1} \cdot \int_0^{\omega_i^{-1}(z)} \left(\frac{\omega_i(\tau)}{\tau} \right)^q d\tau \leq A \cdot z, \quad (6)$$

where $\alpha_1 > 1$, $\alpha_2 > 1$, $\eta > 0$, $A > 0$ and $q > n$ are some constants.

The aim of the paper is to prove an inner a priori estimate of Hölders norm of solutions of the equations (1). Note that the analogous result for second order parabolic and elliptic equations of non-divergent structure has been obtained in papers [1, 3, 4, 10, 11, 12, 14, 17]. Note that the analogous result for uniform parabolic equations of divergent structure was obtained in [2, 15, 16]. A more complete review of results on this theme one can find in [17, 5, 6, 7, 8, 9, 13].

First, we agree on some notation and definitions. We shall denote by $E_R^{x^0}(k)$ the ellipsoid $\left\{ x : \sum_{i=1}^n \frac{(x_i - x_i^0)^2}{(\omega_i^{-1}(R))^2} < k^2 \right\}$, $C_{R:k}^{t^1, t^2}(x^0)$ -a cylinder $E_R^{x^0}(k) \times (t^1, t^2)$. Here $R > 0$, $k > 0$, $t^1 < t^2$, $x^0 \in E_n$. The function $u(x, t) \in C^{2,2}(Q_T)$ is called L -subelliptic-parabolic in Q_T , if $Lu(x, t) \geq 0$ for $(x, t) \in Q_T$. A function $u(x, t)$ is called L -super elliptic-parabolic in Q_T , if $-u(x, t)$ L -subelliptic-parabolic in Q_T .

Let $C^1 = C_{R:17}^{-\frac{9bR^2}{8}, 0}(0)$, $C^2 = C_{R:1}^{-\frac{bR^2}{16}, 0}(0)$, $C^3 = C^1 \setminus C^2$, where the constant $b \in (0, 1)$ will be chosen later. For $S > 0$ and $\beta > 0$ introduce the function

$$G_R^{S, \beta}(x, t) = \begin{cases} t^{-S} \cdot \exp \left[-\frac{1}{4\beta t} \sum_{i=1}^n \frac{x_i^2}{(\omega_i^{-1}(R))^2} \right], & t > 0, \\ 0 & t \leq 0. \end{cases}$$

The measure μ , determined in B -set $E \subset C^3$ is called (s, β, R) -admissible, if $\int_E G_R^{S, \beta}(x - y, t - \tau) d\mu(\mu, \tau) \leq 1$ for $(x, t) \notin E$. The number $P_R^{s, \beta}(E) = \sup \mu(E)$,

where the least upper bound is taken on all (s, β, R) admissible measures, is called an elliptic-parabolic s, β, R -capacity of the set E . The record $C(\cdots)$ means that a positive constant C depends only on the content of parenthesis.

Lemma 1. *If the conditions (2)-(6) are fulfilled with respect to the coefficients of the operator L , then there exist constants $S(\gamma, n, b)$, $\beta(\gamma, n, b)$ and $R_0(\gamma, n, b)$ such that for $R \leq R_0$, $(y, \tau) \in C^3$*

$$L_{(x,t)} G_R^{s,\beta}(x - y, t - \tau) \geq 0, \quad (x, t) \in C^3 \setminus \{(y, \tau)\}. \quad (7)$$

Proof. We have for $t > \tau$ allowing for the conditions (2)-(6). For simplicity, we will denote the function $G_R^{s,\beta}(x, t)$ by $G(x, t)$. We have

$$\begin{aligned} J &= \frac{LG(x - y, t - \tau)}{G(x - y, t - \tau)} \cdot (t - \tau) = \\ &= \frac{1}{4\beta^2(t - \tau)} \cdot \sum_{i,j=1}^n a_{ij}(x, t) \cdot \frac{(x_i - y_i)(x_j - y_j)}{(\omega_i^{-1}(R))^2 \cdot (\omega_j^{-1}(R))^2} - \\ &\quad - \frac{1}{2\beta} \cdot \sum_{i=1}^n \frac{a_{ii}(x, t)}{(\omega_i^{-1}(R))^2} + S - \frac{1}{4\beta(t - \tau)} \sum_{i=1}^n \frac{(x_i - y_i)^2}{(\omega_i^{-1}(R))^2} - \\ &\quad - \varphi(0 - t) \cdot \frac{S(S + 1)}{t - \tau} - \frac{(S + 1) \cdot \varphi(0 - t)}{2\beta(t - \tau)^2} \cdot \sum_{i=1}^n \frac{(x_i - y_i)^2}{(\omega_i^{-1}(R))^2} + \\ &\quad + \frac{\varphi(0 - t)}{16\beta^2 \cdot (t - \tau)^3} \cdot \left[\sum_{i=1}^n \frac{(x_i - y_i)^2}{(\omega_i^{-1}(R))^2} \right]^2 \geq \frac{1}{4\beta^2(t - \tau)} \times \\ &\quad \times \left(\sum_{i,j=1}^n \frac{a_{ij}^2(x, t)}{\lambda_i(x, t) \cdot \lambda_j(x, t)} \right)^{1/2} \times \\ &\quad \times \left(\sum_{i,j=1}^n \lambda_i(x, t) \lambda_j(x, t) \cdot \frac{(x_i - y_i)^2 \cdot (x_j - y_j)^2}{(\omega_i^{-1}(R))^4 \cdot (\omega_j^{-1}(R))^4} \right)^{1/2} - \\ &\quad - \frac{1}{2\beta} \cdot \left(\sum_{i=1}^n \frac{a_{ii}^2(x, t)}{\lambda_i^2(x, t)} \right)^{1/2} \cdot \left(\sum_{i=1}^n \lambda_i^2(x, t) \cdot \frac{1}{(\omega_i^{-1}(R))^4} \right)^{1/2} + \\ &\quad + S - \frac{1}{4\beta(t - \tau)} \cdot \sum_{i=1}^n \frac{(x_i - y_i)^2}{(\omega_i^{-1}(R))^2} + \\ &\quad + \frac{(s + 1)\beta_1 \cdot (0 - t) \cdot \varphi'(0 - t)}{2\beta \cdot (t - \tau)^2} \cdot \sum_{i=1}^n \frac{(x_i - y_i)^2}{(\omega_i^{-1}(R))^2} \geq \end{aligned}$$

$$\begin{aligned}
&\geq \frac{1}{4\beta^2(t-\tau)} \cdot \sum_{i=1}^n \frac{a_{ii}(x,t)}{\lambda_i(x,t)} \cdot \sum_{i=1}^n \lambda_i(x,t) \cdot \frac{(x_i - y_i)^2}{(\omega_i^{-1}(R))^4} - \\
&\quad - \frac{1}{2\beta} \cdot \sum_{i=1}^n \frac{a_{ii}(x,t)}{\lambda_i(x,t)} \cdot \sum_{i=1}^n \frac{\lambda_i(x,t)}{(\omega_i^{-1}(R))^2} + \\
&\quad + s - \frac{1}{4\beta(t-\tau)} \cdot \sum_{i=1}^n \frac{(x_i - y_i)^2}{(\omega_i^{-1}(R))^2},
\end{aligned} \tag{8}$$

on the other hand for $(x,t) \in C^3$, $|x_i| \leq 17 \cdot \omega_i^{-1}(R)$, $i = 1, \dots, n$, $\omega_i(|x_i|) \leq \omega_i(17\omega_i^{-1}(R)) \leq \alpha_2 \cdot R$, $\rho(x) = \sum_{i=1}^n \omega_i(|x_i|) \leq n\alpha_2 \cdot R$, $\sqrt{|t|} \leq \sqrt{\frac{9b}{8}} \cdot R \leq 2R$

therefore

$$\rho(x) + \sqrt{|t|} \leq (n \cdot \alpha_2 + 2)R. \tag{9}$$

Analogously, if $(x,t) \in C^3$, then either $\sum_{i=1}^n \frac{x_i^2}{(\omega_i^{-1}(R))^2} \geq 1$ or $|t| \geq \frac{bR^2}{16}$. In the first case there will be found such i_0 , $1 \leq i_0 \leq n$ that $|x_{i_0}| \geq \frac{1}{\sqrt{n}}\omega_{i_0}^{-1}(R)$ or $|t| \geq \frac{\sqrt{b}}{4}R$. We conclude that

$$c_1(n,b) \cdot \left(\frac{\omega_i^{-1}(R)}{R} \right)^2 \leq \lambda_i(x,t) \leq c_2(n,b) \cdot \left(\frac{\omega_i^{-1}(R)}{R} \right)^2, \quad i = 1, \dots, n. \tag{10}$$

Allowing for (10) in (8) we get

$$\begin{aligned}
J &\geq \frac{\gamma}{4\beta^2(t-\tau)} \cdot \frac{c_1}{R^2} \cdot \sum_{i=1}^n \frac{(x_i - y_i)^2}{(\omega_i^{-1}(R))^2} - \\
&\quad - \frac{n}{\gamma \cdot 2\beta} \cdot \frac{c_2}{R^2} + S - \frac{1}{4\beta(t-\tau)} \cdot \sum_{i=1}^n \frac{(x_i - y_i)^2}{(\omega_i^{-1}(R))^2} \geq \\
&\geq \frac{1}{4\beta(t-\tau)} \cdot \left(\frac{\gamma \cdot c_1}{\beta} - 1 \right) \cdot \sum_{i=1}^n \frac{(x_i - y_i)^2}{(\omega_i^{-1}(R))^2} + S - \frac{nc_2}{2\gamma\beta}.
\end{aligned} \tag{11}$$

Now it suffices assume

$$\beta = \gamma c_1, \quad s = \frac{nc_2}{2\gamma^2 \cdot c_1} \tag{12}$$

and the required inequality (7) follows from (11) - (12). ◀

In what follows, unless otherwise specified, we assume that the constants s and β are chosen in correspondence with the equalities (12). For brevity, we shall denote the function $G_R^{s,\beta}(x,t)$ and $P_R^{s,\beta}$ by G_R and P_R respectively.

Lemma 2. Let $B = C_{R:\rho}^{t^0 - \rho^2 R^2, t^0}(x^0)$, $\bar{B} \subset C^3$, $\rho > 0$, and $R \in (0, 1]$. Then

$$c_3(s, \beta) \cdot (\rho R)^{2s} \leq P_R(B) \leq c_4(s, \beta) \cdot (\rho R)^{2s}. \quad (13)$$

Proof. Let $W(x, t) = G(x, t; x^0, t^0 - \rho^2 R^2)$, $(x, t) \in \bar{B}$. If $t \leq t^0 - \rho^2 R^2$, then $W(x, t) = 0$. If $x \notin E_R^{x^0}(\rho)$, then

$$\begin{aligned} W(x, t) &= (t - t^0 + \rho^2 R^2)^{-s} \times \exp \left[-\frac{1}{4\beta(t - t^0 + \rho^2 R^2)} \cdot \sum_{i=1}^n \frac{(x_i - x_i^0)^2}{(\omega_i^{-1}(R))^2} \right] \leq \\ &\leq (t - t^0 + \rho^2 R^2)^{-s} \cdot \exp \left[-\frac{\rho^2}{4\beta(t - t^0 + \rho^2 R^2)} \right]. \end{aligned}$$

For $v > 0$ consider the function $Z(v) = v^{-s} \cdot \exp \left[-\frac{\rho^2}{4\beta v} \right]$, and find the value at which $z(v)$ attains its maximum. We find from the equation $Z'(v) = 0$, $v = \frac{\rho^2}{4\beta s}$. If $t = \frac{\rho^2}{4\beta s} + t^0 - \rho^2 R^2$, $x \notin E_R^{x^0}(\rho)$, then

$$W(x, t) = \left(\frac{\rho^2}{4\beta s} \right)^{-s} \cdot \exp(-s) = (4\beta s)^s \cdot (\rho R)^{-2s} \cdot R^{2s} \cdot \exp(-s). \quad (14)$$

Let $t \geq t^0$ and $\rho > 0$, $t - t^0 + \rho^2 R^2 \geq \rho^2 R^2$, then $(t - t^0 + \rho^2 R^2)^{-s} \leq (\rho R)^{-2s}$

$$\exp \left[-\frac{1}{4\beta(t - t^0 + \rho^2 R^2)} \cdot \sum_{i=1}^n \frac{(x_i - x_i^0)^2}{(\omega_i^{-1}(R))^2} \right] \leq 1,$$

and

$$W(x, t) \leq (\rho R)^{-2s}. \quad (15)$$

We conclude from (14) and (15) that

$$\sup_{R_{n+1} \setminus \bar{B}} W(x, t) \leq a \cdot (\rho R)^{-2s}, \quad (16)$$

where $a = \max = \{1; (4\beta s)^s \cdot e^{-s} \cdot R^{2s}\}$. Consider the measure $\mu(y, \tau)$ concentrated at the center of the lower foundation of a cylinder B with density $\frac{1}{a} \cdot (\rho R)^{2s}$. If $(x, t) \notin B$,

$$\begin{aligned} \int_B G(x, y; t, \tau) d\mu(y, \tau) &= \int_{\{x^0, t^0 - \rho^2 R^2\}} W(x, t) d\mu \{x^0, t^0 - \rho^2 R^2\} \leq \\ &\leq a \cdot (\rho R)^{-2s} \cdot \mu \{(x^0, t^0 - \rho^2 R^2)\} = 1. \end{aligned}$$

Consequently $P_R(B) = \sup \mu(B)$ and

$$P_R(B) \geq \mu(B) = \mu \{(x^0, t^0 - \rho^2 R^2)\} = \frac{1}{a} \cdot (\rho R)^{2s},$$

and the required estimate (13) is proved. \blacktriangleleft

Let $C^4 = C_{R:9}^{-\frac{bR^2}{8}, 0}(0)$, $(x^0, t^0) \in \Gamma(C^4)$, $C^5 = C^5(x^0, t^0) = C_{R:8}^{t^0 - bR^2, t^0}(x^0)$, $C^6 = C^6(x^0, t^0) = C_{R:1}^{t^0 - \frac{bR^2}{4}, t^0}(x^0)$, $C^7 = C^7(x^0, t^0) = C_{R:1}^{t^0 - bR^2, t^0 - \frac{bR^2}{2}}(x^0)$. Through $S(C)$ will denote the lateral surface of the cylinder C , and through $F(C)$ is its lowest base.

Choose and fix b so that the condition

$$b\beta s \leq \frac{49}{4} \quad (17)$$

be fulfilled.

Lemma 3. *Let a domain D be contained in the cylinder C^5 and have limit points on $\Gamma(C^5)$ and intersecting C^6 . Then let continuous in \overline{D} , and vanishing in $\Gamma = \Gamma(D) \cap C^5$ positive L -subelliptic-parabolic function $u(x, t)$ be determined in D . Then if as to the coefficients of the operator L the conditions (2)-(6) are fulfilled, there exist such $\eta_1(\gamma, n)$ that for $R \leq R_0$*

$$\sup_D \geq (1 + \eta_1 \cdot R^{-2s} \cdot P_R(E_R)) \sup_{D \cap C^6} u, \quad \text{where} \quad (18)$$

$$E_R = C^7 \setminus D.$$

Proof. We can consider that $P_R(E_R) > 0$. Fix an arbitrary $\varepsilon \in (0, P_R(E_R))$, and let the measure on E_R , be such that

$$U(x, t) = \int_{E_R} G(x - y, t - \tau) d\mu(y, \tau) \leq 1, \quad (x, t) \notin E_R, \quad (19)$$

$$\mu(E_R) > P_R(E_R) - \varepsilon. \quad (20)$$

Let (y, τ) be an arbitrary fixed point from E_R , $S(C^5)$ a lateral surface of C^5 . Now estimate the quantity $\sup_{(x,t) \in S(C^5)} G(x - y, t - \tau)$. To this end we fix $x \in \partial E_R^{x^0}(8)$

and find that value of $t > \tau$, at which the function $v(t) = G(x - y, t - \tau)$ attains its maximum. Setting $v'(t)$ to zero, we get

$$t - \tau = \frac{1}{4\beta s} \cdot \sum_{i=1}^n \frac{(x_i - y_i)^2}{(\omega_i^{-1}(R))^2}. \quad (21)$$

But by Minkowski inequality

$$\begin{aligned} \left(\sum_{i=1}^n \frac{(x_i - y_i)^2}{(\omega_i^{-1}(R))^2} \right)^{1/2} &\geq \left(\sum_{i=1}^n \frac{(x_i - x_i^0)^2}{(\omega_i^{-1}(R))^2} \right)^{1/2} - \\ &\quad - \left(\sum_{i=1}^n \frac{(y_i - x_i^0)^2}{(\omega_i^{-1}(R))^2} \right)^{1/2} \geq 8 - 1 = 7. \end{aligned}$$

Besides $t - \tau \geq \frac{49}{4\beta S}$, then from (17) $\left(bR^2 \leq \frac{49}{4\beta S} \leq t - \tau \right)$ and monotonicity of $v(t)$ up to the first maximum, we deduce

$$\sup_{\substack{(x,t) \in s(C^5) \\ (y,\tau) \in C^7}} G(x - y, t - \tau) \leq R^{-2S} \cdot b^S \cdot e^{-S}. \quad (22)$$

Now let's estimate $\inf_{\substack{(x,t) \in s(C^6) \\ (y,\tau) \in C^7}} G(x - y, t - \tau)$. Let $x \in \partial E_R^{x^0}(1)$, $y \in \partial E_R^{x^0}(1)$.

Then

$$\begin{aligned} \left(\sum_{i=1}^n \frac{(x_i - y_i)^2}{(\omega_i^{-1}(R))^2} \right)^{1/2} &\leq \left(\sum_{i=1}^n \frac{(x_i - x_i^0)^2}{(\omega_i^{-1}(R))^2} \right)^{1/2} + \\ &\quad + \left(\sum_{i=1}^n \frac{(y_i - x_i^0)^2}{(\omega_i^{-1}(R))^2} \right)^{1/2} \leq 1 + 1 \leq 2, \end{aligned}$$

$\frac{bR^2}{4} < t - \tau < bR^2$ and

$$\inf_{\substack{(x,t) \in s(C^6) \\ (y,\tau) \in C^7}} G(x - y, t - \tau) \geq R^{-2S} \cdot e^{-s} \cdot e^{-\frac{16s}{49}}. \quad (23)$$

Let introduce an auxiliary function

$$\begin{aligned} W(x, t) &= M \left[1 - U(x, t) + R^{-2s} \cdot (be)^{-s} \cdot P_R(E_R) \right] - u(x, t), \text{ where} \\ M &= \sup_D u. \end{aligned}$$

By Lemma 1, the function $W(x, t)$ - L -superelliptic-parabolic in D . According to the inequality (22) $W(x, t) \geq 0$ for $(x, t) \in \Gamma(D) \cap S(C^5)$. Moreover $W(x, t) \geq 0$ for $(x, t) \in \Gamma(D) \cap C^5$ by virtue of the inequality (19). Finally $W(x, t) \geq 0$ for $(x, t) \in F(C^5)$, $(x, t) \in \partial E_R$. Thus $W(x, t) \geq 0$ for $(x, t) \in \Gamma(D)$. By the maximum principle $W(x, t) \geq 0$ in D and in particular, given (23) and (20)

$$\sup_{D \cap C^6} u(x, t) \leq M \left[1 - \inf_{D \cap C^6} U(x, t) + R^{-2S} \cdot (be)^{-s} \cdot P_R(E_R) \right] \leq$$

$$\begin{aligned}
&\leq M \left[1 - (b)^{-S} \cdot \exp \left(-\frac{16S}{49} \right) \cdot (P_R(E_R) - \varepsilon) \cdot R^{-2S} + \right. \\
&\quad \left. + R^{-2S} \cdot (be)^{-S} \cdot P_R(E_R) \right] = \\
&= M \left[1 - b^{-S} \cdot \left(\exp \left(-\frac{16S}{49} \right) - \exp(-S) \right) \times \right. \\
&\quad \left. \times R^{-2S} \cdot P_R(E_R) + \varepsilon \cdot b^{-S} \cdot \exp \left(-\frac{16S}{49} \right) \cdot R^{-2S} \right]. \quad (24)
\end{aligned}$$

Now allowing for that arbitrariness of ε , we arrive at the required inequality (18) from (24). \blacktriangleleft

Corollary 1. *If the conditions of Lemma 3 are fulfilled, and E_R contains a cylinder $C_{R:\rho}^{t'-\rho^2 R^2, t'}(x')$, then $\sup_D u(x, t) \geq (1 + \eta_2(\gamma, n, \rho)) \cdot \sup_{D \cap C^6} u(x, t)$.*

Lemma 4. *Let the conditions of the previous Lemma 3 be fulfilled. Then there exists such $\delta(\gamma, n)$ that if $\text{mes}D \leq \delta \cdot \text{mes}C^5$ and $R \leq R_0$, then*

$$\begin{aligned}
&\sup_D u(x, t) \geq (1 + \eta_3) \cdot \sup_{D \cap C^6} u(x, t), \text{ where} \quad (25) \\
&\eta_3 = \frac{b}{2}.
\end{aligned}$$

Proof. Lets consider an auxiliary function

$$W_1(x, t) = M \left[1 + \frac{b}{64} \cdot \sum_{i=1}^n \frac{(x_i - x_i^0)^2}{(\omega_i^{-1}(R))^2} + \frac{t^0 - t}{R^2} - b \right] - u(x, t).$$

If is easy to see that

$$LW_1 \leq \left(\frac{bn \cdot c_2}{32\gamma} + 1 \right) \frac{M}{R^2} = \frac{M_5 \cdot c_5(\gamma, n, b)}{R^2}. \quad (26)$$

On the other hand $W_1(x, t) \Big|_{\Gamma(D)} \geq 0$. Let's consider the domain $D_1 \subset C^5$, $D \subset D_1$, $\tilde{C}_5 = C_{R:8.5}^{t^0-bR^2, t^0}(x^0)$, $D' = D_1 \cap \tilde{C}_5$, $\text{mes}D' \leq 2\text{mes}D$ and the function $\zeta(x, t)$ such that $\zeta(x, t) = 1$ for $(x, t) \in D$, $\zeta(x, t) = 0$ for $(x, t) \notin D'$.

Let $Z(x, t)$ be a solution of the following first boundary value problem

$$\begin{cases} LZ = -\frac{c_6}{R^2} \cdot \zeta(x, t), & (x, t) \in \tilde{C}^5; \\ Z \Big|_{\Gamma(\tilde{C}^5)} = 0. \end{cases} \quad (27)$$

By a maximum principle $Z(x, t) \geq 0$ for $(x, t) \in \tilde{C}^5$. Besides, by A.D. Alexandrov - N.V. Krylov inequality [11]

$$\begin{aligned} \sup_{\tilde{C}^5} Z(x, t) &\leq \frac{c_7(n, \gamma) \cdot \left[\operatorname{mes} E_R^{x^0}(8, 5) \right]^{1/(n+1)}}{\left(\inf_{\tilde{C}^5} \det(a_{ij}(x, t)) \right)^{1/(n+1)}} \cdot \left\| \frac{\zeta \cdot c_6}{R^2} \right\|_{L_{n+1}(\tilde{C}^5)} \leq \\ &\leq c_8(n, \gamma) \cdot (2b\delta)^{1/(n+1)}. \end{aligned} \quad (28)$$

Now if we put $W_2(x, t) = W_1(x, t) + M \cdot Z(x, t)$, then by virtue of (26) the function $W_2(x, t)$ is L -superelliptic-parabolic in D , $W_2(x, t) \Big|_{\Gamma(D)} \geq 0$ and by the maximum principle, allowing for (28)

$$\sup_{D \cap C^6} u(x, t) \leq M \left[1 - \frac{47b}{64} + c_8 \cdot (2b\delta)^{1/(n+1)} \right]. \quad (29)$$

Choose δ such that $c_8 \cdot (2b\delta)^{1/(n+1)} \leq \frac{15b}{64}$.

Then the inequality (25) follows from (29). ◀

Corollary 2. *Let the conditions of Corollary 1 be satisfied with respect to the region D and let in D define a positive L superelliptic-parabolic function $v(x, t)$ continuous in \overline{D} and equal to unity on $\Gamma(D) \cap C^5$. Then, if $R \leq R_0$, then*

$$\inf_{D \cap C^6} v(x, t) \geq \eta_2'' = \frac{\eta_2'}{1 + \eta_2'}, \quad (30)$$

where $\eta_2' = \frac{\eta_2}{2}$, $R_0 = R_0(\gamma, n)$.

Proof. Let

$$D' = \left\{ (x, t) \mid (x, t) \in D, v(x, t) < 1 \right\}.$$

Consider the function $u(x, t) = 1 - v(x, t)$ for $(x, t) \in D'$. Applying Corollary 1 to the function $u(x, t)$, we get

$$\begin{aligned} 1 - \inf_{D'} v &\geq (1 + \eta_2') \cdot \left(1 - \inf_{D' \cap C^6} v \right), \text{ i.e.} \\ \inf_{D' \cap C^6} v(x, t) &\geq \frac{\eta_2}{1 + \eta_2'}. \end{aligned} \quad (31)$$

Now it is enough to remark that the required estimate of (30) is also proved. ◀

Analogously it is proved

Corollary 3. *Let the conditions of Lemma 4 be satisfied with respect to the region D and in D defined a positive L -superelleptic-parabolic function $v(x, t)$, continuous in \overline{D} and turning to unity on $\Gamma(D) \cap C^5$. Then if $R \leq R_0$, then*

$$\inf_{D \cap C^6} v(x, t) \geq \eta_3'' = \frac{\eta_3'}{1 + \eta_3'}. \quad (32)$$

where $\eta_3' = \eta_3/2$ and $R_0 = R_0(\gamma, n)$.

Lemma 5. *Let a domain D be contained in the cylinder C^5 and have limit points on $\Gamma(C^5)$ and intersect C^6 . Then let continuous in \overline{D} , and turning to unity on $\Gamma(D) \cap C^5$ positive L -superelliptic-parabolic function $v(x, t)$ be determined in D . Then if $E_R = C^7 \setminus D$, $\text{mes}E_R \geq \sigma_1 \cdot \text{mes}C^7$, $\sigma_1 > 0$ and $R \leq R_0$, then*

$$\inf_{D \cap C^6} v(x, t) \geq \eta_4(\gamma, n, \sigma_1). \quad (33)$$

Proof. Consider a cylinder

$$C^7(\rho_0) = C_{R:1-\rho_0}^{t^0-b(1-\rho_0)R^2, t^0-\frac{b}{2}(1+\rho_0)R^2}(x^0), \quad \rho_0 \in \left(0, \frac{1}{4}\right].$$

We choose and fix $\rho_0 > 0$ such that $\text{mes}(C^7 \setminus C^7(\rho_0)) = \frac{\sigma_1}{2} \cdot \text{mes}C^7$.

It is clearly shown that ρ_0 depends only on n and σ_1 . Let us denote by E^0 the set of interior intersection points of $E_R \cap C^7(\rho_0)$. Then

$$\begin{aligned} \text{mes}E^0 &\geq \text{mes}E_R - \text{mes}(C^7 \setminus C^7(\rho_0)) \geq \\ &\geq \sigma_1 \cdot \text{mes}C^7 - \frac{\sigma_1}{2} \cdot \text{mes}C^7 = \frac{\sigma_1}{2} \cdot \text{mes}C^7. \end{aligned} \quad (34)$$

Let (x', t') be an arbitrary point from E^0 , and

$$\begin{aligned} C_\nu^5(x', t') &= C_{R:8\nu}^{t'-b(\nu R)^2, t'}(x'), C_\nu^6(x', t') = C_{R:\nu}^{t'-\frac{b}{4}(\nu R)^2, t'}(x'), \\ C_\nu^7(x', t') &= C_{R:\nu}^{t'-b(\nu R)^2, t'-\frac{b}{2}(\nu R)^2}(x') \end{aligned}$$

where $\nu \in (0, \rho_0]$ is such that $C_\nu^5(x', t') \in C^7$. We denote by $\nu(x', t')$ the exact upper edge of those $\nu \in (0, \rho_0]$ for which the following is true $\text{mes}(D \cap C_\nu^5(x', t')) \leq \delta \cdot \text{mes}C_\nu^5(x', t')$, where δ is the constant of Lemma 4.

There are two possible cases:

1. $\nu(x', t') = \rho_0$,
2. $\nu(x', t') < \rho_0$.

Let case 1. take place. Then according to Corollary 3 either $D \cap C_{\rho_0}^6(x', t') = \emptyset$, either, $\inf_{D \cap C_{\rho_0}^6(x', t')} v(x, t) \geq \eta_3''$.

Let $D' = \{(x, t) : (x, t) \in D, v(x, t) < \eta_3''\}$. From the above, it follows that $C^7 \setminus D'$ contains a cylinder $C_{\rho_0}^6(x', t')$. Applying to the function $\frac{v(x, t)}{\eta_3''}$ Corollary 3, we obtain $\inf_{D' \cap C^6(x', t')} \frac{v(x, t)}{\eta_3''} \geq \eta_2''$, and the constant η_2'' only depends on γ, n and σ_1 . Given that $v(x, t) \geq \eta_3'$ for $(x, t) \in D \setminus D'$, we conclude $\inf_{D \cap C^6} v(x, t) \geq \eta_2'' \cdot \eta_3''$.

Thus, if case 1. holds, then Lemma 5 is proved.

Let case 2. take place. If for some other point $(x'', t'') \in E^0$ the case 1. is satisfied, then again Lemma 5 is proved.

So it remains to consider the situation when for any point $(x, t) \in E^0$ there is a case 2. Let's cover E^0 with cylinders $C_{\nu(x, t)}^6(x, t) \in E^0$ and choose from this coverage the countable under covered $\{C_{\nu_k}^6(x^k, t^k)\}, k = 1, 2, \dots$, of finite multiplicity $q_1(n)$ so that at that

$$\text{mes} \left[\bigcup_{k=1}^{\infty} (D \cap C_{\nu_k}^5(x^k, t^k)) \right] \leq q_2(n) \text{mes} \left[\bigcup_{k=1}^{\infty} (D \cap C_{\nu_k}^6(x^k, t^k)) \right].$$

By Corollary 3 for every natural k , either $D \cap C_{\nu_k}^6(x^k, t^k) = \emptyset$, either

$$\inf_{D \cap C_{\nu_k}^6(x^k, t^k)} v(x, t) \geq \eta_3''.$$

Moreover, in consideration of the (34)

$$\begin{aligned} \text{mes} \left[\bigcup_{k=1}^{\infty} (D \cap C_{\nu_k}^6(x^k, t^k)) \right] &\geq \frac{1}{q_2} \text{mes} \left[\bigcup_{k=1}^{\infty} (D \cap C_{\nu_k}^5(x^k, t^k)) \right] \geq \\ &\geq \frac{1}{q_1 q_2} \cdot \sum_{k=1}^{\infty} \text{mes}(D \cap C_{\nu_k}^5(x^k, t^k)) = \\ &= \frac{\delta}{q_1 q_2} \cdot \sum_{k=1}^{\infty} \text{mes} C_{\nu_k}^5(x^k, t^k) \geq \\ &= \frac{\delta}{q_1 q_2} \cdot \sum_{k=1}^{\infty} \text{mes} C_{\nu_k}^6(x^k, t^k) \geq \\ &\geq \frac{\delta}{q_1 q_2} \cdot \text{mes} E^0 \geq \frac{\delta \sigma_1}{2 q_1 q_2} \cdot \text{mes} E^7 \end{aligned} \quad (35)$$

We denote $\frac{v(x, t)}{\eta_3''}$ by $v_1(x, t)$ and let $D_1 = \{(x, t) : (x, t) \in D, v_1(x, t) < 1\}$.

Then if $E_R^1 = C^7 \setminus D_1$, then according to the condition on E_R and (35)

$$\text{mes}E_R^1 \geq \sigma_1 \cdot \text{mes}C^7 + \frac{\delta\sigma_1}{2q_1q_2} \cdot \text{mes}C^7 = \sigma_1 \cdot \left(1 + \frac{\delta}{2q_1q_2}\right) \cdot \text{mes}C^7.$$

Therefore, the estimate (33) is proved. \blacktriangleleft

Let's apply to the function $v_1(x, t)$ the same procedure as for the function $v(x, t)$. Then we can prove either Lemma 5 or we obtain that if $D_2 = \{(x, t) : (x, t) \in D, \frac{v_1(x, t)}{\eta_3''} < 1\}$, $E_R^2 = C^7 \setminus D_2$, then

$$\text{mes}E_R^2 \geq \sigma_1 \cdot \left(1 + \frac{\delta}{q_1q_2}\right)^2 \cdot \text{mes}C^7.$$

Let's continue the process following. Clearly, in this chain, alternative 2. cannot repeat more than $l_0(n, \delta, \sigma_1)$ times, where l_0 is the smallest natural number for which

$$\sigma_1 \cdot \left(1 + \frac{\delta}{2q_1q_2}\right)^{l_0} > 1.$$

Corollary 4. *Let in the cylinder C^5 be arranged a domain D having limit points on $\Gamma(C^5)$ and intersecting C^6 . Let $u(x, t)$ be a positive L -subelliptic-parabolic function, continuous in \overline{D} , and vanishing on $\Gamma(D) \cap C^5$. Then if $E_R = C^7 \setminus D$, $\text{mes}E_R \geq \sigma_1 \cdot \text{mes}C^7$, $\sigma_1 > 0$, and $R \leq R_0$, then*

$$\sup_D u(x, t) \geq (1 + \eta_4) \cdot \sup_{D \cap C^6} u(x, t). \quad (36)$$

Proof. Let $v(x, t) = 1 - \frac{u(x, t)}{M}$, where $M = \sup_D u(x, t)$. Applying Lemma 5 to the function $v(x, t)$, we obtain that $1 - \frac{\sup_D u}{M} \geq \eta_4$. Hence the required estimate of (36) follows. Let $C^8 = C_{R:9}^{-bR^2, -\frac{3b}{4}R^2}(0)$. \blacktriangleleft

Lemma 6. *Let a domain D having limit points on $\Gamma(C^3)$ and intersecting C^4 be arranged on C^3 . Then let a continuous in \overline{D} and vanishing on $\Gamma(D) \cap C^3$ positive L -subelliptic-parabolic function $u(x, t)$ be determined on D . Then if the conditions (2)-(2) are fulfilled with respect to the coefficients of an operator L , and $H_R = C^8 \setminus D$, $\text{mes}H_R \geq \sigma \cdot \text{mes}C^8$, $\sigma > 0$, $R \leq R_0$, then*

$$\sup_D u(x, t) \geq (1 + \eta(\gamma, n, \sigma)) \cdot \sup_{D \cap \Gamma(C^4)} u(x, t). \quad (37)$$

Proof. Without loss of generality, we may assume that $\sup_{D \cap \Gamma(C^4)} u(x, t) = 1$.

Let $(x^*, t^*) \in D \cap \Gamma(C^4)$ be the point at which $u(x^*, t^*) = 1$. Suppose at the beginning that $(x^*, t^*) \in F(C^4)$, i.e., $(x^*, t^*) = (x^*, t^0)$, where $t^0 = -\frac{bR^2}{8}$. On $F(C^4)$, choose the minimum number of points $(x^1, t^0), \dots, (x^m, t^0)$ such that

1. $\overline{C}_8 \subset \bigcup_{i=1}^m C^7(x^i, t^0)$;
2. one of the points (x^i, t^0) coincides with the point (x^*, t^0) ;
3. for any $i, 1 \leq i \leq m$, will be found $j, 1 \leq j \leq m$ such that $x^j \in \partial E_{\frac{A^m}{A^m}}^{x_R^i}(1)$, where the constant $A(n) > 1$ will be selected later.

Clearly, the number m depends only on n . From the properties of the coating it follows, that for any $i_0, 1 \leq i_0 \leq m$, there is a chain $(x^{i_1}, t^0), \dots, (x^{i_k}, t^0)$ such that $(x^{i_k}, t^0) = (x^*, t^0), x^{i_{k+1}} \in \partial E_{\frac{A^m}{A^m}}^{x_R^{i_l}}(1)$, $l = 0, 1, \dots, k-1$. From the condition on H_R we conclude the existence of $i_0, 1 \leq i_0 \leq m$ such that

$$\text{mes}(H_R \cap C^7(x^{i_0}, t^0)) \geq \frac{\text{mes}H_R}{m} \geq \frac{\sigma}{m} \text{mes}C^8. \quad (38)$$

It is easy to see that $\text{mes}C^8 \geq \text{mes}C^7(x^{i_0}, t^0)$. Therefore, from the (38) it follows that

$$\text{mes}(H_R \cap C^7(x^{i_0}, t^0)) \geq \frac{\sigma}{m} \cdot \text{mes}C^7(x^{i_0}, t^0). \quad (39)$$

Let $\delta_1 = \frac{\eta_4}{2(1+\eta_4)}$, where the constant is η_4 of Lemma 5 is taken at $\sigma_1 = \frac{\sigma}{m}$. Let's assume that $\sup_{D \cap C^6(x^{i_0}, t^0)} u(x, t) \geq 1 - \delta_1$. Then according to Corollary 4 and (39)

$$\begin{aligned} \sup_D u(x, t) &\geq (1 + \eta_4) \sup_{D \cap C^6(x^{i_0}, t^0)} u(x, t) \geq (1 + \eta_4) \cdot (1 - \delta_1) = \\ &= 1 + \frac{\eta_4}{2} = (1 + \frac{\eta_4}{2}) \cdot \sup_{D \cap \Gamma(C^4)} u(x, t), \end{aligned}$$

and in this case the statement of Lemma 6 is proved.

Now, let's say $u(x, t) < 1 - \delta_1, (x, t) \in D \cap C^6(x^{i_0}, t^0)$.

Consider the function $v_1(x, t) = u(x, t) - 1 + \delta_1$. It is not difficult to see that the function $v_1(x, t)$ is L -subelliptic-parabolic in D , since $\delta_1 < 1$.

Let $D_1 = \{(x, t) : (x, t) \in D, v_1(x, t) > 0\}$. The assumption is that the cylinder $C^6(x^{i_0}, t^0)$ located in addition to D_1 .

For $(x', t') \in \Gamma(C^4)$ denote by $C_{R'}^i(x', t')$ cylinder $C^i(x', t')$, $i = 5, 6, 7$ highlighting that in it $R = R'$. Let's find one now $A > 1$, that $C_R^5(x', t') \subset C_{AR}^6(x', t')$. Clearly, it is enough for the inclusion to be fair that

$$bR^2 \leq b \cdot \frac{(AR)^2}{4}, \quad 8\omega_i^{-1}(R) \leq \omega_i^{-1}(AR), \quad i = 1, \dots, n.$$

The last inequalities are satisfied if we fix $A = \max\{2, \alpha_1\}$.

Now, let's say $(x^{i_1}, t^0), \dots, (x^{i_k}, t^0)$ above-mentioned chain. By construction $C_{\frac{R}{A}}^7(x^{i_1}, t^0) \setminus D_1$ contains a cylinder $C_{\frac{R}{A} \cdot \rho_1}^{t' - b(\frac{R}{A} \cdot \rho_1)^2, t'}(x')$, where ρ_1 depends only on n .

Let's assume that $\sigma_0 = \frac{\eta_2}{2(1+\eta_2)}$, where the constant η_2 of Corollary 1 is taken at $\rho = \rho_1$.

Let's assume that

$$\begin{aligned} \sup_{D_1 \cap C_{\frac{R}{A}}^6(x^{i_1}, t^0)} v_1(x, t) &\geq \delta_1(1 - \sigma_0), \text{ i.e.} \\ \sup_{D_1 \cap C_{\frac{R}{A}}^6(x^{i_1}, t^0)} u(x, t) &\geq 1 - \delta_1 \sigma_0. \end{aligned}$$

Using Corollary 1, we obtain

$$\begin{aligned} \sup_{D_1 \cap C_{\frac{R}{A}}^6(x^{i_1}, t^0)} v_1(x, t) &\geq (1 + \eta_2) \sup_{D_1 \cap C_{\frac{R}{A}}^6(x^{i_1}, t^0)} v_1(x, t) \geq \\ &\geq (1 + \eta_2) \cdot \delta_1 \cdot (1 - \sigma_0). \end{aligned}$$

Thus

$$\begin{aligned} \sup_D u(x, t) &\geq \sup_{D_1 \cap C_{\frac{R}{A}}^6(x^{i_1}, t^0)} u(x, t) \geq (1 - \delta_1) + \\ &+ (1 + \eta_2) \cdot \delta_1 \cdot (1 - \sigma_0) = 1 + \frac{\delta_1 \eta_2}{2} = \\ &= \left(1 + \frac{\delta_1 \eta_2}{2}\right) \cdot \sup_{D \cap \Gamma(C^4)} u(x, t), \end{aligned}$$

and in this case the statement of Lemma 6 is proved.

Let $u(x, t) < 1 - \delta_1 \sigma_0$, $(x, t) \in D_1 \cap C_{\frac{R}{A}}^6(x^{i_1}, t^0)$, then consider L -subelliptic-parabolic in D function $v_2(x, t) = u(x, t) - (1 - \delta_1 \sigma_0)$. Let $D_2 = \{(x, t) \mid (x, t) \in D, v_2 > 0\}$. The assumption is that the cylinder $C_{\frac{R}{A}}^6(x^{i_1}, t^0)$ is located in addition to D_2 . If now

$$\sup_{D_1 \cap C_{\frac{R}{A^2}}^6(x^{i_2}, t^0)} v_2(x, t) \geq \delta_1 \sigma_0 (1 - \sigma_0), \text{ i.e.}$$

$$\sup_{D_1 \cap C_{\frac{R}{A^2}}^6(x^{i_2}, t^0)} u(x, t) \geq 1 - \delta_1 \sigma_0^2,$$

then, applying Corollary 1, we obtain

$$\begin{aligned} \sup_D u(x, t) &\geq \sup_{D \cap C_{\frac{R}{A^2}}^6(x^{i_2}, t^0)} u(x, t) \geq 1 - \delta_1 \sigma_0 + \\ &+ (1 + \eta_2) \delta_1 \sigma_0 (1 - \sigma_0) = 1 + \frac{\delta_1 \sigma_0 \eta_2}{2} = \\ &= \left(1 + \frac{\delta_1 \sigma_0 \eta_2}{2}\right) \cdot \sup_{D \cap \Gamma(C^4)} u(x, t), \end{aligned}$$

and in this case the statement of Lemma 6 is proved.

If, however $u(x, t) < 1 - \delta_1 \sigma_0^2$, $(x, t) \in D \cap C_{\frac{R}{A^2}}^6(x^{i_2}, t^0)$, then we will continue the process as follows. No later than the k -th step, we prove Lemma 6, since $u(x^{i_k}, t^0) = u(x^*, t^0) = 1$. So Lemma 6 is proved if $(x^*, t^*) \in \overline{F}(C^4)$.

Now, let's say $(x^*, t^*) \in S(C^4)$ and $t^* > t^0$. Clearly $x^* \in \partial E_R^0(9)$. From the above considerations it follows that either Lemma 6 is proved, either $u(x, t) < 1 - \delta_1 \sigma_0^m$ for $(x, t) \in D \cap C_{\frac{R}{A^m}}^6(x^*, t^0)$.

Let's choose on the segment I , connecting the points (x^*, t^0) and (x^*, t^*) , minimum number of points $(x^*, t^1), \dots, (x^*, t^p)$ so that

4. $I \subset \bigcup_{i=1}^p \overline{C}_{\frac{R}{A^m}}^6(x^*, t^i); t^p = t^*$;
5. at the intersection of $\overline{C}_{\frac{R}{A^m}}^6(x^*, t^i) \cap \overline{C}_{\frac{R}{A^m}}^6(x^*, t^{i+1})$ cylinder is contained $C_{\frac{R}{A^m}}^7(x^*, t^{i+1}), i = 0, 1, \dots, p-1$.

Clearly, p depends only on n . Consider the function $W_1(x, t) = u(x, t) - 1 + \delta_1 \cdot \sigma_2^m$, where $\sigma_2 = \min \left\{ \sigma_0, \frac{\bar{\eta}_2}{2(1+\bar{\eta}_2)} \right\}$, $\bar{\eta}_2$ -constant η_2 of Corollary 1, taken at $\rho = A^{-1}$.

Let $D^1 = \left\{ (x, t) \mid (x, t) \in D, W_1(x, t) > 0 \right\}$. By assumption, the cylinder $C_{\frac{R}{A^m}}^6(x^*, t^0)$ is located in the supplement of D^1 . If

$$\begin{aligned} \sup_{D^1 \cap C_{\frac{R}{A^m}}^6(x^*, t^1)} W_1(x, t) &\geq \delta_1 \cdot \sigma_2^m \cdot (1 - \sigma_2), \text{ i.e.} \\ \sup_{D^1 \cap C_{\frac{R}{A^m}}^6(x^*, t^1)} u(x, t) &\geq 1 - \delta_1 \cdot \sigma_2^{m+1}, \end{aligned}$$

then applying Corollary 1, we obtain

$$\sup_{D^1 \cap C_{\frac{R}{A^{m-1}}}^6(x^*, t^1)} W_1(x, t) \geq (1 + \bar{\eta}_2) \cdot \delta_1 \cdot \sigma_2^m \cdot (1 - \sigma_2).$$

Thus

$$\begin{aligned} \sup_D u(x, t) &\geq \sup_{D^1 \cap C_{\frac{R}{A^{m-1}}}^6(x^*, t^1)} u(x, t) \geq 1 - \delta_1 \cdot \sigma_2^m + \\ &+ (1 + \bar{\eta}_2) \cdot \delta_1 \cdot \sigma_2^m \cdot (1 - \sigma_2) \geq 1 + \frac{\delta_1 \sigma_2^m \cdot \bar{\eta}_2}{2} = \\ &= \left(1 + \frac{\delta_1 \sigma_2^m \cdot \bar{\eta}_2}{2}\right) \sup_{D \cap \Gamma(C^4)} u(x, t), \end{aligned}$$

and in this case the statement of Lemma 6 is proved. If $u(x, t) < 1 - \delta_1 \sigma_2^{m+1}$, $(x, t) \in D^1 \cap C_{\frac{R}{A^m}}^6(x^*, t^1)$, then we continue the process as follows. At the latest p -step, we prove Lemma 6, since $u(x^*, t^p) = u(x^*, t^*) = 1$.

The estimate (37) is completely proved. \blacktriangleleft

Theorem 1. *Let a domain D have limit points on $\Gamma(C^3)$ and intersect C^4 be arranged on C^3 . Then let a continuous in \overline{D} and vanishing on $\Gamma(D) \cap C^3$ positive L -subelliptic-parabolic function $u(x, t)$ be determined on D . Then if $\text{mes}H_R \geq \sigma \cdot \text{mes}C^8$, $\sigma > 0$, and $R \leq R_0$, then $\sup_D u(x, t) \geq (1 + \eta) \cdot \sup_{D \cap C^4} u(x, t)$.*

We denote by $C_\lambda(D)$, $0 < \lambda < 1$ the Banach space of functions $u(x, t)$ defined on D , with finite norm

$$\|u\|_{C_\lambda(D)} = \sup_D |u| + \sup_{\substack{(x, t), (y, \tau) \in D \\ (x, t) \neq (y, \tau)}} \frac{|u(x, t) - u(y, \tau)|}{(|x - y| + \sqrt{|t - \tau|})^\lambda}.$$

Let's $\text{osc}u(x, t) = \sup_{Q_T} u(x, t) - \inf_{Q_T} u(x, t)$, $\rho > 0$, $C_\rho(x, t) = C_{\rho:9}^{t - \frac{bR^2}{8}, t}(x)$, $\overline{C^1} \subset D$, $D^\rho = \{(x, t) | (x, t) \in D, C_\rho(x, t) \subset D\}$.

Theorem 2. *Let in domain $D \subset R_{n+1}$ a solution $u(x, t)$ of the equation (1) be determined, moreover as to the coefficients of the operator L , the conditions (2)-(4) be fulfilled, $n \geq 1$ and $(0, 0) \in D$. Then if $R \leq R_0$ is such that $\overline{C^1} \subset D$. Then*

$$\text{osc}u(x, t) \geq \left(1 + \frac{\eta}{2}\right) \text{osc}u(x, t), \quad (40)$$

where η is the constant of Theorem 1 at $\sigma = \frac{1}{2}$.

Proof. In the proof suggested below, only Theorem 1 will be used. In this plan, if $M_1 = \sup_{C^1} u(x, t)$, $m_1 = \inf_{C^1} u(x, t)$, $M_2 = \sup_{C^4} u(x, t)$, $m_2 = \inf_{C^4} u(x, t)$ and

the inequality of the form (40) is valid for the function $v(x, t) = u(x, t) - \frac{M_2 + m_2}{2}$, then it is fulfilled for the function $u(x, t)$. But

$$\sup_{C^4} v(x, t) = \sup_{C^4} u - \frac{M_2 + m_2}{2} = M_2 - \frac{M_2 + m_2}{2} = \frac{M_2 - m_2}{2},$$

$$\inf_{C^4} v(x, t) = \inf_{C^4} u - \frac{M_2 + m_2}{2} = m_2 - \frac{M_2 + m_2}{2} = -\frac{M_2 - m_2}{2},$$

Furthermore, it can always be considered that $M_2 - m_2 > 0$, otherwise inequality (40) is obvious. Therefore, without loss of generality, we will suppose that the $M_2 = 1, m_2 = -1$, i.e. $\text{osc}_{C^4} u(x, t) = 2$. Let $D^+ = \{(x, t) | (x, t) \in C^1, u(x, t) \geq 0\}$, $D^- = \{(x, t) | (x, t) \in C^1, u(x, t) < 0\}$. Obviously, both of these sets are not empty.

At least one of the following inequalities is satisfied:

$$1. \text{ mes}(C^8 \setminus D^+) \geq \frac{1}{2} \text{mes}C^8,$$

$$2. \text{ mes}(C^8 \setminus D^-) \geq \frac{1}{2} \text{mes}C^8.$$

Let the case 1. take place for definiteness. We note that alternative 2. reduces to 1. multiplying the solution $u(x, t)$ by (-1) . Let's denote by D' that connected component of the set D^+ which contains the point $(x^0, t^0) \in \Gamma(C^4)$, where $u(x^0, t^0) = 1$. By applying Theorem 1 to the function $u(x, t)$ in D' with the constant $\sigma = \frac{1}{2}$, we obtain that

$$M_1 \geq (1 + \eta)M_2 = 1 + \eta, \text{ i.e.}$$

$$\begin{aligned} M_1 - m_1 &\geq 1 + \eta - m_1 \geq 1 + \eta - m_2 = 2 + \eta = \\ &= 2 \left(1 + \frac{\eta}{2}\right) = \left(1 + \frac{\eta}{2}\right) \cdot (M_2 - m_2), \end{aligned}$$

and the required estimate of (40) is proved. ◀

Corollary 5. *Let $C_R(x^0, t^0) = C_{R:9}^{t^0 - \frac{bR^2}{8}, t^0}(x^0)$, $\nu = \max \left\{ 3, \frac{\alpha_2}{\alpha_1} \right\}$. Then, if the conditions of Theorem 1 are satisfied and $\overline{C}_{\nu R}(0, 0) \in D$, then at $R \leq R_0$*

$$\underset{C_{\nu R}(0,0)}{\text{osc}} u(x, t) \geq \left(1 + \frac{\eta}{2}\right) \underset{C_R(0,0)}{\text{osc}} u(x, t). \quad (41)$$

For the proof it is enough to notice that at the chosen ν there is an inclusion of $C^1 \subset C_{\nu R}(0, 0)$.

Corollary 6. *An estimate of the form (41) is also valid in cylinders $C_{\nu R}(x^0, t^0)$ and $C_R(x^0, t^0)$ respectively, unless $R \leq R_0$ and $C_{\nu R}(x^0, t^0) \subset (D \cup \gamma(D))$. Here $\gamma(D)$ is the top cover of the region D .*

Theorem 3. *Let $u(x, t)$ of the equation (1) be defined in the region D , whose coefficients satisfy the conditions (2)-(4). Then for any $\rho > 0$ there exist constants $\lambda(\gamma, n)$, $C_9(\gamma, n, \rho)$ such that*

$$\|u\|_{C_\lambda(D^\rho)} \leq C_9 \cdot \|u\|_{C(D)}. \quad (42)$$

Proof. Let (x^1, t^1) and (x^2, t^2) be two arbitrary points from the D^ρ . For definiteness we will assume that $t^2 < t^1$. Let us fix an arbitrary small enough $\rho > 0$. Two cases are possible:

1. $(x^2, t^2) \in C_\rho(x^1, t^1)$,
2. $(x^2, t^2) \notin C_\rho(x^1, t^1)$.

Let us first consider case 1. Let for $m = 0, 1, 2, \dots$ $C(m)$ denote the cylinder $C_{\rho\nu^{-m}}(x^1, t^1)$. Clearly, there exists a non-negative integer m_0 for which

$$(x^2, t^2) \in C(m_0), \quad (x^2, t^2) \notin C(m_0 + 1). \quad (43)$$

It follows from (43) that either $x^2 \notin E_{\rho\nu^{-m_0-1}}^{x^1}(9)$, either $t^1 - t^2 \geq \frac{b\rho^2\nu^{-2m_0-2}}{8}$.

If $x^2 \notin E_{\rho\nu^{-m_0-1}}^{x^1}(9)$, then $\sum_{i=1}^n \frac{(x_i^1 - x_i^2)^2}{(\omega_i^{-1}(\rho\nu^{-m_0-1}))^2} \geq 81$. Thus there you'll find $i_0, 1 \leq i_0 \leq n$ such that $|x_{i_0}^1 - x_{i_0}^2| \geq \frac{9}{\sqrt{n}} \cdot \omega_{i_0}^{-1}(\rho\nu^{-m_0-1})$. So, in any case

$$\begin{aligned} |x_1 - x_2| + \sqrt{t^1 - t^2} &\geq \frac{9}{\sqrt{n}} \cdot \omega_{i_0}^{-1}(\rho\nu^{-m_0-1}) + \\ &+ \sqrt{\frac{b}{8}} \rho\nu^{-m_0-1} \geq c_{10}(\gamma, n) \omega_{i_0}^{-1}(\rho\nu^{-m_0-1}). \end{aligned} \quad (44)$$

Applying now successively Theorem 2 to the function $u(x, t)$ in cylinders $c(i)$ and $c(i+1), i = 0, 1, \dots, m_0 - 1$, we obtain

$$\begin{aligned} \underset{C(0)}{\text{osc}} u(x, t) &\geq \left(1 + \frac{\eta}{2}\right)^{m_0} \cdot \underset{C(m_0)}{\text{osc}} u(x, t), \text{ i.e.} \\ \underset{C(m_0)}{\text{osc}} u(x, t) &\leq \frac{1}{\left(1 + \frac{\eta}{2}\right)^{m_0}} \cdot \underset{C(0)}{\text{osc}} u(x, t) \leq \\ &\leq \frac{1 + \frac{\eta}{2}}{\left(1 + \frac{\eta}{2}\right)^{m_0+1}} \cdot \underset{D}{\text{osc}} u(x, t) \leq \frac{2 \left(1 + \frac{\eta}{2}\right)}{\left(1 + \frac{\eta}{2}\right)^{m_0+1}} \cdot \|u\|_{C(D)}. \end{aligned}$$

Thus, taking into account (43), we conclude that

$$|u(x^1, t^1) - u(x^2, t^2)| \leq \frac{c_{11}(\gamma, n)}{\left(1 + \frac{\eta}{2}\right)^{m_0+1}} \cdot \|u\|_{C(D)}. \quad (45)$$

Let us denote $p = 1 + \frac{\eta}{2}$, then $p^{m_0+1} = \nu^{\log_\nu p^{m_0+1}} = \nu^{(m_0+1)\log_\nu p} = \nu^{(m_0+1)\lambda}$, where $\lambda = \log_\nu p$. Taking into account (44), we obtain

$$\begin{aligned} p^{-(m_0+1)} &= \nu^{-(m_0+1)\lambda} = \frac{[c_{10} \cdot \omega_i^{-1}(\rho \cdot \nu^{-m_0-1})]^\lambda}{\nu^{(m_0+1)\lambda} \cdot [c_{10} \cdot \omega_i^{-1}(\rho \nu^{-m_0-1})]^\lambda} \leq \\ &\leq \frac{[|x^1 - x^2| + \sqrt{t^1 - t^2}]^\lambda}{[c_{2.2} \cdot \nu^{m_0+1} \cdot \omega_i^{-1}(\rho \nu^{-m_0-1})]^\lambda}. \end{aligned}$$

Using the latter estimate in (45), we arrive at the inequality

$$|u(x^1, t^1) - u(x^2, t^2)| \leq \frac{c_{11} \cdot [|x^1 - x^2| + \sqrt{|t^1 - t^2|}]^\lambda \cdot \|u\|_{C(D)}}{[c_{10} \cdot \nu^{m_0+1} \cdot \omega_i^{-1}(\rho \nu^{-m_0-1})]^\lambda}. \quad (46)$$

Let alternative 2. now take place. Then either $x^2 \notin E_\rho^{x^1}(9)$, either $t^1 - t^2 \geq \frac{b\rho^2}{8}$. Proceeding in the same way as in deriving equation (44), we obtain that in any case

$$|x^1 - x^2| + \sqrt{t^1 - t^2} \geq c_{12}(\gamma, n) \cdot \omega_i^{-1}(\rho). \quad (47)$$

Therefore, taking into account (47), we have

$$\begin{aligned} |u(x^1, t^1) - u(x^2, t^2)| &\leq 2\|u\|_{C(D)} \leq \\ &\leq \frac{2(|x^1 - x^2| + \sqrt{t^1 - t^2})^\lambda}{(c_{12} \cdot \omega_i^{-1}(\rho))^\lambda} \cdot \|u\|_{C(D)}. \end{aligned} \quad (48)$$

From (46) an (48) we conclude

$$\frac{|u(x^1, t^1) - u(x^2, t^2)|}{(|x^1 - x^2| + \sqrt{t^1 - t^2})^\lambda} \leq c_{13} \cdot \|u\|_{C(D)}, \quad (49)$$

where $c_{13} = \max \left\{ \frac{c_{11}}{[c_{10} \cdot \nu^{m_0+1} \cdot \omega_i^{-1}(\rho \nu^{-m_0-1})]^\lambda}, \frac{2}{[c_{12} \cdot \omega_i^{-1}(\rho)]^\lambda} \right\}$. Now it is enough to consider the arbitrariness of points (x^1, t^1) and (x^2, t^2) from D^ρ , and from (49) follows the required estimate (42) with $c_9 = c_{13} + 1$.

◀

References

- [1] Amanova, N.R. (2017). On strong solvability of the Dirichlet problem for a class of uniformly degenerate elliptic equations of second order. *Caspian Journal of Applied Mathematics, Ecology and Economics* **52** 3–25.
- [2] Amanova, N.R. (2023). Weak solvability of the first boundary value problem for non-uniformly and strongly degenerate second-order elliptic–parabolic equations in divergent form. *Transactions of NAS of Azerbaijan, Series of Physical-Technical and Mathematical Sciences, Mathematics* **43**(4), 54–64.
- [3] Amanova, N. R. and Amanov, R. A. (2025). Behavior near the boundary of the solutions of degenerate second-order elliptic–parabolic equations. *Journal of Contemporary Applied Mathematics* **9**(1), 1–9.
- [4] Amanova, N.R. (2024). Some properties of solutions to the first boundary value problem for second-order elliptic–parabolic equations with discontinuous coefficients. *Proceedings of IAM*, Baku, **13**(2), 220–247.
- [5] Amanov, R. A. and Ismailov, H. I. (2023). On equations of the form $\Delta u - \frac{\partial u}{\partial t} = f(x, t, u, Du)$. *Azerbaijan Journal of Mathematics* **13**(2), 137–158.
- [6] Amanova, N.R. (2025). On quasilinear parabolic equations of higher order. *Azerbaijan Journal of Mathematics* **15**(1), 191–209.
- [7] Amanov, R.A. and Amanova, N.R. (2025). On solvability of some quasilinear parabolic equations of higher order. *Azerbaijan Journal of Mathematics* **15**(2), 240–263.
- [8] Amanova, N.R. and Khalilov, V.S. (2024). On the criterion of strong solutions of higher-order quasilinear equations. *Uzbek Mathematical Journal* **68**(1), 11–18.
- [9] Amanov, R.S., Khalilov, V.S., and Amanova, N.V. (2025). Existence of strong solutions to semilinear elliptic systems of second order. *Kazakh Mathematical Journal* **25**(3), 39–59.
- [10] Glagoleva, R.L. (1968). A priori estimates of Hölder norms and Harnack inequalities for solutions of linear second-order parabolic equations with discontinuous coefficients. *Matematicheskiy Sbornik* **118**(2), 167–185.
- [11] Krylov, N.V. and Safonov, M.V. (1979). An estimate of the probability of diffusion processes hitting a set of positive measure. *Doklady Akademii Nauk SSSR* **245**(1), 18–20.

- [12] Krylov, N.V. and Safonov, M.V. (1980). Some properties of solutions of parabolic equations with measurable coefficients. *Izvestiya Akademii Nauk SSSR, Seriya Matematicheskaya* **44**(1), 161–175.
- [13] Khalouta, A., & Efendiev, R. F. (2025). New methodology for a system of nonlinear time-fractional partial differential equations based on the Khalouta-Caputo-Katugampola fractional derivative. *Trans. Natl. Acad. Sci. Azerb. Ser. Phys.-Tech. Math. Sci. Mathematics*, **45**(4), 105-122.
- [14] Ladyzhenskaya, O.A. and Ural'tseva, N. N. (1981). On estimates of Hölder constants for solutions of quasilinear parabolic equations in non-divergence form. *Uspekhi Matematicheskikh Nauk* **36**(4), 20–38.
- [15] Mamedov, I.T. (1983). A theorem on the oscillation of solutions of second-order parabolic equations with discontinuous coefficients. *Izvestiya AN AzSSR, Series of Physical-Technical and Mathematical Sciences* **3**, 10–19.
- [16] Mamedov, I.T. and Mushtagov, F.M. (1999). Harnack inequality for solutions of non-uniformly degenerate second-order parabolic equations. *Transactions of the Academy of Sciences of Azerbaijan, Series of Physical-Technical and Mathematical Sciences* **19**(1–2), 122–132.
- [17] Ladyzhenskaya, O.A., Solonnikov, V.A., and Ural'tseva, N.N. (1967). *Linear and Quasilinear Equations of Parabolic Type*. Nauka, Moscow, 736 pp.

Narmin R. Amanova
Baku State University, AZ 1148, Baku, Azerbaijan
E-mail:amanova.n.93@gmail.com

Arif I.Ismailov
Baku State University, Az1141, Baku, Azerbaijan
E-mail:ismayilov.arif58@mail.ru

Rabil A. Amanov
National Aviation Academy of Azerbaijan, AZ 1045, Baku, Azerbaijan
E-mail:rabil.amanov@naa.edu.az

Togrul R. Muradov
Institute of Mathematics and Mechanics, The Ministry of Science and Education, Baku, Azerbaijan
E-mail: togrulmuradov@gmail.com

Received 15 August 2025
Accepted 04 February 2026