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Some symmetric Laguerre-Hahn linear functionals of
class six at most

M. Zaatra

Abstract. We show that if v is a symmetric regular Laguerre-Hahn linear form (functional), then
the linear functional u defined by u = —Ax~%v + %5& + o is also regular and symmetric Laguerre-
Hahn linear functional for every complex A except for a discrete set of numbers depending on v. We
explicitly give the coefficients of the second-order recurrence relation of the orthogonal sequence
associated with u and the class of the linear functional v knowing that of v. Finally, we apply the
above results to some examples.

Key Words and Phrases: Orthogonal polynomials, Laguerre-Hahn linear functionals.

2010 Mathematics Subject Classifications: 42C05; 33C45

1. Introduction

The Product of linear functional by a polynomials is one of the construction processes
of linear functionals. Christoffel has proved that the product of a positive definite linear
functional by a positive polynomial gives a positive definite linear functional [7]. This
result has been generalized in [8]. It was proved that, on certain regularity conditions,
the product of a regular linear functional v by a polynomial R gives a regular linear
functional. In particular, if u is a semiclassical [15] (resp., Laguerre-Hahn [2, 9]), then the
linear functional Ru, if it is regular is also semiclassical (resp., Laguerre-Hahn). Then it
is interesting to consider the inverse problem, which consists in determining all regular
linear functionals u, satisfying Ru = —\v, where v is a given regular linear functional and
A # 0. When R(z) = x — ¢, 2% (resp., R(z) = 23, 2*), Maroni [14, 17] (resp., Maroni
and Nicolau [12, 13]) found necessary and sufficient conditions for u to be regular. Also,
an explicit expression for the orthogonal polynomials (OP) with respect to u is proved.
Finally, it was proved that, if v is semiclassical linear functional (see [1, 3, 13, 17]), then
u is a semiclassical linear functional. See also [11]. In particular, in this paper, Marcelldn
and Prianes proved that if v is Laguerre-Hahn linear functional, then u is also a Laguerre-
Hahn linear functional. When R(x) is of degree two, Branquinho and Marcellan [4] found
necessary and sufficient conditions for u to be regular. More generally, when R(z) is any
nonzero polynomial, Lee and Kwon [10] found a necessary and sufficient condition for u
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to be regular and gave its corresponding OP in terms of the OP relative to v.

In this paper, we consider the same problem as in [12] in the symmetric Laguerre-Hahn
case: given a symmetric Laguerre-Hahn linear functional v, find the linear functional «
defined by

1 /!
u=—-\x "%+ 550 +60 © zlu= v, (u); = (u)3 =0, (u)s = 1.

Section 2 is devoted to the preliminary results and notations used in the sequel. In
section 3, an explicit necessary and sufficient condition for the regularity of the new linear
functional different from in [12] is given. We compute the exact class of the Laguerre-Hahn
linear functional obtained by the above modification. Finally, we apply our results to some
examples.

2. Notations and preliminary results

Let P be the vector space of polynomials with coefficients in C and let P’ be its
dual. We denote by (v, f) the action of v € P on f € P. In particular, we denote
by (v), := (v,z2"),n > 0 , the moments of v. For any linear functional v and any
polynomial h let Dv = v', hv, &y, and 2~ 'v be the linear functionals defined by: (V' f) :=

- <U,f’>, <hvaf> = <U,hf> ’ <5Oaf> = f(O) and <$_1U,f> = <’U,90f> where (90f)($) =
@10

Then, it is straightforward to prove that for f € P and v € P’, we have
z(z7 ) =0, (1)

N zv)=v— (v
(zv) ()05/07 2

x710 = —d; .
We also defined the right multiplication of a linear functional by a polynomial with
7h(z) = E(E)\ o [ ) o
(vh)(x) = <v, — ¢ /- kzo ‘ kaj(v)j,k ", h(z) = Z%ajxj .

Next, it is possible to define the product of two linear functionals through

(wo, f) == (u,vf) , fEP.
Let us define the operator o : P — P by (of)(x) = f(z%). Then, we define the even
part ov of v by (ov, f) := (v,0f).
Therefore, we have [16]
f(@)(ov) = o(f(2*)v) . (3)
4



A linear functional v is called regular if there exists a sequence of polynomials {S,, }n>0
(deg Sy, < n) such that

(0,80 Sm) =Tndpm , ™#0, n>0.

Then deg S, = n,n > 0 and we can always suppose each S, is monic. In such a case, the
sequence {5y, }»>0 is unique. It is said to be the sequence of monic orthogonal polynomials
with respect to v.

It is a very well known fact that the sequence {S;,},>0 satisfies the recurrence relation
(see, for instance, the monograph by Chihara [5])

Sn+2(x) = (.%' - §n+1)Sn+1(x) - pn-HSn(x) ;, n=0,

Si@)=x—-& .,  So(z)=1, (4)

with (&, pn1) € Cx C—{0}, n>0. By convention we set pp = (v)y = 1.

In this case, let {S,(Ll)}nzo be the associated sequence of first order for the sequence
{Sn}n>0 satisfying the recurrence relation

SN (@) = (@ = 6012) S (2) = pryaS (@), n >0,

sV@y=e—¢&, S =1 (5% @) =0). )

Another important representation of Sﬁbl)(:v) is, (see [6]),
SW () = (v Snt1(x) = Sni1(6)
s : , p— .

Also, let {Sy(., 1t) }n>0 be the co-recursive polynomials for the sequence {S),},,>0 satisfying

[6]

S, p) = Sn(@) — pSYy (), n>0. (6)
A linear functional v is called symmetric if (v)2,41 = 0, n > 0. In 4, we have &, =
0, n >0 [5].
Throughout this paper, unless otherwise mentioned, the linear functionals v will be
supposed normalized, (i.e., (v)g = 1), symmetric and regular.

Let us consider the decomposition of {S,},>0 [5, 16]:
S2n($) = Pn(xQ) ) S2n+1(x) = an(xZ) ) (7)

The sequences { P, }n>0 and { Ry, }n>0 are respectively orthogonal with to ov and zov. We
also have ~ - o

Pria(z) = (2 = &) Paga (2) = ppa Pul@) . >0, ®)
A =e—&, Bf)=1,

with

& =p1, €51 = ponta + pants s P = Prntipante, >0 9)
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By virtue of 4, with &, =0, we get S;,12(0) = —pn+15(0). Consequently,
B _ n
So(0) = Po(0) =1, Sant2(0) = Pry1(0) = (=1)"" ] povt1, n>0. (10)
v=0

Proposition 2.1. [15] v is regular if and only if ov and xov are regular.

3. The Laguerre-Hahn case

For a A € C — {0}, we can define a new linear functional in P’,

1.
u=—\z"tv+ —|—§50 +dgp . (11)
From 1, 2 and 11, we have
wtu= v, (u) = (Wz=0, (u)p=1. (12)

Remark 3.1. The above problem was partially treated by P. Maroni and I. Nicolau [12]
and we are going to handle it differently.

Proposition 3.2. u is reqular if and only if
P,(0,M)A, #0,n>0.

where P, is defined by 7 and

n_ p2
An:Tn{)‘"i_ZM}a n=>0,

v=0 v

n

2
Tn::<av,ﬁs>:pr:ﬁpy,n20.
v=0

v=0

Proof. Applying the operator ¢ for 12 and using 3, we obtain
zou = Az lov + & . (13)

From 2 and 13, we get
ou= -z 2ov — 6y + & . (14)

From 11, it is plain that w is symmetric linear functional. Then, according to , u is
regular if and only if xzou and ou are regular. But zou = —Az~'ov + Jy is regular if
and only if X # 0 and P,(0,\) # 0, n > 0 (see [17]). So u is regular if and only if
P,(0,)\) # 0 and ou = =Xz~ 200 — 56 + dp is regular. Or, it was shown in [3] that the form
— Az 20v — 5/0 + Jp is regular if and only if A, % 0, n > 0. Then, we deduce the desired
result. O



Remark 3.3. (i) In fact, we have the well-known identity (see [5])

Por(0)PL1(0) = Poya () BV (0) = [T pla s n> 0.
v=0

Dividing the above equation by P y2(0)P,y1(0) and using 7, 9 and 10, we obtain

1 ~ n+1

O P“)(o 2o

Pn+2(0) P =0 P2u+1
This leads to

PM(0) = —P1(0)Q2, , n >0, (15)
with
Qn = Z T_l; ,n>0,
v=0 Y

and

n n
TﬁZHmu, TﬁZHquH,nZO-
v=0 v=0
Using 6 and 15, we can easily find that w is reqular if and only if

(14 AQ,) <A2@,<3> +A1+200)+14+00 > 4£0,n>0, (16)

where for i € {0,1,2}

n—1 -1
@Sf)zz i Q,n>0, <Z>:0.

v=0 V+1 v=0

(ii) If v is a symmetric positive definite functional and X\ > 0, then from 16, the linear

functional u is reqular.
When w is regular, let {Z,},>0 be the corresponding sequence satisfying the recurrence

relation
Zn+2(x) = xanLl(x) - '7n+IZn(CU) , n>0, (17)

Zi(x) =z, Zo(x)=1.
Let us now consider the quadratic decomposition of the sequence {Z,,},>¢

Zon(z) = Poy(2?), Zopi1(z) = zRp(z?), n>0. (18)

From 13 and 14, we can deduce the following results.
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Proposition 3.4. [17] The polynomials of the sequence { Ry, }n>0 satisfy the relation

Ryqa(z) = pn+1($) + dnpn(x) , n=0, (19)
where R
iy = — 10N (20)
P (0,A)

Proposition 3.5. [3] The polynomials of the sequence {Py}n>0 satisfy the relation

Pn+2( ) - 2( )+Cn+1pn+1( ) Bnpn(x) ) 77‘207 (21)
Pi(z) = Pi(z )+5o
where A
Bn = An:l , n=0,
and ~ _
- . P,11(0, V)P, (0, A
co=p1—1, Cnr1=pont2+ pons3— 1 A) ( ), n=>0.
Lemma 3.6.
n+4(1’) S ( ) + bn+QSn+2(.%') + anSn(x) s n Z 0 s
Z3(x) = S3(x) + b1S1(2) , (22)
Zy(x) = Sa(x) + by .

with _
a2n = bn y  A2n4+1 = Po2n+4+20p4+1, TN >0 5
bont+2 = Cny1, bapysz = ponta +apny1, n>0, (23)
by =p2+ag, bo==cop.

Proof. From 18, 19 and 21, we have for n > 0

Zoys(x) = xBpya(a?) + ani1 Prya (2)
Zonta(z) = Pn—i—Z( ) + En+1pn+1($2) + Bnpn(x2) )
Zs(x) = xPr(2?) + ao

Zy(x) = 1(3: )+ Co -

Then, from the above equations, 4 and 7, we get 22 and 23. ]

Proposition 3.7. [17]

+ n 1A
Mm=1, 93 =2 o5 = poy xS

An
Yo=—-AN—1, Yoniqa = AH n>0.

)

. (24)
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Remark 3.8. From 9, 17 and 2/, the sequence {Py,}n>0 salisfies the recurrence relation
8 with

+A an+18n
5(}]) = 1 9 /Blp = —)\ — 1 + )\§\+1 ) 5+2 = aA+1+1 Y > 0 9 (25)
P _ P _y_ptA P an+18n Ay .
M= -1-A y V2 = )‘(A+1)2 A1 » Tn+3 = Pn+1 A+nl+1 Ani? L >0

Definition 3.9. [2] The regular linear functional v is called Laguerre-Hahn if its formal
Stieltjes function S(v)(z) satisfies the Riccati equation

~ ’ ~ ~ ~

®(2)S (v)(2) = B(2)S*(v)(2) + C()S(v)(2) + D() , (26)

where ® is monic, B, C and D are polynomials and

S =~ % S

n>0

It was shown in [9] that 26 is equivalent to
(®(z)v) + Vv + Bz 'v?) =0, (27)

with

We also have the following relation:

D(x) = —(v60®) (z) — (v60¥)(z) — (V3 B)(x) .
Remark 3.10. [15] When B = 0 in 26 or 27, the linear form v is semiclassical.

Proposition 3.11. [1] We define d = max(deg(®),deg(B)) and p = deg(¥).

The Laguerre-Hahn linear functional v satisfying 27 is of class § = max(ci -2,p—1) if
and only if

[TH® () + ¥(0)| + Be)] + | (v, 620 + 0. + v006.B) |} £ 0,
ceZ

where Z denotes the set of zeros of .

Corollary 3.12. The linear functional v satisfying 26 is of class s if and only if

[T{IC@1+1B(e) + D(e)} #0. (28)

ceEZ
Remark 3.13. (i) Equation 28 is equivalent to the fact the polynomial coefficients in 26
are coprime.

(ii) Since v is symmetric linear functional, then if p is even, deg(®) and deg(B) are odd
;if pois odd, deg(®) and deg(B) are even.



Proposition 3.14. Ifv is a Laguerre-Hahn linear functional satisfying 20, then for every
A € C— {0} such that P,(0,\)A, # 0, n > 0, the linear functional u defined by 11 is
reqular and Laguerre-Hahn. It satisfies

/

®(2)S (u)(2) = B(2)S*(u)(2) + C(2)S(u)(2) + D(2) , (29)

where

and u is of class s such that s =< §+ 8.

Proof. We have [14]

S(v)(z) = S(=A"1¢%)(2)
= A ()(2) + (ufo(€9)(2)) (31)
= A" H2AS(u)(2) + 23 + 2} .

By substitution 31 in 26, we easily find 29 and 30.
The linear functional u satisfies the distribution equation
(®(2)u) + Vu+ Bz 'u?) =0, (32)
where ® and B are the polynomials defined by 30 and
U(x) = - (z) — C(x) = 2*(U(z) + 22 z(2® + 1) B(x)) . (33)
Then deg(®) <5+ 6, deg(B) < §+ 10 and deg(V¥) :=p < §+09.
Thus d = max(deg(®),deg(B)) < 5§+ 10 and s = max(d —2,p—1) <5+ 8. O
Proposition 3.15. The class of u depends only on the zero x =0 of ®.

Proof. Since v is a Laguerre-Hahn linear functional of class 3, S(v)(z) satisfies 26, where
the polynomials ® , B, C and D are coprime. Let ®, B, C and D be as in . Let ¢ be
a zero of @ different from 0, this implies that ®(c) = 0. We know that |C(c)| + |B(c)| +

D(e)] £0.
(i) if B(c) # 0, then B(c) # 0,
(i) if B(c) = 0 and C(c) # 0, then C(c) # 0,
(iii) if B(c) = C(c) = 0, then D(c) # 0, whence |C(c)| + |B(c)| + |D(¢)| # 0. O

Concerning the class of u, we have the following result.
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Proposition 3.16. Let t = deg(®), r = deg(B), p = deg(V), X(2) = ®(2) + A\D(2) and
Y (2) = 3®(2) + A1 B(2). Under the conditions of , for the class of u, the following four
different cases hold:

(1) If X(0) # 0, then

5§48 ifp<i4+l,t<7T,
s=1¢ 5§46 ifp=rf+1, t<F+20rp<i+1,t=7F+2, (34)
44 ifp<FH+1,t>F+4orp>7+3
(2) If X(0) = 0 and C(0) — X' (0) # 0, then
3 ifp<i4+l, t<F,
s=< 5§45 ifp=Ff+1, t<i+20rp<i+1l,t=7F+2, (35)
§4+3 ifp<iF+1,t>F+4orp>7F+3.

(3) If X(0) = C(0) — X' (0) = 0 and C'(0) — Y(0) — X" (0) # 0, then

5§46 ifp<i4+l, t<T,
s={ 5§44 ifp=F4+1, t<Fi+20rp<F+1l,t=7F+2 (36)
§4+2 ifp<FH+1,t>F4+4dorp>7F+3,

’

(4) If X(0) = C(0) — X' (0) = C'(0) — Y(0) — X" (0) = 0 and ®(0) # 0, then

§4+5 ifp<i+l, <7,
s=2 5+3 ifp=7+1, I<F4+20rp<i+1,t=7+2, (37)
5§41 ifp<i+1,t>F4+4dorp>7+3,

where the polynomials ®, B, C and D are defined in (26).

Proof. (1) If X(0) # 0, then from 30 and 33 we have
t=t+4, r=74+8, p<max(p+4,7+7).

We will distinguish three cases:

(a) p<7+1,thenp=7+7and s = max(t+2,7+7). Ift <7 thens=7+6=5+8. If
= 7+2, then s = 746 = §+6, since § = 7 in this case. If { > 744, then s = t+2 = §+4.

ﬁ:r—i—l,then~p:r+7:p+6~ands:max(t+2,p+5). If t < p+1, then
+5=8+6.Ift>p+3, thens=t+2=5+4.

(c) p>7+3, then p < p+4 and s = max(f + 2,5 + 3).
Sincet+2=5§+4or p+3=25+4, then s =5+ 4.

Therefore, from the above situations, we deduce 34.

®
=D
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(2) If X(0) = 0, then from 30 we have B(0) = C'(0) = D(0) = 0, therefore 29-30 is divisible
by z. Thus, u fulfils 29 with

®(2) = ( )

B(z) = -A"'2"B(2)

C(z) =23 ( )—2)\ 1422 +1)B(2) — 42%0(2) ,

D(2) = (2 + 1)0(2) — 328(2) — AL2(2 + 1)2B(2) — (6o(® + AD))(2) .

(38)

Whether C(0) — X' (0) # 0, it is not possible to simplify, which means that the class of
verifies 77.

!

(3) If X(0) = C(0) — X'(0) = 0, then it is possible to simplify 29-38 by z. Thus, u fulfils
29 with

= 22C(2) — 227 123(22 + 1) B(2) — 429(2) , (39)

(2) = 2C(2) + (00C)(2) — 38 (2) — A1 (2> + 1)°B(2) — (65(® + AD))(2) -

Thus, if C'(0) — Y (0) — %XN(O) # 0, it is not possible to simplify, which means that the
class of u verifies 37.

(4) If X(0) = C(0) — X'(0) = C'(0) — Y/(0) — £X"(0) = 0, then it is possible to simplify
29-39 by z. Thus, u fulfils 29 with

P(z) = ( ) s

B(z) = -A"'2°B(z)

C(z) = é( ) —22A7122(22 + 1)B(2) — 49(2) ,

D(2) = C(z) + (620)(2) — (00(3® + X' B))(2) — A\'2B(2) — (83(® + AD))(2) .

Therefore, if i)(O) # 0, it is not possible to simplify, which means that the class of u verifies
37. O

4. Examples

Example 4.1. Let v be the associated linear functional of the first order of Hermite. Here

9, 11]
2n+3
pmrr=n+1, pmpp=——, n20, (40)
d(x)=1, V(z)=2x, Bx)=-1,
(41)

C(x)=—22z, D(x)=-2.
In this case, the linear functional v is a Laguerre-Hahn linear functional of class § = 0.
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From 10 and 40, we have

P,(0) = (-1)"T(n+1), n>0.

(42)

From 5, 8, 9 and 40, we get the second -order recurrence relation satisfied by {pn}nzo-
Using this relation, we deduce by induction

B(0) = 2(—1)™* <r<n 1a)- M) ,

N

Using 6, 42 and 43, we obtain

and

with

and

with

By =" 0, nso,

I'2n+2)

A” = 22n

4a(3) = (1 = 2)VAT(n 4 1) +4XT(n +3), 0 >0,

n—1 5
I'(v+2) 4 T(v+3)
o =23 (V7 +— 2] _y),
VZ;)( (v + %) T (v+2) )
n—1
I'(v+2)
o =25 (1 - /r :
I;)( \/_F(I/+ g))
n—1
@1(10) _J/E I'(v+2)
\ 2 v=0 F(V+ %)
D(v+2 F(v+3 e
F(]j—{—% = Op+1 Oy, F(V+2) — Wy+1 28]

F(I/+§) ’
2 M(v+3)

{ UV:2F(V+§) v>0,
v = 3T(w+1)

Therefore for n > 0, we have

with

I'(2n 4 2
A, = %eno\) ,
60()\) =A + 1 3
en(N) = A(VTEED + gi((’j;l)) — 20— 3)A2 4 (18n + 17 — 4y/m 42
+\FF"+2 —1,n>1.

F(+

13

n>0.

<A2®§3) +A(14+20W) 41+ @S”) ., n>0,

(n42)
L(n+3)



Then, u is regular for every X\ # 0 such that

dp(Nen(A) #0, n>0. (46)
From 20 and 44, we get
Gy = d;‘;(l /(\?) . n>0 (47)

Using 24, 45 and 47, we obtain

Mm=1,r2==-A-1,7=2A,

Yona = (n+1)(2n + 352N 0 >0,

_ (n+1)dant2(A)ezn(A)
Vdnts = 2(4n+3;L(2n+12)d-;i+1(e§)62n+1()\) n20,

_ 2n+3)dont3(Neant1(N)
| V047 = Gt B ey » 12 0.

Taking into account that the linear functional v is Laguerre-Hahn and by virtue of , the
linear functional u is also Laguerre-Hahn. It satisfies 29 and 32 with

B(x) =2, W) =-22"125@2+1-)), B(z)=r"12",
Cla)=20"125(@2 +1-)\) —42%, D)=\ ""22-2)@?+1)2— 22+ 2\ +1.

From 41, we have

XO) =1-2), CO)-X(0)=0, C(0)-Y(0)-2X"(0)=-5-A".

Now it is enough to use to obtain the following.
(i) If X satisfies 46 and A\~ # 2, then the class of is s = 6.
(ii) If \=1 = 2, then the class of is s = 4.

Example 4.2. Let v be the associated linear functional of the first order of J(a, —a).
Here [9, 11]

_ (@2n+a+2)(2n—a+2)
Pantl = " (In+3)(dnts) (48)
_ (2n+a+3)(2n—a+3)
P2n+2 = sy angn 0 20,
Ba) =~ 1, )= o, Bla)— "
r)=z"—-1, r) = —4x, xr) = ,
3 (49)

C(x) =2z, D(x)=3.
We assume (1 — a?) # 0, then v is a Laguerre-Hahn linear functional of class § = 0.

By applying the same process as we did to obtain 44, 45 and using the above results,
we can get for n >0

5 N G
Pp(0,X) = T@ntat %)fn()‘) ; (50)

14



and
3rl(2n+a+2)I'(2n — a+ 2)
. L) 51
2n+2(4n + 3)T (o + 2)T(2 — a)[2(2n + 3) 7 () (51)

where
Tn+14+2)T(n+1-2 434+ e\ (ntd_a
fa(A) = (1 -3X) ke +§) (n+a 2) | 3 (”+§+§) (Z+§ 2) >0,
r+5)Ira-g) Fg+9)I'E-9)
and
90()‘) =A+1 ;
_ 2 _ (1-3))2 Pn2+$)Mnt2-8) _ TE+HNE-%)
9n(A) = 3mL(2 + @) (2 O‘){ 20+5)2(1-5) ( T(nt3+2)(nt3-9) r(%é)r(%g%))
N 322 P53+ m+5-5)  TG+3IG-9)
PErr(E—5) \ TeH e -3) ~ T 5ri-3)
3A(1-3)) n(2n+5
T -G+ - ‘;}

Then, u is reqular for every A # 0 such that
fn()‘)gn()‘) ,n>0. (52)

From 20 and 50, we obtain

= Jni1(A)
= @Cn+a+)2n+a+3)fu(N)’ n>0.

Using 48, 50, 51 and 24, we get

a2 +157—4
( 71:1772:_)‘_17'73:%7

A1
N 7n207

V2n+4 = A,
_ (Cntat+2)(2n—a+2)aon+1Aon

Tan+5 = (An+3)(4n+5)Dan i1 yn 20,
o (2n+a+3)(2n a+3)azn4+2A2nt1

VAn+17 (An+5)(dn+7)Banto ;0.

According to , the linear functional u is also Laguerre-Hahn. It satisfies 29 and 32 with

O(z) =2t(2?-1), V(z)=3A"11-a?)2P(2?+1)—42°, B(z)= —)‘T_l(l —a?)z® |
C(z) = —%)\_1(1 —a?)zd(2? +1) — 223(2% - 2) ,
D(z) = —20=00,2(52 4 1)2 — (22 —2)2 45— 3\

From 49, we have



Now it is enough to to obtain the following.
(i) If X satisfies (52) and A1 # 3, then the class of is s = 6.
(ii) If \™1 =3 and 3+ a? # 0, then the class of is s = 4.
(i4i) If \™' = 3 and 3 + o® = 0, then the class of is s = 3.
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