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Î áàçèñíûõ ñâîéñòâàõ ñèñòåìû ñîáñòâåííûõ ôóíêöèéêðàåâîé çàäà÷è Øòóðìà-Ëèóâèëëÿ, ðàöèîíàëüíîçàâèñÿùåé îò ñïåêòðàëüíîãî ïàðàìåòðàÀã. Õ. Õàíìàìåäîâ∗, Ì. Ã. Ìàõìóäîâà, Ã. Ì. ÌàñìàëèåâÀííîòàöèÿ. Â ðàáîòå ðàññìàòðèâàåòñÿ êðàåâàÿ çàäà÷à Øòóðìà-Ëèóâèëëÿ, â êîòîðîé îäíîãðàíè÷íîå óñëîâèå ðàöèîíàëüíî çàâèñèò îò ñïåêòðàëüíîãî ïàðàìåòðà. Ñ ïîìîùüþ îïåðàòîðàïðåîáðàçîâàíèÿ óñòàíîâëåíà áàçèñíîñòü ñèñòåìû ñîáñòâåííûõ ôóíêöèé â ïðîñòðàíñòâå
Lp (0, 1) , p > 1.Key Words and Phrases: çàäà÷à Øòóðìà-Ëèóâèëëÿ, êðàåâàÿ çàäà÷à, ñèñòåìà ñîáñòâåííûõôóíêöèé, îïåðàòîðû ïðåîáðàçîâàíèÿ, áåçóñëîâíûé áàçèñ, p-áëèçêîñòü.2000 Mathematics Subject Classi�cations: 34B24, 34L10Êðàåâûå çàäà÷è äëÿ îáûêíîâåííûõ äèôôåðåíöèàëüíûõ îïåðàòîðîâ ñîñïåêòðàëüíûì ïàðàìåòðîì â ãðàíè÷íîì óñëîâèè ïîÿâëÿþòñÿ âî ìíîãèõ îáëàñòÿõåñòåñòâîçíàíèÿ (ñì. [1]). Òàêèå çàäà÷è â ðàçëè÷íûõ ïîñòàíîâêàõ èññëåäîâàëèñü âîìíîãèõ ðàáîòàõ (ñì. [1-8] è ëèòåðàòóðó â íèõ).Ðàññìîòðèì ñëåäóþùåå óðàâíåíèå Øòóðìà-Ëèóâèëëÿ:

−y′′ + q(x)y = λy, 0 < x < 1, (1)ãäå λ - ñïåêòðàëüíûé ïàðàìåòð; ôóíêöèÿ q(x)- âåùåñòâåííà è q(x) ∈ L2(0, 1). Â äàííîéðàáîòå äëÿ óðàâíåíèÿ (1) èññëåäóþòñÿ äâå ñëåäóþùèå ãðàíè÷íûå çàäà÷è
y′(0) = hy(0), (2)

y′ (1)

y (1)
= aλ+ b−

N
∑

k=1

bk

λ− ck
, (3)ãäå a, b, b1, b2, ..., bN , c1, c2, ..., cN - äåéñòâèòåëüíûå ïîñòîÿííûå, ïðè÷åì

a ≥ 0, bk > 0, c1 < c2 < ... < cN , N ≥ 0èëè
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y′ (1)

y (1)
=

a1λ+ b1

c1λ+ d1
, (4)ãäå h, a1, b1, c1, d1 - âåùåñòâåííû; a1d1 − b1c1 > 0.Çàìåòèì, ÷òî ðàáîòàõ [6, 7] (ñì. òàêæå [5]) ïðè óñëîâèè q(x) ∈ C [0, 1] èññëåäîâàíûáàçèñíûå ñâîéñòâà â L2(0, 1) ñîáñòâåííûõ ôóíêöèé çàäà÷ (1), (2), (3) è (1), (2), (4) . Âíàñòîÿùåé ðàáîòå óñòàíîâëåíà áàçèñíîñòü â Lp(0, 1) (1 < p < ∞) ñèñòåìû ñîáñòâåííûõôóíêöèé êðàåâûõ çàäà÷ (1), (2), (3) è (1), (2), (4) ñ ïîòåíöèàëîì q(x) ∈ L2(0, 1). Ïðèýòîì ïðåäëîæåííûé íàìè ïîäõîä ñóùåñòâåííî îòëè÷àåòñÿ îò èñïîëüçîâàííîãî â [6, 7]ïîäõîäà è îñíîâàí íà ñâîéñòâàõ îïåðàòîðîâ ïðåîáðàçîâàíèÿ (ñì. [9-11]) äëÿ óðàâíåíèéØòóðìà- Ëèóâèëëÿ.Â íà÷àëå ðàññìîòðèì çàäà÷ó (1), (2), (3). Èçâåñòíî [3, 4], ÷òî ñóùåñòâóåò áåñêîíå÷íîâîçðàñòàþùàÿ ïîñëåäîâàòåëüíîñòü ñîáñòâåííûõ çíà÷åíèé {λn}∞n=1 çàäà÷è (1), (2), (3):

λ0 < λ1 < .... < λn < ....Îáîçíà÷èì ÷åðåç ϕ(x, λ) ðåøåíèå óðàâíåíèÿ (1) ñ íà÷àëüíûìè óñëîâèÿìè ϕ(0, λ) = 1,
ϕ′(0, λ) = h. Ïðè êàæäîì ôèêñèðîâàííîì x ôóíêöèÿ ϕ(x, λ) ÿâëÿåòñÿ öåëîé ïî λ.Ñîáñòâåííûå çíà÷åíèÿ çàäà÷è (1), (2), (3) ñóòü êîðíè öåëîé ôóíêöèè

∆(λ) = (aλ+ b−
N
∑

k=1

bk

λ− ck
)

N
∏

k=1

(λ− ck)ϕ(1, λ) −
N
∏

k=1

(λ− ck)ϕ
′(1, λ).Êðîìå òîãî, ϕ(x, λn) ÿâëÿåòñÿ ñîáñòâåííîé ôóíêöèåé çàäà÷è (1), (2), (3),ñîîòâåòñòâóþùåé ñîáñòâåííîìó çíà÷åíèþ λn. Êàê ïîêàçàíî â [3, 4], ïðè n → ∞ âåðíàôîðìóëà:

√

λn = π(n + ν) + O(
1

n
), (5)ãäå

ν =







−1
2 −N ïðè a 6= 0,

−N ïðè a = 0.Òåîðåìà 1. Ïðè a 6= 0 ñèñòåìà ôóíêöèé{cos√λnx
}

(n = 0, 1, ...;n 6= k0, k1, ..., kN )(ïðè a = 0 ñèñòåìà ôóíêöèé {

cos
√
λnx

}

(n = 0, 1, ...;n 6= k1, ..., kN )), ãäå
k0, k1, ..., kN - ïðîèçâîëüíûå ôèêñèðîâàííûå ïîïàðíî íåðàâíûå öåëûå íåîòðèöàòåëüíûå÷èñëà, îáðàçóåò áàçèñ â ïðîñòðàíñòâå Lp(0, 1) (1 < p < ∞), ïðè÷åì ïðè p = 2 áàçèñÿâëÿåòñÿ áåçóñëîâíûì.Äîêàçàòåëüñòâî. Ðàññìîòðèì ôîðìóëó (5). Ïóñòü, íàïðèìåð, ν = −1

2−N , (a 6= 0).Èçâåñòíî, ÷òî ñèñòåìà ôóíêöèé
{

cos(n− 1

2
−N)πx

}

∞

n=N+1

(6)



Î áàçèñíûõ ñâîéñòâàõ ñèñòåìû ñîáñòâåííûõ ôóíêöèé êðàåâîé çàäà÷è Øòóðìà-Ëèóâèëëÿ.... 63îáðàçóåò [12] áàçèñ â Lp(0, 1) (1 < p < ∞), ïðè÷åì ïðè p = 2 áàçèñ ÿâëÿåòñÿîðòîãîíàëüíûì. Â ñèëó (5), ñèñòåìà ôóíêöèé (6) êâàäðàòè÷íî áëèçêà ê ñèñòåìå
{

cos
√

λnx
}

(n = 0, 1, ...;n 6= k0, k1, ..., kN ). (7)Òîãäà èç ïîëíîòû ñèñòåìû ôóíêöèé (7) â Lp(0, 1) (ñì., íàïð., [11]) âûòåêàåò, ÷òî ýòàñèñòåìà îáðàçóåò áàçèñ Ðèññà â Lp(0, 1). Ïîñëåäíåå âëå÷åò çà ñîáîé áåçóñëîâíîñòüáàçèñà.Ïóñòü 1 < p < 2 è f (x) ∈ Lp (0, 1). ×åðåç cn (f), n = 1, 2, ..., îáîçíà÷èìêîýôôèöèåíòû Ôóðüå ôóíêöèè f (x) ïî ñèñòåìå (6). Òàê êàê ñèñòåìà
{√

2 cos(n− 1

2
−N)πx

}

∞

n=N+1ÿâëÿåòñÿ ðàâíîìåðíî îãðàíè÷åííîé è îðòîíîðìèðîâàííîé â Lp(0, 1), òî ïî òåîðåìåÐèññà (ñì. [13]) èìååì
(

∞
∑

n=1

|cn (f)|q
)

1

q

≤ M ‖f‖Lp(0,1)
,ãäå 1

p
+ 1

q
= 1. Îòêóäà ñëåäóåò, ÷òî ñèñòåìà (6) â Lp(0, 1) îáðàçóåò (ñì. [14]) q-áàçèñ.Êðîìå òîãî, èñïîëüçóÿ (5), ïîëó÷àåì
∥

∥

∥

∥

cos
√

λnx− cos

(

n− 1

2

)

πx

∥

∥

∥

∥

p

Lp(0,1)

= O

(

1

np

) ïðè n → ∞,ñîãëàñíî êîòîðîìó, ñèñòåìà (7) p-áëèçêà â Lp(0, 1) ê ñèñòåìå (6). Òàê êàê ñèñòåìà(7) ïîëíà â Lp(0, 1) ïðè 1 < p < 2, òî îíà îáðàçóåò [14] èçîìîðôíûé ê (7) áàçèñ â
Lp(0, 1). Àíàëîãè÷íî, åñëè p > 2, òî ñèñòåìà (6) îáðàçóåò p-áàçèñ â Lp(0, 1). Î÷åâèäíî,÷òî ñèñòåìà (7) q-áëèçêà â Lp(0, 1) ê ñèñòåìå (6). Êðîìå òîãî, ñèñòåìà (7) ω-ëèíåéíîíåçàâèñèìà â Lp(0, 1), ïîñêîëüêó îíà îáðàçóåò áàçèñ â Lp(0, 1). Îòêóäà ñëåäóåò, ÷òîñèñòåìà (7) îáðàçóåò [14] èçîìîðôíûé ê ñèñòåìå (6) áàçèñ â Lp(0, 1). Òåîðåìà äîêàçàíà.Ðàññìîòðèì òåïåðü ðåøåíèå ϕ(x, λ) óðàâíåíèÿ (1). Êàê èçâåñòíî [9-11] äëÿ ýòîãîðåøåíèÿ âåðíî ïðåäñòàâëåíèå ñ ïîìîùüþ îïåðàòîðà ïðåîáðàçîâàíèÿ

ϕ(x, λ) = cos
√
λx+

∫ x

0
K(x, t) cos

√
λtdt, (8)ãäå K(x, t) � âåùåñòâåííàÿ íåïðåðûâíàÿ ôóíêöèÿ è

K(x, x) = h+
1

2

∫ x

0
q(t)dt.Ðàññìîòðèì îïåðàòîð ïðåîáðàçîâàíèÿ, îïðåäåëåííîé ôîðìóëîé

(I +Ω)f = f(x) +

∫ x

0
K(x, t)f(t)dt.



64 Àã. Õ. Õàíìàìåäîâ, Ì. Ã. Ìàõìóäîâà, Ã. Ì. ÌàñìàëèåâÒàê êàê Ω åñòü âîëüòåðîâñêèé èíòåãðàëüíûé îïåðàòîð, òî îïåðàòîð I + Ω èìååòîáðàòíûé îïåðàòîð òîãî æå âèäà. Ýòî îçíà÷àåò, ÷òî îïåðàòîð I + Ω îñóùåñòâëÿåòâçàèìíî îäíîçíà÷íîå îòîáðàæåíèå ïðîñòðàíñòâà Lp(0, 1) (1 < p < ∞) íà ñåáÿ.Ïîëüçóÿñü òîãäà òåîðåìîé 1 è ôîðìóëîé (8) ïîëó÷àåì ñëåäóþùóþ òåîðåìó.Òåîðåìà 2. Ïóñòü k0, k1, ..., kN � ïðîèçâîëüíûå ôèêñèðîâàííûå ïîïàðíî íåðàâíûåöåëûå íåîòðèöàòåëüíûå ÷èñëà. Òîãäà ïðè a 6= 0 ñèñòåìà {ϕ(x, λn)} (n = 0, 1, ...;n 6=
k0, k1, ..., kN ) è ïðè a = 0 ñèñòåìà {ϕ(x, λn)} (n = 0, 1, ...;n 6= k1, ..., kN ) îáðàçóþòáàçèñ â ïðîñòðàíñòâå Lp(0, 1) (1 < p < ∞), ïðè÷åì ïðè p = 2 áàçèñ ÿâëÿåòñÿáåçóñëîâíûì.Â ñëó÷àå ãðàíè÷íîé çàäà÷è (1), (2), (4) ñëåäóåò èñïîëüçîâàòü ôîðìóëó

√

λn = π(n + ν) + O(
1

n
),ãäå

ν =







−1 ïðè c1 6= 0,

−1
2 ïðè c1 = 0.Â ýòîì ñëó÷àå ñîáñòâåííûå çíà÷åíèÿ ãðàíè÷íîé çàäà÷è (1), (2), (4) ñóòü êîðíè öåëîéôóíêöèè

∆(λ) = (a1λ+ b1)ϕ(1, λ) − (c1λ+ d1)ϕ
′(1, λ).Òåîðåìà 3. Ïóñòü k0 � ïðîèçâîëüíûå ôèêñèðîâàííîå öåëîå íåîòðèöàòåëüíîå÷èñëî. Òîãäà ñèñòåìà ñîáñòâåííûõ ôóíêöèé {ϕ(x, λn)} (n = 0, 1, ...;n 6= k0) çàäà÷è(1), (2), (4) îáðàçóåò áàçèñ â ïðîñòðàíñòâå Lp(0, 1) (1 < p < ∞), ïðè÷åì ïðè p = 2áàçèñ ÿâëÿåòñÿ áåçóñëîâíûì.Ïðèâåäåííûå ðåçóëüòàòû ïåðåíîñÿòñÿ òàêæå íà ñëó÷àé, êîãäà êðàåâîå óñëîâèå (2)ïðèíèìàåò âèä y(0) = 0 (ñì. [5, 8]). Â ýòîì ñëó÷àå ñëåäóåò èñïîëüçîâàòü ðåøåíèå

ϕ(x, λ) óðàâíåíèÿ (1), äîïóñêàþùåå ïðåäñòàâëåíèå
ϕ(x, λ) =

sin
√
λx√
λ

+

∫ x

0
K(x, t)

sin
√
λt√

λ
dt.Ñïèñîê ëèòåðàòóðû[1] Fulton C.T. Two-point boundary value problems with eigenvalue parametr countainedin the boundary conditions. Proc. Roy. Soc. Edinburgh Sect. A, 1977, vol. 77, p. 293-288.[2] Øêàëèêîâ À.À. Êðàåâûå çàäà÷è äëÿ îáûêíîâåííûõ äèôôåðåíöèàëüíûõóðàâíåíèé ñ ïàðàìåòðîì â ãðàíè÷íûõ óñëîâèÿõ. Òð. ñåìèíàðà èì. È.Ã.Ïåòðîâñêîãî, 1983, âûï. 9, ñ. 190-229.
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