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Strong Solvability of One Nonlocal Problem by the
Spectral Method in Orlicz-Sobolev Spaces

B.T. Bilalov∗, Y. Sezer, U. Ildiz

Abstract. In this work we consider a nonlocal problem for the Laplace equation on an
unbounded domain and define the concept of a strong solution of this problem in Sobolev
spaces generated by the Orlicz norm. We take advantage of the fact that the system of
root functions of the spectral problem corresponding to this problem forms a basis for
the Orlicz space. We apply the spectral method using Boyd indices in symmetric spaces
and demonstrate the correct solvability of the problem in Orlicz-Sobolev spaces. Solving
the problem in Orlicz-Sobolev spaces will pave the way for generalizing the solution to
symmetric Sobolev spaces which have a more general structure.
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1. Introduction

The classical theory of the solvability of linear elliptic equations has been
extensively studied in the classical, strong, or weak sense (see e.g. [1, 2, 3, 4, 5,
6, 7]). However, some mechanical and mathematical physics problems do not fit
to this theory. In [8] Moiseev studied such a problem that involved the following
degenerate elliptic equation

ymuxx + uyy = 0, (x, y) ∈ (0, 2π)× (0,+∞), (1)

u (x, 0) = f (x) , x ∈ (0, 2π), (2)

u (0, y) = u (2π, y) , ux (0, y) = 0, y ∈ (0,+∞), (3)
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with m ≥ −2. This is a nonlocal problem with semi-infinite lines as support
boundaries, one of which is the normal derivative. Such problems have different
characteristics compared to problems with local conditions. Frankl considered a
mixed type equation with a non-local boundary condition in [9, 10]. Bitsadze
and Samarskii considered a nonlocal problem for elliptic equations with supports
on a portion of the domain’s boundary, where these supports are independent
of the other boundary conditions [11]. Ionkin and Moiseev [12] solved the
boundary value problem for multi-dimensional parabolic equations with nonlocal
conditions, where the supports are the characteristics and the improper parts of
the boundary of the domain. Lerner [13] also addressed the problem (1) in the
classical formulation.

In this article we will consider at problem (1)-(3) in the case m = 0, i.e. for
the Laplace equation in an Orlicz-Sobolev space. We will define the notion of
a strong solution of this problem and also prove the correct solvability of this
problem using the Fourier method. When studying the solvability of elliptic
equations in Orlicz-Sobolev spaces, it should be noted that these spaces exhibit
some specific differences from other spaces due to their symmetric structure. It
is worth noting that there are very few studies on this topic [14, 15].

When solving this problem in the classical sense, Moiseev [8] used the spectral
method, based on the fact that the corresponding root functions

{1; cosnx; x sinnx}n∈N , (4)

forms a Riesz basis in L2(0, 2π). Then the authors of the works [16, 17, 18, 19, 20],
established the basisness of the system (4) in weighted Lebesgue and weighted
grand Lebesgue spaces and using these facts, solved the problem (1) (in strong
and weak sense) in corresponding Sobolev spaces generated by norm of these
spaces. In addition, Bilalov et al. [21] investigated the basicity of the system in
Orlicz spaces. Building on this fact, we will examine the strong solution in the
corresponding Orlicz-Sobolev space.

2. Auxiliary Facts

2.1. Notations

First, we introduce some standard notations. N is the set of natural numbers,
R is the set of real numbers, Z+ = {0}∪N and δij is the Kronecker delta symbol.
I = (0, 2π). C∞

0 (I) is the set of all infinitely differentiable functions on I with
compact support in I. By [X;Y ] we will denote the Banach space of bounded
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linear operators acting from space X to Y ; [X] ≡ [X;X]. α = (α1;α2) ∈ Z+×Z+

will be multiindex and ∂αu = ∂|α|u
∂xα1∂yα2 , where |α| = α1 + α2. L[M ] denotes the

linear span of the set M . X∗ is the dual space of X and c denotes constant
(maybe difference in various places). f |M denotes the restriction of f on M . p′

is conjugate to number p : 1
p + 1

p′ = 1.

2.2. Basis Properties

For the sake of completeness of the presentation, we give some necessary
information from basis theory.

Definition 1. Let X be a Banach space on field K. The system {xn}n∈N ⊂ X
is a basis in the space X if for ∀x ∈ X, there is a unique sequence {an}n∈N ⊂ K
such that

x =

∞∑
n=1

anxn.

Definition 2. If the condition

x∗n(xk) = δnk, ∀n; k ∈ N,

is satisfied, the systems {xn}n∈N ⊂ X and {x∗n}n∈N ⊂ X∗ are said to be biorthog-
onal.

Definition 3 (Completeness). Let X be a Banach space. The system {xn}n∈N ⊂
X is complete in X, if

L[{xn}n∈N] = X.

The completeness criterion for a system in Banach spaces is given below.

Proposition 1 (Completeness Criterion). Let X be a Banach space. The system
{xn}n∈N ⊂ X is complete in X ⇔ φ ∈ X∗: φ(xn) = 0, ∀n ∈ N ⇒ φ = 0.

Definition 4 (Minimality). The system {xn}n∈N ⊂ X is called minimal in X, if

xk /∈ L[{xn}n∈Nk
], ∀k ∈ N, Nk = N \ {k}.

The minimality criterion for a system in Banach spaces is given below.

Proposition 2 (Minimality Criterion). A necessary and sufficient condition for
a system to be minimal in Banach space is that the system has a biorthogonal
system.

Proposition 3 (Basicity Criterion). The system {xn}n∈N forms a basis in the
Banach space X if and only if, the following statements are true:
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1. {xn}n∈N is complete in X;

2. {xn}n∈N is minimal in X with the biorthogonal system {x∗n}n∈N ⊂ X∗;

3. The projectors Pk(x) =
∑k

m=1 x
∗
m(x)xm are uniformly bounded (∀k ∈ N),

i.e., there exists C > 0 such that

∥Pk(x)∥X ≤ C∥x∥X , ∀x ∈ X, ∀k ∈ N.

2.3. Orlicz Spaces

Let us recall the necessary concepts and facts concerning Orlicz space.

Definition 5. A continuous convex function M : R → R is called N-function if
it is even and satisfies the conditions

lim
u→0

M(u)

u
= 0; lim

u→∞

M(u)

u
= ∞ .

Definition 6. Let M be an N -function. The function defined by

M∗(v) = max
u≥0

[u(v)−M(u)],

is called N -function complement to M .

The function M∗ can be defined as follows. Let p : R+ → R+ = [0;+∞), be
right continuous for t ≥ 0, non-decreasing function that satisfies the condition
p(0) = 0, p(∞) = limt→∞ p(t) = ∞. Let us define

q(s) = sup
p(t)≤s

t , s ≥ 0.

The function q has the same properties as the function p. In fact for s > 0 it is
positive, for s ≥ 0 it is right continuous, non-decreasing and meets the conditions

p(0) = 0, p(∞) = lim
t→∞

p(t) = ∞.

M and M∗ are complement to each other and these N -functions can be repre-
sented as follows

M(u) =

|u|∫
0

p(t)dt, M∗(v) =

|v|∫
0

q(s)ds.



Strong Solvability of One Nonlocal Problem 17

Definition 7. The N -function M satisfies the following condition called ∆2-
condition for large values of u, if ∃k > 0 and ∃u0 ≥ 0 :

M(2u) ≤ kM(u), ∀u ≥ u0.

∆2-condition is equivalent to fact that, for ∀l > 1, ∃k(l) > 0 and ∃u0 ≥ 0:

M(lu) ≤ k(l)M(u), ∀u ≥ u0.

Now we can define the Orlicz space. Let M be some N -function, Ω ⊂ Rn be
a (Lebesgue) measurable set with finite measure. Denote by L0(Ω) the set of all
measurable functions in Ω. Let

ρM (u) =

∫
Ω

M [u(x)] dx,

and

L̃M (Ω) = {u ∈ L0(Ω) : ρM (u) < +∞}.

L̃M (Ω) is called an Orlicz class. Let M and M∗ be complement for each other
N -functions. Assume

LM (Ω) = {u ∈ L0(Ω) : |(u; v)| < +∞, ∀v ∈ L̃M∗(Ω)},

here

(u; v) =

∫
Ω

u(x)v(x) dx.

LM (Ω) is called Orlicz space. According to the norm ∥.∥M :

∥u∥M = sup
ρM∗ (v)≤1

|(u; v)|,

LM (Ω) is a Banach space. In LM (Ω) an equivalent norm to ∥.∥M can be defined
as

∥u∥(M) = inf
{
λ > 0 : ρM

(u
λ

)
≤ 1
}
,

also known as the Luxemburg norm.

Proposition 4. LM (Ω) = L̃M (Ω) and the closure of the set of bounded (including
continuous) functions coincides with LM (Ω), if N -function M satisfies the ∆2-
condition.

For further details on these and related results, see monographs [22, 23].
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Definition 8. We will say that the function M satisfies the ∇2-condition, if

lim
u→∞

inf
M(2u)

M(u)
> 2, i.e. ∃λ > 2 and ∃u0 > 0 : M(2u) ≥ λM(u), ∀u ≥ u0.

Denote by ∆2(∞) (∇2(∞)) the set of all N-functions satisfying the ∆2-condition
(the ∇2-condition).

We will need the concepts of Boyd indices of Orlicz spaces. M−1 denotes the
inverse of the N-function M . Assume

h(t) = lim
x→∞

sup
M−1(x)

M−1(tx)
, t > 0.

Define the following numbers

αM = − lim
t→∞

log h(t)

log t
; βM = − lim

t→0+

log h(t)

log t
.

The numbers αM and βM are known as lower and upper Boyd indices for the
Orlicz space LM , respectively. These numbers satisfy the following relations

0 ≤ αM ≤ βM ≤ 1 ; αM + βM∗ = 1; αM∗ + βM = 1,

where M and M∗ are complementary N -functions each to other.

Theorem 1. The Orlicz space LM is reflexive if and only if the relation 0 <
αM ≤ βM < 1 holds. Moreover, if for the numbers p, q ∈ [1,+∞], the inequalities

1 ≤ q <
1

βM
≤ 1

αM
< p ≤ +∞,

hold, then the continuous embeddings

Lp ↪→ LM ↪→ Lq,

are valid.

More information about these and other facts can be found in works [22, 23,
24].

Let’s give the conjugate function f̃ of function f from the Orlicz Space LM (I).

Definition 9. For any f ∈ LM (I) ⊂ L1(I), the conjugate function f̃ of f is
defined by

f̃(x) = − 1

π

π∫
0

f(x+ t)− f(x− t)

2 tan t
2

dt.
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We denote the partial sum of Fourier series of function f ∈ LM (I) by

Sn[f ](x) =
∑
|k|≤n

ck e
ikx =

1

π

2π∫
0

f(t) Dn(x− t) dt, n = 0, 1, ...,

where

ck = ck(f) =
1

2π

2π∫
0

f(x) e−ikx dx, k ∈ Z,

are Fourier coefficients of f(.) and

Dn(x) =
1

2

∑
|k|≤n

eikx =
sin
[(
x+ 1

2

)
x
]

2 sin x
2

, n = 0, 1, ...,

is a Dirichlet kernel of order n.

We need the following Ryan’s theorem from the monographs [23, 25].

Theorem 2 (Ryan). Let M be an N -function. Then the following statements
are equivalent:

(i) LM (I) is reflexive;

(ii) There is a constant C > 0 such that for all f ∈ LM (I):

∥f̃∥LM (I) ≤ C ∥f∥LM (I);

(iii) There is a constant C > 0 such that for all n ≥ 1 and f ∈ LM (I):

∥Sn[f ]∥LM (I) ≤ C ∥f∥LM (I).

The following conclusions directly follow from these facts.

Corollary 1. For N-function M :

lim
n→∞

∥Sn[f ]− f∥LM (I) = 0,

for all f ∈ LM (I) if and only if M ∈ ∆2(∞) ∩∇2(∞).

The following Ryan’s theorem is also valid.

Theorem 3 (Ryan). Let M be an N-function. If holds the part (iii) of Theorem
2 (Ryan), then M ∈ ∆2(∞) ∩∇2(∞); so LM (I) is reflexive [23].
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Taking into account the Theorems 2, 3 and Corollary 1, we arrive to the
following conclusion.

Corollary 2. Let M be an N-function. Then the Boyd indices of Orlicz space
LM (I): αM ; βM ∈ (0, 1) if and only if M ∈ ∆2(∞) ∩∇2(∞).

We define the Sobolev space generated by the Orlicz space on unbounded
rectangle Π = (0, 2π) × (0,∞). Let M be some N -function. First define the
space LM (Π) by the norm

∥u∥LM (Π) =

∞∫
0

∥u(·; y)∥LM (I) dy.

The corresponding Sobolev space is defined by the relation

W 2
M (Π) = {u ∈ LM (Π) : ∂αu ∈ LM (Π), ∀α; |α| ≤ 2} ,

and provide it with the norm

∥u∥W 2
M

=
∑
|α|≤2

∥∂αu∥LM (Π) .

We will also consider the Sobolev space W 2
M (I) generated by the norm

∥f∥W 2
M (I) = ∥f∥LM (I) +

∥∥f ′∥∥
LM (I)

+
∥∥f ′′∥∥

LM (I)
.

2.4. Trace Operator

For correct statement of considered boundary value problem in Orlicz-Sobolev
space we need firstly define the trace operator corresponding to the spaceW 1

M (Ω)
on the bounded domain Ω ⊂ R2 with sufficiently smooth boundary ∂Ω. Let
αM , βM ∈ (0, 1). Then it is evident that it is true the continuous embedding
W 1

M (Ω) ↪→ W 1
1 (Ω), where W

k
p (Ω) usually denotes classical Sobolev space. Let

L ⊂ Ω be some smooth line and dl is the length element of L. Denote by TL ∈[
W 1

1 (Ω);L1(L; dl)
]
trace operator, corresponding to L (existence this operator

very known and regarding this question one can see f. e. [2, 26]). Therefore, if
|L| < +∞ (|L| is length of L), then for ∀u ∈W 1

M (Ω) we have

∥TLu∥L1(L;dl) ≤ c ∥u∥W 1
1 (Ω) ≤ c ∥u∥W 1

M (Ω).

Consequently, TL ∈
[
W 1

M (Ω);L1(L; dl)
]
. Based on this fact TL we will call as

the trace operator regarding the Orlicz-Sobolev space W 1
M (Ω) corresponding to

L. According to this concept accept

Γ0 = {(0; y) : y ∈ (0,∞)}, Γ2π = {(2π; y) : y ∈ (0,∞)}.
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So, ∂Π = I ∪ Γ0 ∪ Γ2π. The trace operators corresponding to subsets I, Γ0 and
Γ2π we denote by TI , T0 and T2π, respectively. Let us define these operators. Set

Γ
(n)
0 = {(0; y) : y ∈ (0, n)}, Γ(n)

2π = {(2π; y) : y ∈ (0, n)}, Π(n) = I×(0, n), n ∈ N.

Let
u ∈W 1

M (Π) ⇒ u ∈W 1
M (Π(n)), ∀n ∈ N.

Consequently

φn = T
Γ
(n)
0

u ∈ L1

(
Γ
(n)
0 ; dy

)
, ψn = T

Γ
(n)
2π

u ∈ L1

(
Γ
(n)
2π ; dy

)
, ∀n ∈ N.

It is evident that

φn+1|Γ(n)
0

= φn, ψn+1|Γ(n)
2π

= ψn, ∀n ∈ N.

Based on these relations define the function φ(·) on Γ0 (ψ(·) on Γ2π) by expression
φ(ξ) = φn(ξ), if ξ ∈ (0, n) (ψ(ξ) = ψn(ξ), if ξ ∈ (0, n)). It is obvious that

φ ∈ Lloc
1 (0,+∞) , ψ ∈ Lloc

1 (0,+∞) .

Thus, the trace operators T0 :W
1
M (Π) → Lloc

1 (Γ0) and T2π :W 1
M (Π) → Lloc

1 (Γ2π)
define as T0u = φ, T2πu = ψ. It is evident that

T0 ∈
[
W 1

M (Π);L1(Γ
(n)
0 )
]
, T2π ∈

[
W 1

M (Π);L1(Γ
(n)
2π )
]
, ∀n ∈ N.

Now we consider the following Problem A

∆u (x; y) = 0 , (x; y) ∈ Π, (5)

TIu = f , T0u = T2πu , T0(∂xu) = 0, (6)

where f ∈ LM (I) is a given function.

Definition 10. A function u ∈W 2
M (Π) is called a strong solution of the Problem

A, if the equality (5) is satisfied for a.e. (x; y) ∈ Π and regarding its trace u|∂Π
it is true the relations (6).

2.5. Basicity of root functions

Applying the Fourier method to solution of the Problem A leads to the fol-
lowing spectral problem

y′′(x) + λ2y(x) = 0, x ∈ I,
y(0) = y(2π); y′(0) = 0.

}
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The eigenvalues of this problem are λn = n, n ∈ Z+, and corresponding eigen-
functions are {ycn (x) = cosnx}n∈Z+ . Each eigenfunction yn, n ∈ N, has one
associated function ysn (x) = x sinnx, n ∈ N. Consider the collection of root
functions

yc0 = 1; ycn (x) = cosnx; ysn (x) = x sinnx, n ∈ N, (7)

and also set

ϑc0(x) =
2π − x

2π2
; ϑcn(x) =

2π − x

π2
cosnx; ϑsn(x) =

1

π
sinnx, n ∈ N. (8)

Let us prove the following theorem.

Theorem 4. Let M be an N-function and the Boyd indices of Orlicz space
LM (I) : αM , βM ∈ (0, 1). Then the system (7) forms a basis in LM (I).

Proof. Consider the following functionals

ec0(f) =
1

2π2

2π∫
0

f(x)(2π − x) dx; ecn(f) =
1

π2

2π∫
0

f(x)(2π − x) cosnx dx;

esn(f) =
1

π

2π∫
0

f(x) sinnx dx, n ∈ N.

In the work [8] the following relations

ecn(y
c
m) = δnm; ∀n,m ∈ N; ecn(y

s
m) = 0, ∀n ∈ Z+; ∀m ∈ N;

esn(y
c
m) = 0, ∀n ∈ N; ∀m ∈ Z+; esn(y

s
m) = δnm; ∀n,m ∈ Z+,

are established. Let us show that the functionals {ecn; esn} belong to the space
(LM (I))∗. It is evident that ∃p, q ∈ (1,+∞), for which the inequalities

1 < q <
1

βM
≤ 1

αM
< p < +∞,

valid. Then from the embeddings in Theorem 1, the following estimates

∥f∥Lq(I) ≤ c ∥f∥LM (I); ∀f ∈ LM (I),

follow, where c > 0 some constant.
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Applying the Hölder inequality we have

|ecn(f)| ≤ c

2π∫
0

|f(x)(2π − x) cosnx| dx ≤ c

 2π∫
0

|f |qdx


1
q

≤ c∥f∥LM (I), ∀n ∈ Z+,

and also

|esn(f)| ≤ c

2π∫
0

|f |dx ≤ c

 2π∫
0

|f |qdx


1
q

≤ c∥f∥LM (I), ∀n ∈ N,

where c denotes constants. From this, it immediately follows that

{ecn; esn} ⊂ (LM (I))∗ .

Then based on minimality criterion from relations (3) we have the minimality of
the system (7) in LM (I).

Let us prove the completeness of the system (7) in LM (I). From Corollary 2
it follows thatM ∈ ∆2(∞)∩∇2(∞) and as a result, it is known that (see, e.g. the
monographs [22, 23]) the class C∞

0 (I) is dense in LM (I). Let f ∈ LM (I) be an
arbitrary function. Take ∀ε > 0. Then ∃ g ∈ C∞

0 (I), such that ∥f − g∥LM (I) < ε.
Let us consider the biorthogonal series of g on the system (7):

S̃n[g](x) =
n∑

k=0

eck(g) y
c
k(x) +

n∑
k=0

esk(g) y
s
k(x), n ∈ N.

Consider the biorthogonal coefficients {ecn; esn}:

eck(g) = c

2π∫
0

g(x)(2π − x) cos kxdx =

2π∫
0

g̃(x) cos kxdx, k ∈ Z+,

where g̃(x) = c g(x)(2π − x) and c denotes the corresponding coefficient of the
biorthogonal system. It is evident that g̃ ∈ C∞

0 (I) and as a result g̃(n)(0) =
g̃(n)(2π) = 0, ∀n ∈ Z+. Integrating by parts twice and taking into account these
relations, we have

eck(g) =
1

k

2π∫
0

g̃(x)d sin kx = −1

k

2π∫
0

g̃(1)(x) sin kxdx = − 1

k2

2π∫
0

g̃(2)(x) cos kx dx,
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and from this, it follows

|eck(g)| ≤
c

k2
, ∀k ∈ N.

Completely analogously we have the following estimate

|esk(g)| ≤
c

k2
, ∀k ∈ N.

From these estimates, it follows that the partial sums {S̃n[g]}n∈N converges uni-
formly on I. By results of the work [8] the system (7) forms a basis in L2(I) and
as a result it is evident that the limit of sums {S̃n[g]}n∈N is g(.). It is obvious
that ∃c > 0:

∥f∥LM (I) ≤ c ∥f∥L∞(I); ∀f ∈ C(I).

Then ∃nε ∈ N such that for ∀n ≥ nε, it holds

∥S̃n[g]− g∥LM (I) ≤ c ∥S̃n[g]− g∥L∞(I) < ε.

We have

∥f − S̃n[g]∥LM (I) ≤ ∥f − g∥LM (I) + ∥S̃n[g]− g∥LM (I) < 2ε, ∀n ≥ nε.

From the arbitrariness of ε > 0 follows the completeness of the system (7) in
LM (I).

For establishing basicity of the system (7) in LM (I) it is sufficient to prove
that the projectors

Pn(f) =
n∑

k=0

eck(f) y
c
k +

n∑
k=1

esk(f) y
s
k, ∀n ∈ N,

are uniformly bounded in LM (I). We have

∥Pn(f)∥LM (I) ≤

∥∥∥∥∥
n∑

k=0

eck(f) y
c
k

∥∥∥∥∥
LM (I)

+

∥∥∥∥∥
n∑

k=1

esk(f) y
s
k

∥∥∥∥∥
LM (I)

= I(1)n + I(2)n , n ∈ N.

Let us estimate {I(1)n }. We have

eck(f) = c+k (f̃), ∀k ∈ Z+,

where c+k (f̃) is the Fourier coefficient

c+k (f̃) =
1√
2π

2π∫
0

f̃(x) cos kx dx,



Strong Solvability of One Nonlocal Problem 25

of the function f̃(x) = c (2π − x)f(x). Since the classical trigonometric system
{1; cosnx; sinnx}n∈N forms a basis in LM (I) (it follows from Corollary 1), then
from the basicity criterion, it follows that

I(1)n =

∥∥∥∥∥
n∑

k=0

c+k (f̃) cos kx

∥∥∥∥∥
LM (I)

≤ c ∥f̃∥LM (I) ≤ c ∥f∥LM (I),

where the constant c > 0 does depend on n and f . Completely analogously we
can establish

I(2)n ≤ c ∥f∥LM (I), ∀n ∈ N.

As a result from the basicity criterion, it follows that the system (7) forms a basis
in LM (I). The theorem is proved.

3. Main Results

In this section, we will examine the uniqueness and existence of the strong
solution of Problem A in Orlicz-Sobolev space. Here we will take the strong
solution in the sense of Definition 10.

Let us first prove the uniqueness of the solution.

Theorem 5. Let M be N-function and the Boyd index of LM be βM ∈ (0, 1) and
f ∈ LM (I). Then if the Problem A has a solution in W 2

M (Π), then it is unique.

Proof. Indeed, in this case it is evident that ∃p ∈ (1,+∞) : LM (I) ↪→ Lp(I)
and as a result by definition of W 2

M (Π) we have W 2
M (Π) ↪→ W 2

p (Π), where the
Sobolev space W 2

p (Π) is generated by the norm

∥u∥Lp(Π) =

+∞∫
0

∥u(·; y)∥Lp(I) dy,

where

∥f∥Lp(I) =

∫
I

|f |p dt

 1
p

.

Then from results of the works [16, 27] we obtain the uniqeness of the solution
in W 2

M (Π). The theorem is proved.
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Theorem 6. Let M be an N-function and the Boyd indices of LM : αM , βM ∈
(0, 1) and the boundary function f satisfies

f ∈W 2
M (I), f(2π)− f(0) = f ′(0) = 0.

Then the Problem A has a (unique) solution in W 2
M (Π).

Proof. Let p ∈ (1,+∞) such that LM (I) ↪→ Lp(I), and therefore W 2
M (Π) ↪→

W 2
p (Π). Without loss of generality assume that p ∈ (1, 2). Let u ∈W 2

M (Π) be the
solution of the Problem A. It is evident that u is also a solution of the Problem
A in the sense of W 2

p (Π), since f ∈ Lp(I). Then, by the results of the works
[16, 27], the solution u ∈W 2

p (Π) has the following representation

u (x; y) = u0 (y) +

∞∑
n=1

(un (y) cosnx+ vn (y)x sinnx) , (x, y) ∈ Π,

where the coefficients u0 (·) , un (·) , vn (·) , n ∈ N, are defined by the relations

u0 (y) =
1

2π2

2π∫
0

u (x, y) (2π − x) dx,

un (y) =
1
π2

2π∫
0

u (x, y) (2π − x) cosnx dx,

vn (y) =
1
π

2π∫
0

u (x, y) sinnx dx, n ∈ N.


Let us show that the function u (x, y) belongs to W 2

M (Π), first consider the
series

u1 (x, y) =
∞∑
n=1

vn (y) x sinnx.

Differentiating this series formally term-by-term, we have

∂2u1
∂y2

=
∞∑
n=1

v′′n (y) x sinnx =
∞∑
n=1

n2vn (y) x sinnx, (9)

∂u1
∂x

=
∞∑
n=1

vn (y) sinnx+
∞∑
n=1

nvn (y) x cosnx, (10)

∂2u1
∂x2

= 2

∞∑
n=1

nvn (y) cosnx−
∞∑
n=1

n2vn (y) x sinnx. (11)
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Denote

w (x, y) =
∞∑
n=1

n2vn (y) x sinnx.

Let us show that the function w (x, y) belongs to LM (Π). It is evident that the
Newton-Leibniz formula

u(x; y + h)− u(x; y) =

y+h∫
y

∂u(x; t)

∂t
dt, ∀y > 0,

holds for a.e. x ∈ I. As already established, from αM , βM ∈ (0, 1) it follows that
LM (Π) ↪→ L1(Π). Therefore,

∂u
∂y ∈ L1(Π), and as a result, by Theorem 1.1.1 from

[28, p. 13], it follows that the functions {un, vn} are twice differentiable and can
be differentiated under the integral sign. Multiplying the equation by sinnx and
integrating it over I, for vn(·) we obtain the relation

v′′n(y)− n2vn(y) = 0, y > 0. (12)

Let α ∈ C∞(R) be such that α(y) ≡ 1 in a sufficiently small neighborhood of
the point y = 0 and α(y) = 0, ∀y : |y| ≥ 1. Considering the function F (x; y) =
α(y)u(x; y), we get F (x; y) = 0, ∀y ≥ 1. Therefore, without loss of generality, we
will assume u(x; y) = 0, ∀y ≥ 1 in the calculations below. So, we have

u(x; y) = −
1∫

y

∂u(x; t)

∂t
dt, a.e. x ∈ I, ⇒ f(x) = u(x; 0) = −

1∫
0

∂u(x; t)

∂t
dt, a.e. x ∈ I.

Consequently

|u(x; y)− f(x)| ≤
y∫

0

∣∣∣∣∂u(x; t)∂t

∣∣∣∣ dt, a.e. x ∈ I,

and from this it immediately follows

∫
I

|u(x; y)− f(x)|dx ≤
∫
I

y∫
0

∣∣∣∣∂u(x; t)∂t

∣∣∣∣ dtdx.
Since |{(x; y) : (x; y) ∈ I × (0, n)}| → 0, n → 0+, it is clear that u(·; y) →
f(·), y → 0+, in L1(I). It is easy to see that vn(·) ∈ W 2

1 (0,+∞), and it fol-
lows that ∃ limy→0+ vn(y) = vn(0), ∀n ∈ N. From these relations we directly
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obtain

vn(0) =
1

π

2π∫
0

f(x) sinnxdx, ∀n ∈ N. (13)

Also we have

vn(y)− vn(0) =
1

π

2π∫
0

(u(x; y)− u(x; 0)) sinnxdx

=
1

π

2π∫
0

y∫
0

∂u(x; t)

∂t
sinnxdtdx =⇒ |vn(y)− vn(0)| ≤

1

π

∫∫
Π

∣∣∣∣∂u∂y
∣∣∣∣ dxdy < +∞.

From here we directly obtain

sup
y>0

|vn(y)| < +∞. (14)

The solution to problem (12)-(14) is

vn(y) =
1

π

2π∫
0

f(x) sinnxdx e−ny, ∀n ∈ N.

Similarly for un, we obtain

u0(y) =
1

2π

2π∫
0

(2π − x)f(x)dx,

un(y) =
1

π2

2π∫
0

(2π − x)f(x) cosnxdxe−ny +
1

π

2π∫
0

f(x) sinnxdx ye−ny, ∀n ∈ N.

Suppose

fn =
1

π

2π∫
0

f(x) sinnx dx.

Consequently vn(y) = fne
−ny, n ∈ N. If we apply integration by parts, we get

fn = − 1

nπ

2π∫
0

f(x) cosnx dx = − 1

nπ

f(2π)− f(0)−
2π∫
0

f ′(x) cosnx dx


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=
1

nπ

2π∫
0

f ′(x) cosnx dx =
1

n2π

2π∫
0

f ′′(x) sinnx dx =
1

n2
f ′′n ,

where

f ′′n = (f ′′)n =
1

π

2π∫
0

f ′′(x) sinnx dx.

Thus

w(x; y) =
∞∑
n=1

f ′′nx sinnx e
−ny.

So, using the embeddings

Lp′(I) ↪→ LM (I) ↪→ Lp(I),

and applying the classical Hausdorff-Young theorem (see, e. g. [29]) we obtain

∥w(·; y)∥LM
≤ c

 2π∫
0

|w(x; y)|p′ dx


1
p′

≤ c

( ∞∑
n=1

∣∣f ′′ne−ny
∣∣p) 1

p

≤ c

∞∑
n=1

∣∣f ′′ne−ny
∣∣ .

In the last part we have applied the inequality (
∑∞

n=1 |an|)
α ≤

∑∞
n=1 |an|α,

which is true for every 0 < α ≤ 1.

This leads to the following estimate

∥w∥LM (Π) ≤ c
∞∑
n=1

∣∣f ′′n ∣∣ ∞∫
0

e−ny dy = c
∞∑
n=1

|f ′′n |
n
.

Applying again Hölder inequality we get

∥w∥LM (Π) ≤ c

( ∞∑
n=1

1

np

) 1
p
( ∞∑

n=1

|f ′′n |p
′

) 1
p′

= c

( ∞∑
n=1

|f ′′n |p
′

) 1
p′

.

It is evident that p′ ≥ 2. Then applying the classical Hausdorff-Young inequality
again, we obtain

∥w∥LM (Π) ≤ c

( ∞∑
n=1

∣∣f ′′n ∣∣p′
) 1

p′

≤ c ∥f ′′∥Lp(I) ≤ c ∥f ′′∥LM (I).
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Other series from (9)-(11), and therefore all series from the expression u(·, ·)
are evaluated in a similar manner. Hence it follows that

∥u∥W 2
M (Π) ≤ c ∥f ′′∥LM (I),

where c > 0 is a constant independent of f .

Let us verify that the boundary conditions are satisfied. We show that TIu =
f. From the boundedness of the operator TI ∈

[
W 2

M (Π) ; L1 (I)
]
, it follows that

if um → u in W 2
M (Π), then um|I → u|I in L1 (I).

Now, consider the following functions

um (x, y) = u0 (y) +
m∑

n=1

(un (y) cosnx+ vn (y)x sinnx) , (x; y) ∈ Π,m ∈ N.

We have

TIum = um (x, 0) = u0 (0)+
m∑

n=1

(un (0) cosnx+ vn (0)x sinnx) =
1

2π2

2π∫
0

f (x) (2π − x) dx

+
m∑

n=1

 1

π2

2π∫
0

f (x) (2π − x) cosnxdx cosnx+
1

π2

2π∫
0

f (x) sinnxdx x sinnx

 .

The basicity of the system (7) for LM (I) implies TIum → f , m→ ∞, in LM (I).
Consequently, TIu = f .

Consider the operators T0 and T2π. Let Jn = (0, n), n ∈ N.. It is not
hard to see that (T0um) |Jn = (T2πum) |Jn , ∀m;n ∈ N.. Since T0;T2π ∈[
W 1

M (Π);L1(Jn)
]
and um → u, m → ∞ in W 1

M (Π), then it is evident that
(T0u) |Jn = (T2πu) |Jn , ∀n ∈ N.. Therefore, T0u = T2πu. Completely analo-
gously, we establish that T0(∂xu) = 0. The theorem is proved.
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