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A Theorem on the Oscillation of Solutions to
Nonuniformly Degenerate Second-Order
Elliptic-Parabolic Equations

N.R. Amanova, A.l. Ismailov, R.A. Amanov*, T.R. Muradov

Abstract. A class of second-order elliptic—parabolic equations of non-divergence struc-
ture with nonuniform power degeneration is considered in the paper. A theorem on the
oscillation of solutions of these equations, as well as an interior a priori estimate of the
Holder norm, is proved.
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Let E, and R,4; be Euclidean spaces of points x = (z1,...,2,), n > 1
and (z,t) = (z1,...,x,,t),respectively, Q@ C E, be a bounded domain with the
boundary 99 of class C2, Qr = Q x (=T,0) be a cylinder of the given height
T >0, 0Qr = 9Q x [T, 0] be a lateral surface of the cylinder Q7 and I'(Qr) =
{(z,t)|x € Q,t = =T} U (002 x [-T,0]) is a parabolic boundary of Q7. In Qr
consider an elliptic-parabolic equation

n

Lu = Z aij(z, t)ui; + (0 — t)uy — up = 0. (1)
ij—1

Here, ||a;j(x,t)|| is a real symmetric matrix, moreover for all (z,t) € Qr

o= (T, t)
inf =, 2
Qr i1 /\Z (l’, t) 7 ( )

B n a?-(x,t) n aii(x,t) 2 .
J:Sng Z W/(;Az(x,t)> a2 < (3)

i,j=1
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p(z) € C'[-T,0], ¢(2) >0, ¢(z) > 0,
©(0) =0,4'(0) =0, p(z) > B12-¢'(2), 51 > 0 —is a constant. (4)
Here v € (0,1] is a constant, u = wu(x,t), u; = %’ uy = %@%7

L,ji=1,...,n, u = %1;, U = %tQ’ e = 1nfz a“”ﬂ)/supz a”(m iz, t) =

-1 2 n
[W] , 1 =1,...,n, p(x) = > wi(|x;|). At that w;(z) are strongly
p(x

i=1
monotonically increasing functions for z € [0, diamQr], w; '(z) are the function
inverse to w;(z), besides for i = 1,...,n and sufficiently small z
a1 - wi(Z) Swi(n - 2) < oz - wi(Z), (5)

w7 (2)

(w‘:@)q / <w’£7)>qdr§A-z, (6)
0

where a1 > 1, a9 > 1, n > 0, A > 0 and ¢ > n are some constants.

The aim of the paper is to prove an inner a priori estimate of Holders norm
of solutions of the equations (1). Note that the analogous result for second order
parabolic and elliptic equations of non-divergent structure has been obtained in
papers [1, 3, 4, 10, 11, 12, 14, 17]. Note that the analogous result for uniform
parabolic equations of divergent structure was obtained in [2, 15, 16]. A more
complete review of results on this theme one can find in [17, 5, 6, 7, 8, 9, 13].

First, we agree on some notation and definitions. We shall denote by E¥, (k)

n
the ellipsoid {x : 121 % < kQ}, C’gf (2%) -a cylinder E}”%O (k) x (t4,1?) .
Here R >0, k >0, t! <t? 2% € E, . The function u(z,t) € C*?(Qr) is called
L-subelliptic-parabolic in Qr, if Lu(x,t) > 0 for (z,t) € Q7. A function u(z,t) is
called L-super elliptic-parabolic in Qp, if -u(x,t) L-subelliptic-parabolic in Q7.

9bR2 _ bR2
Let Ct = Cp,? ’0(0), C? =CRr/° ’0( 0), C3 = C'\ C?, where the constant
b e (0,1) will be chosen later.For S > 0 and § > 0 introduce the function

1

n 2
t=5. =S |, t>0
Gy (x,t) = P W;MWP’>’
0 t<0.

The measure y, determined in B-set E C C? is called (s, 3, R)-admissible, if
gG%B(x —y,t —7)dp(p, 7) <1 for (z,t) ¢ E. The number PI‘;’B(E) = sup u(F),
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where the least upper bound is taken on all (s, 3, R) admissible measures, is called
an elliptic-parabolic s, 8, R-capacity of the set E. The record C(---) means that
a positive constant C' depends only on the content of parenthesis.

Lemma 1. If the conditions (2)-(6) are fulfilled with respect to the coefficients
of the operator L, then there exist constants S(v,n,b), B(y,n,b) and Ro(vy,n,b)
such that for R < Ry, (y,7) € C3

LanGy(x—y,t=7) 20, (2,1) € C*\{(y,7)}. (7)

Proof. We have for ¢t > 7 allowing for the conditions (2)-(6). For simplicity,
we will denote the function Gzﬁ(aj, t) by G(z,t. We have
LG(zx —y,t—1)

J = Gz —y,t—1) (-7 =

n

IS S o DN o et /) Cor et/ L
Sea 2 @) e o (R

i,j=1 (w; J
R O IS S N )
23 Z@;l(m )2 o 46(t—7);(w51(R))2
S(S+1)  (S+1)-p(0—1t) E”: (i — yi)?

—P 0= =~ T e (w; '(R))?

_I_
i=1

> 1 X

APt —T)

[\

R (zi — yi)?
B e

(s+1)B-(0-1) - (0—-1) ~ (i —v)
i 28 (t—1)2 ; (Wi (R))2 =
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" (s — )2
1 ( i yz) (8)

on the other hand for (z,t) € C3, |z;| < 17-w; Y (R), i = 1,...,n, wi(|lzi]) <

wi(17wi_1(R)) < s R, plx) = E_:lwz(]a:ZD < nag - R, /|t] < \/%b -R < 2R

therefore
p(x) + /|t < (n-as+ 2)R. (9)
Analogously, if (x,t) € C3, then either Z ﬁ > 1or |t| > %. In
w; H(R) or

n

r\sw

10

the first case there will be found such i, 1 < ip < n that |z;,| > f

t| > %R. We conclude that

-1

2 _
Cl(n7 b) ’ (sz()) < )‘Z(x7t) < CQ(nv b) : (%
Allowing for (10) in (8) we get
€1
> .
J oz 462( t —7) ' R? Z;

n Cg_l_
7 23 " R2 t—T ‘

1 v -1 -
“1Ba-1) ( B _1> -

Now it suffices assume

(( Z) SHS -2

ncy
B = e, Szm (12)
- (12).

and the required inequality (7) follows from (11)
<

In what follows, unless otherwise specified, we assume that the constants s
and [ are chosen in correspondence with the equalities (12). For brevity, we shall
denote the function G;ﬁ (x,t) and Pg’ﬂ by Gr and Pg respectively.
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0_ 2p240 N
Lemma 2. Let B = C;:pp B9, Bc €3, p>0, and R € (0,1]. Then

¢s(s,8) - (pR)** < Pr(B) < cu(s, ) - (oR)™". (13)

Proof. Let W(w,t) = G(z,t;2°,t° — p?R?), (z,t) € B. If t <t — p? R?, then
W(z,t) =0. If z ¢ E% (p), then

W(z,t) = (t tO+P2R2)_Sxexp[ 1 - (xi_xg)Q
) - - - _ 40 2p2) —1 =
AB(t =10+ p*R?) = (w; '(R))?
0 2 2 P2
< (t—t R7)™%. — .
<=+ R) eXp{ 45(t—t0+p2R2)]

2

For v > 0 consider the function Z(v) = v™*-exp [—4"7@} , and find the value at

which z(v) attains its maximum. We find from the equation Z’(v) =0, v = 4”—;.
2 0
Ift= {5+ t9— p?R?, z ¢ E% (p), then

2

W, t) = (;’B) cexp(—s) = (485)° - (pR) 2 - R -exp(—s).  (14)

Let t >t%and p > 0, t —t° + p?R? > p?R?, then (t —t" + p?R?)™° < (pR)™%

_ 1 Z(wz 2})? <1
TP -0+ 2R & (w (R T

i=1
and
W(a.t) < (pR)™>. (15)
We conclude from (14) and (15) that

sup W(z,1) <a-(pR)~, (16)
Rn+1\§

where a = max = {1;(48s)* - e~* - R**}. Consider the measure p(y,7) concen-
trated at the center of the lower foundation of a cylinder B with density -(pR).
If (z,t) ¢ B,

/G(fc,y;t,f) du(y,7) = / W(x,t)dp {a°,t° — p*R?} <
B {20,410~ p2 R}
<a-(pR)™* - pu{(=%t° - p’R*)} = 1.
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Consequently Pr(B) = sup u(B) and

PR(B) 2 u(B) = {(o,1° = PR} = = - (o),

and the required estimate (13) is proved.

<
_bR?
Let C* = Cpy "(0), (%1% € T(C*, & = @10 =
o_bR2 ,0
Cg:gbRQ’tO(xO),CG = 820,19 = Clt!m a ot (z0), C7 = CO7(20,10) =
10—bR2 10— b2
Cry, 2 (2°). Through S(C) will denote the lateral surface of the cylin-
der C, and through F(C) is its lowest base.
Choose and fix b so that the condition
4
bBs < Zg (17)

be fulfilled.

Lemma 3. Let a domain D be contained in the cylinder C° and have limit
points on T'(C®) and intersecting C®. Then let continuous in D, and vanishing
in T = T(D) N C5 positive L-subelliptic-parabolic function u(z,t) be determined
in D. Then if as to the coefficients of the operator L the conditions (2)-(6) are
fulfilled, there exist such ni(y,n) that for R < Ry)

sup > (1 +m - R7%. PR(ER)) sup u, where (18)
D DNC*
Er=C"\D.

Proof. We can consider that Pr(Eg) > 0. Fix an arbitrary ¢ € (0, Pr(ER)),
and let the measure on Eg, be such that

waz/au—w—ﬂwmﬂSL (2,1) ¢ En, (19)
Er

t(ER) > Pr(ER) — €. (20)

Let (y,7) be an arbitrary fixed point from Eg, S(C%) a lateral surface of C5.

Now estimate the quantity ~ sup G(x—y,t—7). To this end we fix z € 8Eﬁ0 (8)
(z,)€S(CP)

and find that value of ¢ > 7, at which the function v(t) = G(z — y,t — 7) attains

its maximum. Setting v'(¢) to zero, we get

n 2

_ 1 ¢ @i—w)
=7 = 15 2 “H(R))? (21)

i=1 (wz
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But by Minkowski inequality

")\ " (g — a2\
(;w;l(m)?) > \ X wme)

Besides t — 7 > %, then from (17) (bR2 < 49y 7_) and monotonicity
of v(t) up to the first maximum, we deduce
sup Gz —y,t—7) <R 2.p5.¢75, (22)

(w,t)€5(CD)
(y,m)ec?

Now let’s estimate  inf ; Gx—y,t—71). Let z € 8E§0(1), y € BE}‘”;(l).
(z,t)es(CY)
(y,m)ecT

Then

#<1€—7’<IJR2 and

16s
inf Gz—y,t—7)>R 2. e e . (23)
(z,t)es(CO)
(y,‘r)EC7

Let introduce an auxiliary function

W(z,t) =M [1-U(z,t) + R™% . (be)™* - Pr(ER)] — u(z,t), where
M = supu.
D

By Lemma 1, the function W (x, t) - L-superelliptic-parabolic in D. According
to the inequality (22) W (x,t) > 0 for (x,t) € T'(D)NS(C?). Moreover W (x,t) > 0
for (x,t) € T'(D) N C® by virtue of the inequality (19). Finally W (z,t) > 0 for
(x,t) € F(C?), (z,t)€ER. Thus W (z,t) > 0 for (z,t) € T'(D). By the maximum
principle W (z,t) > 0 in D and in particular, given (23) and (20)

sup u(x,t) < M |1— inf U(x,t)+ R (be)™ . Pr(ER)| <
DNC6 DNCs
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<M |1 @) exp (—fgs) (Pa(Er) ) RS +

+R_ZS . (be)_S . PR(ER)] =

i (e (199) o)

1
xR™25. Pr(ER) +¢-b - exp (—f;) : R_QS] . (24)

Now allowing for that arbitrariness of e, we arrive at the required inequality
(18) from (24).

<
Corollary 1. If the conditions of Lemma 8 are fulfilled, and Er contains a

cylinder Cz;pQRQ’tl (a'), then s%pu(m, t) > (14 n2(v,n,p)) - sugGU(:v, t).
Dn

Lemma 4. Let the conditions of the previous Lemma 3 be fulfilled. Then there
exists such 6(vy,n) that if mesD < & - mesC® and R < Ry, then

supu(z,t) > (14 n3) - sup u(z,t), where (25)
D DNCo
b
n3 = 3

If is easy to see that

bn - co M Ms-c5(vy,n,b)
L < 1) = ——"—7—7——"7-+>. 26
W1<327+>R2 R2 (26)

On the other hand Wl(x,t)‘F(D) > 0. Let’s consider the domain Dy C C®,
~ _ ~tP—bR2t9 . o ’ ~ / .
D C Dy, Cs =Chygs (z”), D" = D1 N Cs, mesD’ < 2mesD and the function
¢(x,t) such that {(x,t) =1 for (x,t) € D, {(x,t) =0 for (z,t) ¢ D’.
Let Z(x,t) be a solution of the following first boundary value problem
Ce ~
LZZ_?C(xat)a (l‘7t) 605;

Zl . =0
r(Cs)

(27)
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By a maximum principle Z(z,t) > 0 for (z,t) € C°. Besides, by A.D. Alexan-
drov - N.V.Krylov inequality [11]

1/(n+1)
cr(n,7) - [mesE;f(s, 5)} Cco
Sél;)pZ(:L’,t) < 1/(n+1) ) R2 I & -
<ipfdet(aij(:£,t))> n1 ()
C5
< es(n, ) - (2b6)"/ Y, (28)

Now if we put Wa(x,t) = Wi(x,t) + M - Z(x,t), then by virtue of (26) the
function Wy(z,t) is L-superelliptic-parabolic in D, Wy(z, t))F(D) > 0 and by the

maximum principle, allowing for (28)

47b
sup u(x,t) < M |1 — — +cg - (2b5)1/("+1)} . (29)
DN(C6 64

Choose § such that cg - (2b5)Y/("+1) < 150,
Then the inequality (25) follows from (29).

<

Corollary 2. Let the conditions of Corollary 1 be satisfied with respect to the
region D and let in D define a positive L superelliptic-parabolic function v (z,t)
continuous in D and equal to unity on T'(D) N C®. Then, if R < Ry, then

inf v(z,t) >n) = ,
Dmc6( )22 L+

(30)

where 1, = 2, Ry = Ro(, ).
Proof. Let
D = {(:U,t) ‘ (z,t) € D, v(z, 1) < 1}.
Consider the function u(z,t) = 1 —v(z,t) for (x,t) € D'. Applying Corollary

1 to the function u(z,t), we get

1—info> 147, -(1— inf v ], ie.
D’ = 72) < D'mC6‘>

: 2
inf v(x,t) > . 31
D/mCG( >_1+n§ (51
Now it is enough to remark that the required estimate of (30) is also proved.

<
Analogously it is proved
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Corollary 3. Let the conditions of Lemma 4 be satisfied with respect to the
region D and in D defined a positive L-superelleptic-parabolic function v(x,t),
continuous in D and turning to unity on I'(D) N C®. Then if R < Ro, then

inf v(x,t) >ns = s (32)

where n5 =1n3/2 and Ry = Ry(y,n).

Lemma 5. Let a domain D be contained in the cylinder C° and have limit points
on T(C%) and intersect CS. Then let continuous in D, and turning to unity on
I'(D) N C? positive L-supereliptic-parabolic function v(x,t) be determined in D.
Then if Er = C"\ D, mesEr > o1 - mesC”, o1 >0 and R < Ry, then

inf v(z,t) > na(y,n,01). 33
Jnf v(w,t) 2 na(y,m,00) (33)

Proof. Consider a cylinder

t9—b(1—po) R2,t°— & (14p0) R? 1
C"(po) = CR:lf(po " () (@), po€ (0, 4] :

We choose and fix pg > 0 such that mes(C”\ C7(pg)) = G- - mesC”.
It is clearly shown that py depends only on n and ;. Let us denote by E°
the set of interior intersection points of Exr N C7(pg). Then

mesEY > mesEg —mes(C7\ C7(pg)) >

> o1 - mesC" — % -mesC” = % -mesC". (34)

Let (2/,t') be an arbitrary point from E°, and

’ ’ /_b v ’
C’,E’(x’,t’) _ C;;;lb,(yR)Q’t (:CI), Cg(x/,tl) _ C;: a( R)2t (x/)’
'_b(vR)2 /_b vR)2
CZ(ZE/,t,) _ C;;Vb( R) )t 2( R) (ZL'/)

where v € (0, pg] is such that C3(a2',#') € C7. We denote by v(2’,t') the exact
upper edge of those v € (0, pg] for which the following is true mes(DNC3(z',t')) <
§ - mesC3(x',t'), where ¢ is the constant of Lemma 4.

There are two possible cases:

L. v(2',t') = po,

2. v(a',t') < po.
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Let case 1. take place. Then according to Corollary 3 either DN Cgo (2, 1) =

@, either, inf  w(x,t)>nh.
DACS, (/") (,1) = 5

Let D' = {(z,t): (z,t) € D,v(z,t) <n3}. From the above, it follows that
C"\ D' contains a cylinder 06 («',t'). Applying to the function * ( z.) Corollary

3, we obtain inf  v@b) > 14, and the constant n} only depends on v,n and
D'NCO(z/ ') n3

o1. Given that v(z,t) > nj for (z,t) € D\ D/, we concludeﬁgéGU(m,t) >nh .

Thus, if case 1. holds, then Lemma 5 is proved.

Let case 2. take place. If for some other point (2”,t") € E° the case 1. is
satisfied, then again Lemma 5 is proved.

So it remains to consider the situation when for any point (z,t) € E° there
is a case 2. Let’s cover E with cylinders C% (ot )(37 t) € EY and choose from

this coverage the countable under covered {06 zk ) },k = 1,2,..., of finite
multiplicity ¢1(n) so that at that

oo oo

mes [U (DN cik(xk,tk))] < g2(n)mes [U (DN cgk (:ck,tk))] .
k=1 k=1

By Corollary 3 for every natural k, either D N Cgk (zF,t*) = @, either

inf v(z, t) > nf.
DNCE, (xk k) (2,t) 2 15

Moreover, in consideration of the (34)

[U DﬂC’6 (z tk))] > —mes [[j DOC5 (z tk))]

1
> . mes(D N CS (zF, ) =
S RN LLE )
)
= — mesC5 (z tk
q1q92 Z =
5 oo
= . mesCY xk,tk >
q1G2 ; el =
0 )
> — .mesE" > 29 mesET (35)
7192 2q192

We denote v(%}t) by vi(z,t) and let Dy = {(x,t): (z,t) € D,vi(x,t) < 1}.
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Then if E}, = C7\ Dy, then according to the condition on Eg and (35)

&L-mescﬂzal-(l—l—

-mesC”.
24142 QQ1Q2)

mesE}, > o1 - mesC’ +

Therefore, the estimate (33) is proved.

<
Let’s apply to the function vi(z,t) the same procedure as for the func-
tion v(z,t). Then we can prove either Lemma 5 or we obtain that if Dy =

vi(x,t
{(az,t) (1) € D, 1G0 < 1}, E2 = C7\ Dy, then

5 \2
mesEJQ% > o1 - <1 + ) -mesC”.
q1q2
Let’s continue the process following. Clearly, in this chain, alternative 2.
cannot repeat more than lo(n, d, o1) times, where [y is the smallest natural number

for which
5\
o1 - <1 + ) > 1.
2q1q2

Corollary 4. Let in the cylinder C° be a arranged a domain D having limit points
on T'(C%) and intersecting C%. Let u(x,t) be a positive L-subelliptic-parabolic
function, continuous in D, and vanishing on T'(D) N C5. Then if Er = C"\ D,
mesER > o1 - mesC7, o1 > 0, and R < Ry, then

supu(:z:,t) > (1 + 774) © sup U(.’E,t) (36)
D DNC*

Proof. Let v(z,t) =1 — %, where M = supu(z,t). Applying Lemma 5 to

D
sup u
the function v(x,t), we obtain that 1 — % > n4. Hence the required estimate
—bR? 30 R2
of (36) follows. Let C® = Cpq = * (0).

<

Lemma 6. Let a domain D having limit points on T'(C3) and intersecting C*
be arranged on C3. Then let a continuous in D and vanishing on T'(D) N C3
positive L - subelliptic-parabolic function u(x,t) be determined on D. Then if the
conditions (2)-(2) are fulfilled with respect to the coefficients of an operator L,
and Hr = C®\ D, mesHr > o - mesC®, 0 >0, R < Ry, then

supu(z,t) > (1+n(7,n,0)) - sup u(a,1). (37)
D DNC(C4)
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Proof. Without loss of generality, we may assume that

sup wu(z,t) =1.
Dnr(c4)

Let (z*,t*) € DNT(C*) be the point at which u(z*,t*) = 1. Suppose at the
beginning that (z*,t*) € F(C%), i.e., (z*,t*) = (2*,t°), where ¢°

F(C*%), choose the minimum number of points (z',¢°),..., (™, t°) such that

= —%. On
1. Cg C U 07(.%'Z,t0);
=1

2. one of the points (2¢,%°) coincides with the point (x*,t%);

3. for any 7,1 < i < m, will be found j,1 < j < m such that 27 € OE", (1),
Am
where the constant A(n) > 1 will be selected later.

Clearly, the number m depends only on n. From the properties of the coating

it follows, that for any 4g, 1 <149 < m, there is a chain (x,19), ..., (z%,t°) such

that (2',t9) = (2%, 1),z € 8E9‘£(1), 1=0,1,...,k — 1. From the condition
Am

on Hpi we conclude the existence of ig,1 < ig < m such that

mes (Hp N C7(2%,1°)) > mesHp > 7 mesCS. (38)
m m

It is easy to see that mesC® > mesC7(z%, ")
follows that

Therefore, from the (38) it

mes (Hp N C"(z%,1°)) > 7. mesC7 (z%, t%). (39)
m
Let 61 = ﬁ, where the constant is 74 of Lemma 5 is taken at o1 = .
Let’s assume that sup  u(x,t) > 1—46; .Then according to Corollary 4 and
DNC8(z0 ,t0)
(39)
supu(z,t) = (1+mns) sup  u(z
D

DNCS(z0 ,t0)

—1+ B2

)+ sup wu(w,i),
2 27 prr(cy)

and in this case the statement of Lemma 6 is proved.
Now, let’s say u(x,t) < 1 — 6y, (z,t) € DN CO(xi, 10).

Consider the function vq(z,t) = u(z,t) — 1+ ;. It is not difficult to see that
the function vy (z,t) is L- subelliptic-parabolic in D, since 01 < 1.

) > (1+mn)-(1-061) =

Let Dy = {(z,t) : (z,t) € D,vi(x,t) > 0}. The assumption is that the cylin-
der C%(z%, ) located in addition to D;.
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For (z/,t') € T(C*) denote by C%,(z',t') cylinder C¥(2',t'), i = 5,6,7 high-
lighting that in it R = R'. Let’s find one now A > 1, that C%(z',t') C C§x(z', ).
Clearly, it is enough for the inclusion to be fair that

(AR)? _ _ .
bR%2 < b- T 8w YR) <w;YAR), i=1,...,n.
The last inequalities are satisfied if we fix A = max{2, a3 }.
Now, let’s say (z%1,1Y),..., (z%,t°) above-mentioned chain. By construction

. . . _p R 2’ /
C% (2,19 \ Dy contains a cylinder C’;.p (Zop)ot (2'), where p; depends only on
a AP
n.
Let’s assume that o9 = 2(%2772)7 where the constant 12 of Corollary 1 is taken
at p = p1.
Let’s assume that

sup vi(z,t) > 61(1 — 0p), ie.
DiNCS, (z1,t9)
Ey

sup u(z,t) > 1 —6100.
DinCS (x1,t9)
A
Using Corollary 1, we obtain

sup vi(x,t) > (14+mn9) sup vi(x,t) >
D1NCY (z'1,t0) D1NCS, (z1,10)
A

> (L+m2) 61 (1 —00).

Thus
Supu(xvt) > sup u(x,t) > (1 - 51) +
D D1NCS,(z1,t9)
o
F )6 (1—o0) =14 =7 =

= <1 + 51772) - sup u(x,t),
2 DAC(C4)

and in this case the statement of Lemma 6 is proved.
Let u(z,t) < 1 — 6100, (z,t) € Dy N C%(x,t%), then consider L-
A
subelliptic-parabolic in D function ve(x,t) = u(x,t) — (1 — d100). Let Dy =
{(w,t)’(az,t) €D,vy > 0}. The assumption is that the cylinder C (z%,¢) is
A

located in addition to Ds. If now

sup va(x,t) > d100(1 — 09p), i.e.
DiNCS, (x72,t0)
A2
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sup u(z,t) >1— 5108,
DiNCSY, (x%2,t0)
Vi

then, applying Corollary 1, we obtain

supu(x,t) > sup u(z,t) > 1— 6100+
D DNCC, (x2,t9)
v
010
+(1+n2)d100(1 —09) =1+ ITOUQ =
]
= <1+ 100772) - sup u(x,t),
2 DAT(CY)

and in this case the statement of Lemma 6 is proved.
If, however u(z,t) < 1— 6103, (x,t) € DN C% (2%2,1°), then we will continue
vl

the process as follows. No later than the k—thAstep, we prove Lemma 6, since
u(z® %) = u(x*,t%) = 1. So Lemma 6 is proved if (z*,t*) € F(C?).

Now, let’s say (z*,t*) € S(C*) and t* > t°. Clearly z* € OE%(9). From the
above considerations it follows that either Lemma 6 is proved, either u(z,t) <
1 — 6100 for (z,t) € DNCS, (2*,10).

Am

Let’s choose on the segment I, connecting the points (z*,t°) and (x*,t*),
minimum number of points (z*,t1),..., (z*,t) so that

p __ .
4. 1C UCla (o, t); 0 =17
=1

5. at the intersection of éiim (z*, 1) N éﬁALm (z*, 1) cylinder is contained

C"y (z*,th,i=0,1,...,p— 1.
Am
Clearly, p depends only on n. Consider the function Wi (z,t) = u(z,t) — 1 +

01 - 04", where o9 = min {UQ, 27772},ﬁ2—c0nstant 19 of Corollary 1, taken at

(1+75)
p=A"1
Let D! = {(:L',t)‘(lb,t) € D, Wy(z,t) > 0}. By assumption, the cylinder
C%, (z*,t°) is located in the supplement of D!. If

Am

sup Wi(z,t) > 61 -05" - (1 —02), i.e.
DINCCp (x*,th)
am
sup u(x,t) > 1 -6 - o™,
DINCS L (a* t1)

then applying Corollary 1, we obtain

sup Wi(z,t) > (14+72) 0105 - (1 — 02).
DINCS o (a*,t1)
Am—1
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Thus
supu(z,t) > sup u(z,t) >1—061-05 +
D DlﬁC’G R (:D*,tl)
Am—1
ooy M
F( )G (1= o) 2 14 DT

S o8 -m
= <1 + M) sup u(x,t),
2 DAL(CY)

and in this case the statement of Lemma 6 is proved. If u(z,t) < 1 — &5
(z,t) € D' N C% (x*,t'), then we continue the process as follows. At the latest
A™m
p-step, we prove Lemma 6, since u(z*,tP) = u(z*,t*) = 1.
The estimate (37) is completely proved.

<

Theorem 1. Let a domain D have limit points on T'(C3) and intersect C* be
arranged on C3. Then let a continuous in D and vanishing on T'(D)NC? positive
L-subelliptic-parabolic function u(x,t) be determined on D. Then if mesHr >
o-mesC®, 0 >0, and R < Ry, then supu(z,t) > (1+n) - sup u(z,t).

D DnC*

We denote by Cx\(D), 0 < A < 1 the Banach space of functions u(z,t) defined
on D, with finite norm

1) —
HUHCX(D) :s%p\u] +( )sup) ] lu(z,t) —uly, 7)| =
z,t),(y,7
(Iyt&(yyf) <|:IZ - y\ + |t — T‘)

2
bR
t—bE- ¢

Let's oscu(z,t) = supu(z,t) — infu(z,t),p > 0, Cy(z,t) = C 4
Qr Qr Qr p
D, D? = {(z,t)|(z,t) € D,Cy(x,t) C D}.

(z), Ct C

Theorem 2. Let in domain D C Rpi1 a solution u(x,t) of the equation (1)
be determined, moreover as to the coefficients of the operator L, the conditions
(2)-(4) be fulfilled, n > 1 and (0,0) € D. Then if R < Ry is such that C* C D.
Then "

%slcu(x,t) > (1 + 5) oca’fu(:c,t), (40)
1

where 1 is the constant of Theorem 1 at o = 3.

Proof. In the proof suggested below, only Theorem 1 will be used. In this

plan, if M} = supu(x,t), my = infu(x,t),My = supu(z,t), me = infu(z,t) and
1l ct c4 Cc4



164 N.R. Amanova, A.l. Ismailov, R.A. Amanov, T.R. Muradov

)

the inequality of the form (40) is valid for the function v(x,t) = u(x,t) — %

then it is fulfilled for the function u(z,t). But

M2+m2 M2+m2 Mg—mg
supv(zx,t) = supy — —— = My — - ’
Cc4 C4 2 2 2
infu(z t):infu—M:m _Metmy My —my
cr c 2 2 2 9

Furthermore, it can always be considered that Ms—mo > 0, otherwise inequal-
ity (40) is obvious. Therefore, without loss of generality, we will supposed that the
My =1,mg9 = —1, ie. ()CsEu(x,t) =2. Let DT = {(z,t)|(x,t) € C',u(z,t) > 0},

D™ = {(z,t)|(z,t) € C',u(z,t) < 0}.Obviously, both of these sets are not empty.
At least one of the following inequalities is satisfied:

1. mes(C®\ D) > LmesC?,

2. mes(C®\ D7) > TmesC8.

Let the case 1. take place for definiteness. We note that alternative 2. re-
duces to 1. multiplying the solution u(x,t) by (—1). Let’s denote by D’ that
connected component of the set Dt which contains the point (z°,¢%) € I'(C*),
where u(z",t°) = 1. By applying Theorem 1 to the function u(z,t) in D’ with
the constant o = %, we obtain that

My > (1+n)My=1+n,ie.
My—mi>214+n—mi>14+n—me=2+n=

:2(1+g):(1+g)-(M2—m2)7

and the required estimate of (40) is proved.

<

0o_bR2 j0
Corollary 5. Let Cp(x°,t%) = C;:g 5t (2%), v = maX{S %} Then, if the

7&1

conditions of Theorem 1 are satisfied and 6,,3(0, 0) € D, then at R < Ry

n
> (1 - t). 41
(056w 1) 2 (14 3) Lose () (41)

For the proof it is enough to notice that at the chosen v there is an inclusion
of C1 C C,R(0,0).
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Corollary 6. An estimate of the form (41) is also valid in cylinders C,r(z,t°)
and Cr(z°, %) respectively, unless R < Ry and C,g(2°,t°) C (D U~(D)). Here
(D) is the top cover of the region D.

Theorem 3. Let u(x,t) of the equation (1) be defined in the region D, whose
coefficients satisfy the conditions (2)-(4). Then for any p > 0 there exist constants
A(v;n), Co(v,n, p) such that

[ullenpey < Co - llulle)- (42)

Proof. Let (z',t') and (22,t?) be two arbitrary points from the D”. For
definiteness we will assume that t*> < t!. Let us fix an arbitrary small enough
p > 0. Two cases are possible:

1. (22,%) € Cy(at, th),
2. (a%,2) ¢ Cpla, 1),

Let us first consider case 1. Let for m = 0,1,2,... C(m) denote the cylinder
,—m (2!, t1). Clearly, there exists a non-negative integer mq for which

Cp

(a%,1) € C(mo), (2%,) ¢ C(mo +1). (43)

2,,—2mg—2

It follows from (43) that either 2 ¢ Eﬁ;,mo,l(f)), either t' — 2 > bpf
If 22 ¢ E;’;_mo_l(Q), then % > 81. Thus there you'll find
i=1 Wi WY

10, 1 <49 < n such that ’leo — JJZZO] > gn :

7 wi_ol(py
1 — o + VI — 2 > \Qf SL(pumot) 4
Lo o ), (0

Applying now successively Theorem 2 to the function u(x,t) in cylinders c(7)
and c¢(i+1),i =0,1,...,mg — 1, we obtain

—mo=1) So, in any case

n\mo .
oscu(x,t) > (1 + 5) - osc u(x,t), i.e

C(0) C(mo)
osc u(x,t 7m-oscu:z,t <
C'(mo) (1) < (1+3)™ co -0
1+12 2(1+12
S T cus ARy
g B E
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Thus, taking into account (43), we conclude that

Cn(%”)
L+ 7)™+ Nullow- (45)
2

Let us denote p = 1+ ¥, then p™ot! = plog.»
where A = log,, p. Taking into account (44), we obtain

‘u(l‘latl) - u(l‘27t2)| <

mot+l p(mo+1)log, p — ;,(mo+1)A
)

_ Cma—1\TA
—(mo+1)X [010 "W 1(/7 Sy 1)]

V(m0+1))‘ . [Clﬂ . wi_]'(py_mo_l)]A B
A
[\xl —a? V- tQ]

[c.p - ymotl 'wi_l(PV_mo_l)]A

p

Using the latter estimate in (45), we arrive at the inequality

A
e - [lot =22+ VI = 2] lulogn)
U a:l,t1 —u xQ,tQ < . 46
} ( ) ( )‘ [010 . pymo+l . w;l(pyfmofl)])‘ ( )

Let alternative 2. now take place. Then either 22 ¢ E§1(9), either t! —¢2 >

2
b%. Proceeding in the same way as in deriving equation (44), we obtain that in
any case

21— 22+ VI — £ > era(y,m) - wi (o). (47)
Therefore, taking into account (47), we have
u(z',¢') —u(2®, %) < 2fullem) <

22t = 2?4V -2

(ot rlewr
(2
From (46) an (48) we conclude
u(a!, t') — u(@?, %]
(o — o2+ v = llew (49)
J— C11 2 o, .
where ci3 = max{ [clo-umoﬂ-w;l(py*mo*l)]A’ [cu.w;l(p)]k } Now it is enough to

consider the arbitrariness of points (z!,t!) and (22,¢?) from D, and from (49)
follows the required estimate (42) with cg = ¢13 + 1.

<
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