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Strong Solvability of One Nonlocal Problem by the
Spectral Method in Orlicz-Sobolev Spaces

B.T. Bilalov*, Y. Sezer, U. Ildiz

Abstract. In this work we consider a nonlocal problem for the Laplace equation on an
unbounded domain and define the concept of a strong solution of this problem in Sobolev
spaces generated by the Orlicz norm. We take advantage of the fact that the system of
root functions of the spectral problem corresponding to this problem forms a basis for
the Orlicz space. We apply the spectral method using Boyd indices in symmetric spaces
and demonstrate the correct solvability of the problem in Orlicz-Sobolev spaces. Solving
the problem in Orlicz-Sobolev spaces will pave the way for generalizing the solution to
symmetric Sobolev spaces which have a more general structure.
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1. Introduction

The classical theory of the solvability of linear elliptic equations has been
extensively studied in the classical, strong, or weak sense (see e.g. [1, 2, 3, 4, 5,
6, 7]). However, some mechanical and mathematical physics problems do not fit
to this theory. In [8] Moiseev studied such a problem that involved the following
degenerate elliptic equation

Y Ugy + Uyy =0, (z,y) € (0,2m) x (0,400), (1)
u(z,0) = f(x), z€(0,2m), (2)
u (Oa y) =u (2777 y) y  Ug (07 y) =0, y¢€ (07 —I—OO), (3)
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with m > —2. This is a nonlocal problem with semi-infinite lines as support
boundaries, one of which is the normal derivative. Such problems have different
characteristics compared to problems with local conditions. Frankl considered a
mixed type equation with a non-local boundary condition in [9, 10]. Bitsadze
and Samarskii considered a nonlocal problem for elliptic equations with supports
on a portion of the domain’s boundary, where these supports are independent
of the other boundary conditions [11]. Tonkin and Moiseev [12] solved the
boundary value problem for multi-dimensional parabolic equations with nonlocal
conditions, where the supports are the characteristics and the improper parts of
the boundary of the domain. Lerner [13] also addressed the problem (1) in the
classical formulation.

In this article we will consider at problem (1)-(3) in the case m = 0, i.e. for
the Laplace equation in an Orlicz-Sobolev space. We will define the notion of
a strong solution of this problem and also prove the correct solvability of this
problem using the Fourier method. When studying the solvability of elliptic
equations in Orlicz-Sobolev spaces, it should be noted that these spaces exhibit
some specific differences from other spaces due to their symmetric structure. It
is worth noting that there are very few studies on this topic [14, 15].

When solving this problem in the classical sense, Moiseev [8] used the spectral
method, based on the fact that the corresponding root functions

{1; cosnx; xsinnx}, ., (4)

forms a Riesz basis in L2 (0, 27). Then the authors of the works [16, 17, 18, 19, 20],
established the basisness of the system (4) in weighted Lebesgue and weighted
grand Lebesgue spaces and using these facts, solved the problem (1) (in strong
and weak sense) in corresponding Sobolev spaces generated by norm of these
spaces. In addition, Bilalov et al. [21] investigated the basicity of the system in
Orlicz spaces. Building on this fact, we will examine the strong solution in the
corresponding Orlicz-Sobolev space.

2. Auxiliary Facts

2.1. Notations

First, we introduce some standard notations. N is the set of natural numbers,
R is the set of real numbers, Z; = {0}UN and J;; is the Kronecker delta symbol.
I = (0,2m). C§°([) is the set of all infinitely differentiable functions on I with
compact support in I. By [X;Y] we will denote the Banach space of bounded
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linear operators acting from space X to Y; [X]| = [X; X]. a = (a1;00) € Zy X Z4

will be multiindex and 9%u = %, where |a] = a3 + ay. L[M] denotes the

linear span of the set M. X™* is the dual space of X and ¢ denotes constant
(maybe difference in various places). f|ys denotes the restriction of f on M. p’
is conjugate to number p : % + 1% =1.

2.2. Basis Properties

For the sake of completeness of the presentation, we give some necessary
information from basis theory.

Definition 1. Let X be a Banach space on field K. The system {xp}neny C X
is a basis in the space X if for Vx € X, there is a unique sequence {an}neny C K

such that
o
T = Z anTn.
n=1

Definition 2. If the condition
) (xg) = Opg, Vn;k €N,

is satisfied, the systems {xp}neny C X and {z}}nen C X* are said to be biorthog-
onal.

Definition 3 (Completeness). Let X be a Banach space. The system {xy}nen C
X is complete in X, if
L[{xn}nEN] = X.

The completeness criterion for a system in Banach spaces is given below.

Proposition 1 (Completeness Criterion). Let X be a Banach space. The system
{Zn}nen C X is complete in X < p € X*: p(z,) =0, Vn e N= ¢ =0.

Definition 4 (Minimality). The system {xy }neny C X is called minimal in X, if
2z & L{zn}tnen,], VkeN, Ny =N\ {k}.
The minimality criterion for a system in Banach spaces is given below.

Proposition 2 (Minimality Criterion). A necessary and sufficient condition for
a system to be minimal in Banach space is that the system has a biorthogonal
system.

Proposition 3 (Basicity Criterion). The system {x,}nen forms a basis in the
Banach space X if and only if, the following statements are true:
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1. {zp}nen is complete in X;
2. {xn}nen is minimal in X with the biorthogonal system {x} }nen C X*;

3. The projectors Py(x) = S2F _ 2% (2)xy, are uniformly bounded (Vk € N),

m=1*"m

i.e., there exists C > 0 such that

[Pe(2)llx < Cllzflx, VeeX, VkeN.

2.3. Orlicz Spaces

Let us recall the necessary concepts and facts concerning Orlicz space.

Definition 5. A continuous convex function M : R — R is called N-function if
it is even and satisfies the conditions
M M
lim (w) =0; lim ﬂ =0

u—0 u U—00 U

Definition 6. Let M be an N-function. The function defined by

M7 (v) = maxu(v) — M(u)],

1s called N -function complement to M.

The function M* can be defined as follows. Let p: Ry — Ry = [0;+00), be
right continuous for ¢ > 0, non-decreasing function that satisfies the condition
p(0) =0, p(co) = limy_yo0 p(t) = 00. Let us define

q(s)= sup t, s>0.
p(t)<s

The function ¢ has the same properties as the function p. In fact for s > 0 it is

positive, for s > 0 it is right continuous, non-decreasing and meets the conditions

p(0) = 0, p(sc) = lim p(t) = oc.

t—o00

M and M* are complement to each other and these N-functions can be repre-
sented as follows

|ul |v]

M) = [ oot @) = [ ats)as.

o
o
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Definition 7. The N-function M satisfies the following condition called As-
condition for large values of w, if Ak > 0 and Jug >0 :

M2u) < EM(u), Yu > ug.
As-condition is equivalent to fact that, for VI > 1, Jk(I) > 0 and Jug > 0:
M(lu) < k(DM (u), Yu > up.

Now we can define the Orlicz space. Let M be some N-function, 2 C R"™ be
a (Lebesgue) measurable set with finite measure. Denote by Lo(2) the set of all
measurable functions in €. Let

par(w) = [ Mlu(o)] da,
Q

and
Lar(Q) = {u € Lo(Q) : par(u) < +o0}.

L () is called an Orlicz class. Let M and M* be complement for each other
N-functions. Assume

Ly(Q) = {u e Lo(Q) : |(u;v)] < 400, Yo € Ly-(Q)},

here

(s v) = / w(@)o(@) dz.
Q

Ly () is called Orlicz space. According to the norm ||.|[as :

lullar = sup|(u; )],
parx (v)<1

L/ (2) is a Banach space. In Lj/(€2) an equivalent norm to ||.||as can be defined
as

. U
lullan = it {2 >0 par (5) <1
also known as the Luxemburg norm.

Proposition 4. Ly;(Q) = Ly(Q) and the closure of the set of bounded (including
continuous) functions coincides with Ly (), if N-function M satisfies the Ag-
condition.

For further details on these and related results, see monographs [22, 23].
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Definition 8. We will say that the function M satisfies the Vo-condition, if

M(2
lim inf (w>2Jﬁ.ﬂ>2aM3w>0:MQ@ZAM@LVuZw.
U—00 M(u)

Denote by Ag(00) (Va(o0)) the set of all N-functions satisfying the Ao-condition
(the Va-condition,).

We will need the concepts of Boyd indices of Orlicz spaces. M ! denotes the
inverse of the N-function M. Assume

M)
Define the following numbers
B logh(t) B log h(t)
oM == logt ' P = 10 logt

The numbers s and By are known as lower and upper Boyd indices for the
Orlicz space Ly, respectively. These numbers satisfy the following relations

O0<am<Bu<1l; am+Bu-=1  au+Bu=1
where M and M* are complementary N-functions each to other.

Theorem 1. The Orlicz space Ly is reflexive if and only if the relation 0 <
apyr < Bar < 1 holds. Moreover, if for the numbers p, q € [1,400], the inequalities

1 1
I1<g< 77— < —<p< +o,
Bum — am
hold, then the continuous embeddings
L, — Ly — Lg,

are valid.

More information about these and other facts can be found in works [22, 23,
24]. N

Let’s give the conjugate function f of function f from the Orlicz Space Ly (I).

Definition 9. For any f € Ly (I) C Li(I), the conjugate function f of f is
defined by

. 1jf@+®—f@—ﬂdt

t
2ta1’l§
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We denote the partial sum of Fourier series of function f € Ly;(I) by

27

Salfll@) = 3 e = [ 1) Dafe 1) dt, n=0.1...
|k|<n T 0
where
1 27
a=alf) =5 / f(@) e de, ke,

0

are Fourier coefficients of f(.) and

*9

1 . i +3
Dn<l'):§Z €ka—81n[§xsinx2)x:|7 ’I’L:(),l,..
|k|<n 2

is a Dirichlet kernel of order n.

We need the following Ryan’s theorem from the monographs [23, 25].

Theorem 2 (Ryan). Let M be an N-function. Then the following statements
are equivalent:

(i) La(I) is reflezive;
(it) There is a constant C' > 0 such that for all f € Ly(1):
1A Lascry < C N mas e
(111) There is a constant C > 0 such that for alln > 1 and f € Ly(I):

1Salf L arcry < C Nl Lasr)-

The following conclusions directly follow from these facts.

Corollary 1. For N-function M :
for all f € Las(I) if and only if M € Ay(o0) N Va(c0).

The following Ryan’s theorem is also valid.

Theorem 3 (Ryan). Let M be an N-function. If holds the part (iii) of Theorem
2 (Ryan), then M € Ag(o0) N Va(o0); so Lyr(I) is reflexive [23].
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Taking into account the Theorems 2, 3 and Corollary 1, we arrive to the
following conclusion.
Corollary 2. Let M be an N-function. Then the Boyd indices of Orlicz space
La(I): aps Bu € (0,1) if and only if M € Asg(c0) N Va(o0).

We define the Sobolev space generated by the Orlicz space on unbounded
rectangle IT = (0, 27) x (0,00). Let M be some N-function. First define the
space Ljys(II) by the norm

mumm—/hmwwwmdy
0

The corresponding Sobolev space is defined by the relation
W32, (I1) = {u € Ly/(IT) : 0% € Ly(IT), Va; |af <2},
and provide it with the norm

HUHW]%J = Z ”8au||LM(H)'

jal<2

We will also consider the Sobolev space W3, (I) generated by the norm

HfHW]%J(I) = ||f||LM(1) + HfIHLM(I) + Hf//HLM(I) :

2.4. Trace Operator

For correct statement of considered boundary value problem in Orlicz-Sobolev
space we need firstly define the trace operator corresponding to the space W]b(Q)
on the bounded domain 2 C R? with sufficiently smooth boundary Q. Let
anr, By € (0,1). Then it is evident that it is true the continuous embedding
Wi (Q) — W(Q), where Wlﬂg (©) usually denotes classical Sobolev space. Let
L C Q be some smooth line and dl is the length element of L. Denote by 17, €
[Wf(Q);Ll(L; dl)] trace operator, corresponding to L (existence this operator
very known and regarding this question one can see f. e. [2, 26]). Therefore, if
|L| < 400 (|L] is length of L), then for Yu € W1, () we have

1Tl < ¢ lullwpe) < ¢ lullwy, @)

Consequently, T7, € [W&(Q);Ll(L; dl)]. Based on this fact T7, we will call as
the trace operator regarding the Orlicz-Sobolev space W]&(Q) corresponding to
L. According to this concept accept

Lo ={(0;y): y€(0,00)}, Taor={(2my): y € (0,00)}.
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So, Ol = I UT'gUT'y,;. The trace operators corresponding to subsets I, 'y and
I'or we denote by 17, Ty and Ts,, respectively. Let us define these operators. Set

g = {(0:): y € (0,m)}, TS = {2my) : y & (0,m)}, N = Ix(0,n), neN.

Let
we W) = ue W™, vneN,

Consequently
_ (), _ (n),
gon—TF(n)UELl FO pdy ), @Dn—TF(n)UELl F2W7dy , VneN.
0 2m
It is evident that
Pntilpom = n, Yntilpew = ¢n, YneN.
0 2w

Based on these relations define the function () on I'g (¢() on I'2;) by expression
P(&) = @n(§), if & € (0,n) (¥(§) = ¥n(§), if € € (0,n)). It is obvious that

pE Llf’c (0,400), e Llloc (0, +00) .

Thus, the trace operators Ty : Wi, (IT) — Li¢(Ty) and Tor : Wi, (IT) — LE¢(Tay)
define as Tou = ¢, Toru = 1. It is evident that

Ty € W@(H);Ll(rg”))} . Tom € [WQ(H);Ll(Fgﬁ)) , WneN.
Now we consider the following Problem A
Au(;y) =0, (z;y) €Tl (5)
Tiu=f, Tou=Taou, To(Oyu)=0, (6)
where f € Ly(I) is a given function.

Definition 10. A function u € W3, (I) is called a strong solution of the Problem
A, if the equality (5) is satisfied for a.e. (x;y) € Il and regarding its trace ulgp
it is true the relations (6).

2.5. Basicity of root functions

Applying the Fourier method to solution of the Problem A leads to the fol-
lowing spectral problem
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The eigenvalues of this problem are A\, = n, n € Z,, and corresponding eigen-
functions are {y;, () = cosnz},cz,. Each eigenfunction y,, n € N, has one
associated function y? (z) = zsinnz, n € N. Consider the collection of root
functions

yo=1; yi (xz) =cosnz; vy, (r) =xsinnz, n € N, (7)
and also set
2 — 27 — 1
I5(z) = %; ‘(z) = %cosnm; U5 (x) = ;sinnw, neN. (8)

Let us prove the following theorem.

Theorem 4. Let M be an N-function and the Boyd indices of Orlicz space
Ly(I): an, Bum € (0,1). Then the system (7) forms a basis in Ly (I).

Proof. Consider the following functionals

2m 2m
G0) = 5z [ F@)er— o) o ei(f) = o [ Fla)(em - o) cosmo do
0 0
2m
efl(f):jr/f(x)sinna: de, neN
0

In the work [8] the following relations

€n(Ym) = Onms Vn,m eN; e (yy,) =0, Vn€Zy; VmeN;
en(Um) =0, YneN; Vm € Zy; e (yp) =0nm;  Vn,m € Ly,

n
are established. Let us show that the functionals {e$; ef} belong to the space
(Lp(I))*. Tt is evident that Jp,q € (1,+00), for which the inequalities

1 1
l<g< —< — <p<+oo,
Bv — am

valid. Then from the embeddings in Theorem 1, the following estimates

[l zyry < e 1fllpy iy Y € La(I),

follow, where ¢ > 0 some constant.
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Applying the Holder inequality we have

1
2 q

< c/ |f(z)(2m — x) cosnz|dx < ¢ /’f‘qu < el flyi, Vn € Zy,

and also

2 2
()l < e / fldz < ¢ / flide | < ellflnym, VneN,
0 0

where ¢ denotes constants. From this, it immediately follows that

{en; en} € (Lu(I))"

Then based on minimality criterion from relations (3) we have the minimality of
the system (7) in Lps(1).

Let us prove the completeness of the system (7) in Ljs(I). From Corollary 2
it follows that M € Ag(c0)NVa(00) and as a result, it is known that (see, e.g. the
monographs [22, 23]) the class C§°(I) is dense in Ly (I). Let f € Ly(I) be an
arbitrary function. Take Ve > 0. Then 3 g € C§°([), such that [|f —gllz,,) <e-
Let us consider the biorthogonal series of g on the system (7):

v) =Y ef(9) vi(z) + > _eilg) yi(z), neN.
k=0 k=0

Consider the biorthogonal coefficients {ef; e }:

27 2T
ef(g) = c/g(m)(27r — x) cos kxdxr = /ﬁ(:r) coskxdr, ke Z,,
0 0

where g(z) = ¢ g(z)(2m — x) and ¢ denotes the corresponding coefficient of the
biorthogonal system. It is evident that § € C$°(I) and as a result g™ (0) =
5(”)(27r) =0, Vn € Z,. Integrating by parts twice and taking into account these
relations, we have

27 27 27
1 1 1
e (g9) = z /ﬁ(w)dsin kx = ~Z /ﬁ(l)(ac) sin kxdr = 2 /5(2) (x) cos kx dx,
0 0



24 B.T. Bilalov, Y. Sezer, U. Ildiz

and from this, it follows
c

let.(g)] < 12 Vk € N.

Completely analogously we have the following estimate
lex(9)] <

From these estimates, it follows that the partial sums {S,[g]}nen converges uni-
formly on I. By results of the work [8] the system (7) forms a basis in Lo(I) and
as a result it is evident that the limit of sums {Sp[g]}nen is g(.). It is obvious
that 3¢ > 0:

1wy < ellflloam; Yfe ).
Then dn. € N such that for Vn > n., it holds
15ulg] = glliay < e lSalgl =9l < e
We have
1f = Sulglllzy < N =9loya + 109l = gllzy, @ < 26 Vn = ne.
From the arbitrariness of ¢ > 0 follows the completeness of the system (7) in

L (I).

For establishing basicity of the system (7) in Ly ([) it is sufficient to prove
that the projectors

Po(f) = D _ei(f) vi +>_ei(f) v YneN,
k=0 k=1

are uniformly bounded in Lys(I). We have

n

> erlf) vi

k=0

n

> el vi

k=1

I Pn(f ) Lppy < +

Ly (1)

Let us estimate {L(Ll)}. We have
ei(f) = ()., Vhezy,

where cZ(f) is the Fourier coefficient

2w

c,i'(]?) = 1/f(x) coskzx dx,

0
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of the function f(z) = ¢ (27 — z) f(z). Since the classical trigonometric system
{1; cosna; sinnx}, . forms a basis in Ly (I) (it follows from Corollary 1), then
from the basicity criterion, it follows that

i < e Wl = eIl

Z cg(f) cos kx
k=0

La(D)

where the constant ¢ > 0 does depend on n and f. Completely analogously we
can establish
1(2) S C HfHLM([), Vn € N.

n

As a result from the basicity criterion, it follows that the system (7) forms a basis
in Lps(I). The theorem is proved.

3. Main Results

In this section, we will examine the uniqueness and existence of the strong
solution of Problem A in Orlicz-Sobolev space. Here we will take the strong
solution in the sense of Definition 10.

Let us first prove the uniqueness of the solution.

Theorem 5. Let M be N-function and the Boyd index of Ly be Sar € (0,1) and
f € Ly(I). Then if the Problem A has a solution in W3, (I1), then it is unique.

Proof. Indeed, in this case it is evident that Ip € (1,+00) : Ly (1) — Ly(1)
and as a result by definition of W3, (II) we have W3, (II) < W2(II), where the
Sobolev space I/Vp2 (IT) is generated by the norm

+oo
el = / laC: )l 0y o,
0

where

3=

1l = / PP dt
I

Then from results of the works [16, 27] we obtain the unigeness of the solution
in W2,(IT). The theorem is proved.
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Theorem 6. Let M be an N-function and the Boyd indices of Lyr: o, By €
(0,1) and the boundary function f satisfies

feWi(D),  f@2m) = f(0) = f'(0) = 0.
Then the Problem A has a (unique) solution in W3 (II).

Proof. Let p € (1,400) such that Ly(I) < Ly(I), and therefore W3, (II) —
WI? (IT). Without loss of generality assume that p € (1,2). Let u € W2 (II) be the
solution of the Problem A. It is evident that u is also a solution of the Problem
A in the sense of Wg (IT), since f € Ly(I). Then, by the results of the works
16, 27], the solution u € W2(II) has the following representation

u(z;y) =up (y) + Z(un (y) cosnx + v, (y) xsinnz) , (z,y) €11,
n=1

where the coefficients ug (), un (+), vn (), n € N, are defined by the relations

£

o
~—~
(S
N~—

Il

[
ﬂ‘H
—

;[ ule,y) (27 - 2) de,

IS
~—~ O

z,y) (27 — x) cosnz dz,

S
S
—~
<
~—
I
ﬁm‘,_.

u(x,y) sinnxdx, n € N.

<
3
—~
<
N—
I
3=

Y

Let us show that the function u (z,y) belongs to W3, (II), first consider the
series

o0
uy (z,y) = Zvn (y) x sinnx.
n=1

Differentiating this series formally term-by-term, we have

82U1 0o 0o
Tz E v (y) @ sinnz = E n?vp (y) x sinnz, 9)
Yy n=1 n=1
aul 00 ' 00
e = g v (y) sinnz + g nuy, (y) © cosnz, (10)
x
n=1 n=1

0%uy = >
o = 2 Z nuy, (y) cosnz — Z nvy, (y) = sinnz. (11)
n=1 n=1
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Denote .
w(r,y) = Zn%n (y) x sinnx.
n=1

Let us show that the function w (z,y) belongs to Ljs (IT). It is evident that the
Newton-Leibniz formula

y+ha

ot

M%y+m—uwwﬁ=/ %;)ﬁ,vy>&
Y

holds for a.e. z € I. As already established, from ay, Bas € (0,1) it follows that
Ly (IT) < Ly (II). Therefore, g—’; € L (II), and as a result, by Theorem 1.1.1 from
[28, p. 13], it follows that the functions {u,,v,} are twice differentiable and can
be differentiated under the integral sign. Multiplying the equation by sin nxz and
integrating it over I, for v,(-) we obtain the relation

up(y) — n*on(y) =0, y>0. (12)

Let o € C*°(R) be such that a(y) = 1 in a sufficiently small neighborhood of
the point y = 0 and «a(y) = 0, Yy : |y| > 1. Considering the function F(z;y) =
a(y)u(z;y), we get F(z;y) =0, Yy > 1. Therefore, without loss of generality, we
will assume u(x;y) = 0, Vy > 1 in the calculations below. So, we have

1 1
u(z;y) = _/Eim(x;t)dt’ ae. z€l, = f(xr)=u(z;0)= _/E)u(g:;t)dt? a.e x€l.

ot ot

Y 0
Consequently
Fou(a:t
i) - S < [ |25 )'dt, ae zel,
0

and from this it immediately follows

[t - s < [ /
I

I 0

ou(z;t)

Since [{(z;y): (z;y) € I x (0,n)} — 0,n — 0T, it is clear that u(;y) —
f(),y — 0T, in Li(I). Tt is easy to see that v,(-) € W2(0,+o0), and it fol-
lows that 3lim,_,o+ vn(y) = va(0), ¥n € N. From these relations we directly



28 B.T. Bilalov, Y. Sezer, U. Ildiz

obtain
27

1
v, (0) = /f(x) sinnxdx, Vn € N. (13)
7r
0
Also we have

2

n(0) = 0a(0) =+ [ (uloiy) — u(as0)sinnads
0

27 Y
1 ; 1
= // Du(z;?) sinnrdtdr = |v,(y) — v,(0)] < //
T ot T
00 I

From here we directly obtain

dxdy < 400.

ou
dy

sup v (3)| < +o0. (14)
y>0

The solution to problem (12)-(14) is

2m
1
vp(y) = 7T/f(sn) sinnxdr e, VneN.
0

Similarly for wu,,, we obtain

1 1
un(y) = = /(27T —z)f(x) cosnxdre ™ + p / f(x)sinnxdrye ™, VneN.
0 0

Suppose
1 2w
fn= /f(m) sinnz dzx.
T
0

Consequently v, (y) = fne™™, n € N. If we apply integration by parts, we get

27 2
fn= —% f(z)cosnz dex = 1 f@2m) — f(0) — /f’(x) cosnx dx

nm
0 0
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27 2
1 1 1
= [ P@eosn o= - [ f@)sinne do= .
0 0
where
2
1
n === /f”(x) sinnz dx.
T
0
Thus

o0
w(z;y) = Zfrll’x sinnz e Y.

n=1

So, using the embeddings
Ly(I) < Ly(I) — Ly(I),
and applying the classical Hausdorff-Young theorem (see, e. g. [29]) we obtain

1
I

o0 % 00
<o(Shser) <ol
n=1 n=1

27
lw(: 9l < ¢ / w(z; )P da
0

In the last part we have applied the inequality (> oo, |a,|)® < 0% |an|*,
which is true for every 0 < a < 1.
This leads to the following estimate

s i & |f//|
[wll Ly < CZ\f;{\/e”y dy = CZTn
n=1 0

Applying again Hélder inequality we get

[~

=

P

[l < e (Z ;) <Z|f{{|ﬁ’) =c (Dmp’)
n=1 n=1

n=1

It is evident that p’ > 2. Then applying the classical Hausdorff-Young inequality
again, we obtain

Y e

JwllLyam < C<Z\f5\p> < cllflle,my < ellfNwa:
n=1
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Other series from (9)-(11), and therefore all series from the expression u(-,-)
are evaluated in a similar manner. Hence it follows that

lullwe, @y < e 11 La)s

where ¢ > 0 is a constant independent of f.

Let us verify that the boundary conditions are satisfied. We show that Tru =
f. From the boundedness of the operator T; € [WZ, (I) ; Ly (I)], it follows that
if wp, — win W2, (I1), then wy,|r — ulr in Ly (I).

Now, consider the following functions

m
m (2,y) = ug ( —1—2 y) cosnz + v, (y) xsinnz) , (z;y) € I,m € N.
n=1
We have
m 1 2T
Tt = U (2,0) = ug (0)+Z (up, (0) cosnz + vy, (0) xsinnz) = 3.3 /f (z) (27 — x) dx
T
n=1
2m
/f 21 — x) cosnxdxr cosnx + — / f (z) sinnzdx zsinnx
0

The basicity of the system (7) for Lys (I) implies Truy, — f, m — oo, in Ly (I).
Consequently, Tru = f.

Consider the operators Ty and To,. Let J, = (0,n), n € N.. It is not
hard to see that (Toum)|s, = (Torum)ls,, Ym;n € N.. Since Ty;Tor €
(Wi,(I1); Ly (J)] and wm — u, m — oo in Wi, (II), then it is evident that
(Tow) | g, = (Toru)|s,, ¥Yn € N.. Therefore, Tou = Taru. Completely analo-
gously, we establish that Ty(9,u) = 0. The theorem is proved.
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