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Some symmetric Laguerre-Hahn linear functionals of

class six at most

M. Zaatra

Abstract. We show that if v is a symmetric regular Laguerre-Hahn linear form (functional), then
the linear functional u defined by u = −λx−4v + 1

2
δ
′

0
+ δ0 is also regular and symmetric Laguerre-

Hahn linear functional for every complex λ except for a discrete set of numbers depending on v. We
explicitly give the coefficients of the second-order recurrence relation of the orthogonal sequence
associated with u and the class of the linear functional u knowing that of v. Finally, we apply the
above results to some examples.
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1. Introduction

The Product of linear functional by a polynomials is one of the construction processes
of linear functionals. Christoffel has proved that the product of a positive definite linear
functional by a positive polynomial gives a positive definite linear functional [7]. This
result has been generalized in [8]. It was proved that, on certain regularity conditions,
the product of a regular linear functional u by a polynomial R gives a regular linear
functional. In particular, if u is a semiclassical [15] (resp., Laguerre-Hahn [2, 9]), then the
linear functional Ru, if it is regular is also semiclassical (resp., Laguerre-Hahn). Then it
is interesting to consider the inverse problem, which consists in determining all regular
linear functionals u, satisfying Ru = −λv, where v is a given regular linear functional and
λ 6= 0. When R(x) = x − c, x2 (resp., R(x) = x3, x4), Maroni [14, 17] (resp., Maroni
and Nicolau [12, 13]) found necessary and sufficient conditions for u to be regular. Also,
an explicit expression for the orthogonal polynomials (OP) with respect to u is proved.
Finally, it was proved that, if v is semiclassical linear functional (see [1, 3, 13, 17]), then
u is a semiclassical linear functional. See also [11]. In particular, in this paper, Marcellán
and Prianes proved that if v is Laguerre-Hahn linear functional, then u is also a Laguerre-
Hahn linear functional. When R(x) is of degree two, Branquinho and Marcellán [4] found
necessary and sufficient conditions for u to be regular. More generally, when R(x) is any
nonzero polynomial, Lee and Kwon [10] found a necessary and sufficient condition for u

http://www.jcam.azvs.az 3 c© 2011 JCAM All rights reserved.



to be regular and gave its corresponding OP in terms of the OP relative to v.

In this paper, we consider the same problem as in [12] in the symmetric Laguerre-Hahn
case: given a symmetric Laguerre-Hahn linear functional v, find the linear functional u
defined by

u = −λx−4v +
1

2
δ
′′

0 + δ0 ⇔ x4u = −λv , (u)1 = (u)3 = 0 , (u)2 = 1.

Section 2 is devoted to the preliminary results and notations used in the sequel. In
section 3, an explicit necessary and sufficient condition for the regularity of the new linear
functional different from in [12] is given. We compute the exact class of the Laguerre-Hahn
linear functional obtained by the above modification. Finally, we apply our results to some
examples.

2. Notations and preliminary results

Let P be the vector space of polynomials with coefficients in C and let P ′ be its
dual. We denote by 〈v, f〉 the action of v ∈ P ′ on f ∈ P. In particular, we denote
by (v)n := 〈v, xn〉 , n ≥ 0 , the moments of v. For any linear functional v and any
polynomial h let Dv = v′, hv, δ0, and x−1v be the linear functionals defined by: 〈v′, f〉 :=
−〈v, f ′〉, 〈hv, f〉 := 〈v, hf〉 , 〈δ0, f〉 := f(0) and

〈

x−1v, f
〉

:= 〈v, θ0f〉 where
(

θ0f
)

(x) =
f(x)− f(0)

x
, f ∈ P.

Then, it is straightforward to prove that for f ∈ P and v ∈ P ′

, we have

x(x−1v) = v , (1)

x−1(xv) = v − (v)0δ0 ,

x−1δ0 = −δ
′

0 .
(2)

We also defined the right multiplication of a linear functional by a polynomial with

(vh)(x) :=

〈

v,
xh(x)− ξh(ξ)

x− ξ

〉

=
n
∑

k=0

( n
∑

j=k

aj(v)j−k

)

xk , h(x) =
n
∑

j=0

ajx
j .

Next, it is possible to define the product of two linear functionals through

〈uv, f〉 := 〈u, vf〉 , f ∈ P .

Let us define the operator σ : P → P by (σf)(x) = f(x2). Then, we define the even
part σv of v by 〈σv, f〉 := 〈v, σf〉 .
Therefore, we have [16]

f(x)(σv) = σ(f(x2)v) . (3)
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A linear functional v is called regular if there exists a sequence of polynomials {Sn}n≥0

(degSn ≤ n) such that

〈v, SnSm〉 = rnδn,m , rn 6= 0, n ≥ 0 .

Then degSn = n, n ≥ 0 and we can always suppose each Sn is monic. In such a case, the
sequence {Sn}n≥0 is unique. It is said to be the sequence of monic orthogonal polynomials
with respect to v.

It is a very well known fact that the sequence {Sn}n≥0 satisfies the recurrence relation
(see, for instance, the monograph by Chihara [5])

Sn+2(x) = (x− ξn+1)Sn+1(x)− ρn+1Sn(x) , n ≥ 0 ,

S1(x) = x− ξ0 , S0(x) = 1 ,
(4)

with
(

ξn, ρn+1

)

∈ C× C− {0} , n ≥ 0 . By convention we set ρ0 = (v)0 = 1.

In this case, let {S(1)
n }n≥0 be the associated sequence of first order for the sequence

{Sn}n≥0 satisfying the recurrence relation

S
(1)
n+2(x) = (x− ξn+2)S

(1)
n+1(x)− ρn+2S

(1)
n (x), n ≥ 0,

S
(1)
1 (x) = x− ξ1, S

(1)
0 (x) = 1, (S

(1)
−1(x) = 0).

(5)

Another important representation of S
(1)
n (x) is, (see [6]),

S(1)
n (x) :=

〈

v,
Sn+1(x)− Sn+1(ζ)

x− ζ

〉

.

Also, let {Sn(., µ)}n≥0 be the co-recursive polynomials for the sequence {Sn}n≥0 satisfying
[6]

Sn(x, µ) = Sn(x)− µS
(1)
n−1(x), n ≥ 0 . (6)

A linear functional v is called symmetric if (v)2n+1 = 0, n ≥ 0. In 4, we have ξn =
0, n ≥ 0 [5].

Throughout this paper, unless otherwise mentioned, the linear functionals v will be
supposed normalized, (i.e., (v)0 = 1), symmetric and regular.

Let us consider the decomposition of {Sn}n≥0 [5, 16]:

S2n(x) = P̃n(x
2) , S2n+1(x) = xR̃n(x

2) , (7)

The sequences {P̃n}n≥0 and {R̃n}n≥0 are respectively orthogonal with to σv and xσv. We
also have

P̃n+2(x) = (x− ξP̃n+1)P̃n+1(x)− ρP̃n+1P̃n(x) , n ≥ 0 ,

P̃1(x) = x− ξP̃0 , P̃0(x) = 1 ,
(8)

with
ξP̃0 = ρ1 , ξ

P̃
n+1 = ρ2n+2 + ρ2n+3 , ρ

P̃
n+1 = ρ2n+1ρ2n+2 , n ≥ 0 . (9)
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By virtue of 4, with ξn = 0, we get Sn+2(0) = −ρn+1S(0). Consequently,

S0(0) = P̃0(0) = 1 , S2n+2(0) = P̃n+1(0) = (−1)n+1
n
∏

ν=0

ρ2ν+1 , n ≥ 0 . (10)

Proposition 2.1. [15] v is regular if and only if σv and xσv are regular.

3. The Laguerre-Hahn case

For a λ ∈ C− {0}, we can define a new linear functional in P ′

,

u = −λx−4v ++
1

2
δ
′

0 + δ0 . (11)

From 1, 2 and 11, we have

x4u = −λv , (u)1 = (u)3 = 0 , (u)2 = 1 . (12)

Remark 3.1. The above problem was partially treated by P. Maroni and I. Nicolau [12]
and we are going to handle it differently.

Proposition 3.2. u is regular if and only if

P̃n(0, λ)∆n 6= 0 , n ≥ 0 .

where P̃n is defined by 7 and

∆n = τn{λ+

n
∑

ν=0

P̃ 2
ν (0, λ)

τν
} , n ≥ 0 ,

τn :=
〈

σv, P̃ 2
n

〉

=
n
∏

ν=0

ρP̃ν =
2n
∏

ν=0

ρν , n ≥ 0 .

Proof. Applying the operator σ for 12 and using 3, we obtain

xσu = −λx−1σv + δ0 . (13)

From 2 and 13, we get
σu = −λx−2σv − δ

′

0 + δ0 . (14)

From 11, it is plain that u is symmetric linear functional. Then, according to , u is
regular if and only if xσu and σu are regular. But xσu = −λx−1σv + δ0 is regular if
and only if λ 6= 0 and P̃n(0, λ) 6= 0 , n ≥ 0 (see [17]). So u is regular if and only if
P̃n(0, λ) 6= 0 and σu = −λx−2σv− δ

′

0+ δ0 is regular. Or, it was shown in [3] that the form
−λx−2σv − δ

′

0 + δ0 is regular if and only if ∆n 6= 0 , n ≥ 0 . Then, we deduce the desired
result.
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Remark 3.3. (i) In fact, we have the well-known identity (see [5])

P̃n+1(0)P̃
(1)
n+1(0) − P̃n+2(0)P̃

(1)
n (0) =

n
∏

ν=0

ρP̃ν+1 , n ≥ 0 .

Dividing the above equation by P̃n+2(0)P̃n+1(0) and using 7, 9 and 10, we obtain

P̃
(1)
n+1(0)

P̃n+2(0)
− P̃

(1)
n (0)

P̃n+1(0)
= −

n+1
∏

ν=0

ρ2ν

ρ2ν+1
, n ≥ 0 .

This leads to

P̃ (1)
n (0) = −P̃n+1(0)Ωn , n ≥ 0 , (15)

with

Ωn =
n
∑

ν=0

τ eν
τ oν

, n ≥ 0 ,

and

τ en =

n
∏

ν=0

ρ2ν , τ on =

n
∏

ν=0

ρ2ν+1 , n ≥ 0 .

Using 6 and 15, we can easily find that u is regular if and only if

(1 + λΩn)

(

λ2Θ(2)
n + λ(1 + 2Θ(1)

n ) + 1 + Θ(0)
n

)

6= 0 , n ≥ 0 , (16)

where for i ∈ {0, 1, 2}

Θ(i)
n =

n−1
∑

ν=0

τ oν
τ eν+1

Ωi
ν , n ≥ 0 ,

( −1
∑

ν=0

)

= 0 .

(ii) If v is a symmetric positive definite functional and λ > 0, then from 16, the linear
functional u is regular.

When u is regular, let {Zn}n≥0 be the corresponding sequence satisfying the recurrence
relation

Zn+2(x) = xZn+1(x)− γn+1Zn(x) , n ≥ 0 ,

Z1(x) = x , Z0(x) = 1 .
(17)

Let us now consider the quadratic decomposition of the sequence {Zn}n≥0

Z2n(x) = Pn(x
2) , Z2n+1(x) = xRn(x

2) , n ≥ 0 . (18)

From 13 and 14, we can deduce the following results.
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Proposition 3.4. [17] The polynomials of the sequence {Rn}n≥0 satisfy the relation

Rn+1(x) = P̃n+1(x) + ãnP̃n(x) , n ≥ 0 , (19)

where

ãn = − P̃n+1(0, λ)

P̃n(0, λ)
, n ≥ 0 . (20)

Proposition 3.5. [3] The polynomials of the sequence {Pn}n≥0 satisfy the relation

Pn+2(x) = P̃n+2(x) + c̃n+1P̃n+1(x) + b̃nP̃n(x) , n ≥ 0 ,

P1(x) = P̃1(x) + c̃0 ,
(21)

where

b̃n =
∆n+1

∆n

, n ≥ 0 ,

and

c̃0 = ρ1 − 1 , c̃n+1 = ρ2n+2 + ρ2n+3 −
P̃n+1(0, λ)P̃n(0, λ)

∆n

, n ≥ 0 .

Lemma 3.6.

Zn+4(x) = Sn+4(x) + bn+2Sn+2(x) + anSn(x) , n ≥ 0 ,

Z3(x) = S3(x) + b1S1(x) ,

Z2(x) = S2(x) + b0 .

(22)

with
a2n = b̃n , a2n+1 = ρ2n+2ãn+1 , n ≥ 0 ,

b2n+2 = c̃n+1 , b2n+3 = ρ2n+4 + ãn+1 , n ≥ 0 ,

b1 = ρ2 + ã0 , b0 = c̃0 .

(23)

Proof. From 18, 19 and 21, we have for n ≥ 0

Z2n+5(x) = xP̃n+2(x
2) + xãn+1P̃n+1(x

2) ,

Z2n+4(x) = P̃n+2(x
2) + c̃n+1P̃n+1(x

2) + b̃nP̃n(x
2) ,

Z3(x) = xP̃1(x
2) + ã0 ,

Z2(x) = P̃1(x
2) + c̃0 .

Then, from the above equations, 4 and 7, we get 22 and 23.

Proposition 3.7. [17]

γ1 = 1 , γ3 = λρ1+λ
λ+1 , γ2n+5 = ρn+1

ãn+1∆n

∆n+1
,

γ2 = −λ− 1 , γ2n+4 =
∆n+1

∆n

, ;n ≥ 0 .
(24)
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Remark 3.8. From 9, 17 and 24, the sequence {Pn}n≥0 satisfies the recurrence relation
8 with

βP
0 = 1 , βP

1 = −λ− 1 + λρ+λ
λ+1 , βP

n+2 =
∆n+1

∆n

+ ρn+1
ãn+1∆n

∆n+1
, n ≥ 0 ,

γP1 = −1− λ , γP2 = λ ρ+λ
(λ+1)2

∆1 , γ
P
n+3 = ρn+1

ãn+1∆n

∆n+1

∆n+2

∆n+1
, ;n ≥ 0 .

(25)

Definition 3.9. [2] The regular linear functional v is called Laguerre-Hahn if its formal
Stieltjes function S(v)(z) satisfies the Riccati equation

Φ̃(z)S
′

(v)(z) = B̃(z)S2(v)(z) + C̃(z)S(v)(z) + D̃(z) , (26)

where Φ̃ is monic, B̃, C̃ and D̃ are polynomials and

S(v)(z) = −
∑

n≥0

(v)n
zn+1

.

It was shown in [9] that 26 is equivalent to

(Φ̃(x)v)
′

+ Ψ̃v + B̃(x−1v2) = 0 , (27)

with
Ψ̃(x) = −Φ̃

′

(x)− C̃(x) .

We also have the following relation:

D̃(x) = −(vθ0Φ̃)
′

(x)− (vθ0Ψ̃)(x) − (v2θ20B̃)(x) .

Remark 3.10. [15] When B̃ = 0 in 26 or 27, the linear form v is semiclassical.

Proposition 3.11. [1] We define d̃ = max(deg(Φ̃),deg(B̃)) and p̃ = deg(Ψ̃).

The Laguerre-Hahn linear functional v satisfying 27 is of class s̃ = max(d̃ − 2, p̃ − 1) if
and only if

∏

c∈Z
{|Φ̃′

(c) + Ψ̃(c)| + |B̃(c)| + |
〈

v, θ2c Φ̃ + θcΨ̃ + vθ0θcB̃
〉

|} 6= 0 ,

where Z denotes the set of zeros of Φ̃.

Corollary 3.12. The linear functional v satisfying 26 is of class s̃ if and only if

∏

c∈Z
{|C̃(c)| + |B̃(c)| + |D̃(c)|} 6= 0 . (28)

Remark 3.13. (i) Equation 28 is equivalent to the fact the polynomial coefficients in 26
are coprime.

(ii) Since v is symmetric linear functional, then if p̃ is even, deg(Φ̃) and deg(B̃) are odd
; if p̃ is odd, deg(Φ̃) and deg(B̃) are even.
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Proposition 3.14. If v is a Laguerre-Hahn linear functional satisfying 26, then for every
λ ∈ C − {0} such that P̃n(0, λ)∆n 6= 0, n ≥ 0, the linear functional u defined by 11 is
regular and Laguerre-Hahn. It satisfies

Φ(z)S
′

(u)(z) = B(z)S2(u)(z) + C(z)S(u)(z) +D(z) , (29)

where

Φ(z) = z4Φ̃(z) ,

B(z) = −λ−1z8B̃(z) ,

C(z) = z4C̃(z)− 2λ−1z5(z2 + 1)B̃(z)− 4z3Φ̃(z) ,

D(z) = z(z2 + 1)C̃(z)− (3z2 + 1)Φ̃(z)− λ−1z2(z2 + 1)2B̃(z)− λD̃(z) ,

(30)

and u is of class s such that s =≤ s̃+ 8.

Proof. We have [14]

S(v)(z) = S(−λ−1ξ4u)(z)

= −λ−1{z4S(u)(z) + (uθ0(ξ
4))(z)}

= −λ−1{z4S(u)(z) + z3 + z} .

(31)

By substitution 31 in 26, we easily find 29 and 30.

The linear functional u satisfies the distribution equation

(Φ(x)u)
′

+Ψu+B(x−1u2) = 0 , (32)

where Φ and B are the polynomials defined by 30 and

Ψ(x) = −Φ
′

(x)− C(x) = x4(Ψ̃(x) + 2λ−1x(x2 + 1)B̃(x)) . (33)

Then deg(Φ) ≤ s̃+ 6 , deg(B) ≤ s̃+ 10 and deg(Ψ) := p ≤ s̃+ 9.

Thus d = max(deg(Φ),deg(B)) ≤ s̃+ 10 and s = max(d− 2, p − 1) ≤ s̃+ 8.

Proposition 3.15. The class of u depends only on the zero x = 0 of Φ.

Proof. Since v is a Laguerre-Hahn linear functional of class s̃, S(v)(z) satisfies 26, where
the polynomials Φ̃ , B̃ , C̃ and D̃ are coprime. Let Φ , B , C and D be as in . Let c be
a zero of Φ different from 0, this implies that Φ̃(c) = 0. We know that |C̃(c)| + |B̃(c)| +
|D̃(c)| 6= 0,

(i) if B̃(c) 6= 0, then B(c) 6= 0,

(ii) if B̃(c) = 0 and C̃(c) 6= 0, then C(c) 6= 0,

(iii) if B̃(c) = C̃(c) = 0, then D̃(c) 6= 0, whence |C(c)|+ |B(c)|+ |D(c)| 6= 0.

Concerning the class of u, we have the following result.
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Proposition 3.16. Let t = deg(Φ), r = deg(B), p = deg(Ψ), X(z) = Φ̃(z) + λD̃(z) and
Y (z) = 3Φ̃(z) + λ−1B̃(z). Under the conditions of , for the class of u, the following four
different cases hold:

(1) If X(0) 6= 0, then

s =











s̃+ 8 if p̃ < r̃ + 1, t̃ ≤ r̃ ,

s̃+ 6 if p̃ = r̃ + 1, t̃ ≤ r̃ + 2 or p̃ < r̃ + 1 , t̃ = r̃ + 2 ,

s̃+ 4 if p̃ ≤ r̃ + 1 , t̃ ≥ r̃ + 4 or p̃ ≥ r̃ + 3 .

(34)

(2) If X(0) = 0 and C̃(0)−X
′

(0) 6= 0, then

s =











s̃+ 7 if p̃ < r̃ + 1, t̃ ≤ r̃ ,

s̃+ 5 if p̃ = r̃ + 1, t̃ ≤ r̃ + 2 or p̃ < r̃ + 1 , t̃ = r̃ + 2 ,

s̃+ 3 if p̃ ≤ r̃ + 1 , t̃ ≥ r̃ + 4 or p̃ ≥ r̃ + 3 .

(35)

(3) If X(0) = C̃(0)−X
′

(0) = 0 and C̃
′

(0) − Y (0) − 1
2X

′′

(0) 6= 0, then

s =











s̃+ 6 if p̃ < r̃ + 1, t̃ ≤ r̃ ,

s̃+ 4 if p̃ = r̃ + 1, t̃ ≤ r̃ + 2 or p̃ < r̃ + 1 , t̃ = r̃ + 2 ,

s̃+ 2 if p̃ ≤ r̃ + 1 , t̃ ≥ r̃ + 4 or p̃ ≥ r̃ + 3 ,

(36)

(4) If X(0) = C̃(0)−X
′

(0) = C̃
′

(0)− Y (0)− 1
2X

′′

(0) = 0 and Φ̃(0) 6= 0, then

s =











s̃+ 5 if p̃ < r̃ + 1, t̃ ≤ r̃ ,

s̃+ 3 if p̃ = r̃ + 1, t̃ ≤ r̃ + 2 or p̃ < r̃ + 1 , t̃ = r̃ + 2 ,

s̃+ 1 if p̃ ≤ r̃ + 1 , t̃ ≥ r̃ + 4 or p̃ ≥ r̃ + 3 ,

(37)

where the polynomials Φ̃, B̃, C̃ and D̃ are defined in (26).

Proof. (1) If X(0) 6= 0, then from 30 and 33 we have

t = t̃+ 4 , r = r̃ + 8 , p ≤ max(p̃+ 4, r̃ + 7) .

We will distinguish three cases:

(a) p̃ < r̃+1, then p = r̃+7 and s = max(t̃+2, r̃+7). If t̃ ≤ r̃, then s = r̃+6 = s̃+8. If
t̃ = r̃+2, then s = r̃+6 = s̃+6, since s̃ = r̃ in this case. If t̃ ≥ r̃+4, then s = t̃+2 = s̃+4.

(b) p̃ = r̃ + 1, then p = r̃ + 7 = p̃ + 6 and s = max(t̃ + 2, p̃ + 5). If t̃ ≤ p̃ + 1, then
s = p̃+ 5 = s̃+ 6. If t̃ ≥ p̃+ 3, then s = t̃+ 2 = s̃+ 4.

(c) p̃ ≥ r̃ + 3, then p ≤ p̃+ 4 and s = max(t̃+ 2, p̃+ 3).

Since t̃+ 2 = s̃+ 4 or p̃+ 3 = s̃+ 4, then s = s̃+ 4.

Therefore, from the above situations, we deduce 34.
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(2) If X(0) = 0, then from 30 we have B(0) = C(0) = D(0) = 0, therefore 29-30 is divisible
by z. Thus, u fulfils 29 with























Φ(z) = z3Φ̃(z) ,

B(z) = −λ−1z7B̃(z) ,

C(z) = z3C̃(z)− 2λ−1z4(z2 + 1)B̃(z)− 4z2Φ̃(z) ,

D(z) = (z2 + 1)C̃(z) − 3zΦ̃(z)− λ−1z(z2 + 1)2B̃(z)− (θ0(Φ̃ + λD̃))(z) .

(38)

Whether C̃(0)−X
′

(0) 6= 0, it is not possible to simplify, which means that the class of u
verifies ??.

(3) If X(0) = C̃(0) −X
′

(0) = 0, then it is possible to simplify 29-38 by z. Thus, u fulfils
29 with























Φ(z) = z2Φ̃(z) ,

B(z) = −λ−1z6B̃(z) ,

C(z) = z2C̃(z)− 2λ−1z3(z2 + 1)B̃(z)− 4zΦ̃(z) ,

D(z) = zC̃(z) + (θ0C̃)(z)− 3Φ̃(z) − λ−1(z2 + 1)2B̃(z)− (θ20(Φ̃ + λD̃))(z) .

(39)

Thus, if C̃
′

(0) − Y (0) − 1
2X

′′

(0) 6= 0, it is not possible to simplify, which means that the
class of u verifies 37.

(4) If X(0) = C̃(0) −X
′

(0) = C̃
′

(0) − Y (0) − 1
2X

′′

(0) = 0, then it is possible to simplify
29-39 by z. Thus, u fulfils 29 with























Φ(z) = zΦ̃(z) ,

B(z) = −λ−1z5B̃(z) ,

C(z) = zC̃(z)− 2λ−1z2(z2 + 1)B̃(z)− 4Φ̃(z) ,

D(z) = C̃(z) + (θ20C̃)(z) − (θ0(3Φ̃ + λ−1B̃))(z) − λ−1zB̃(z) − (θ30(Φ̃ + λD̃))(z) .

Therefore, if Φ̃(0) 6= 0, it is not possible to simplify, which means that the class of u verifies
37.

4. Examples

Example 4.1. Let v be the associated linear functional of the first order of Hermite. Here
[9, 11]

ρ2n+1 = n+ 1 , ρ2n+2 =
2n+ 3

2
, n ≥ 0 , (40)

Φ̃(x) = 1 , Ψ̃(x) = 2x , B̃(x) = −1 ,

C̃(x) = −2x , D̃(x) = −2 .
(41)

In this case, the linear functional v is a Laguerre-Hahn linear functional of class s̃ = 0.

12



From 10 and 40, we have

P̃n(0) = (−1)nΓ(n+ 1) , n ≥ 0 . (42)

From 5, 8, 9 and 40, we get the second -order recurrence relation satisfied by {P̃n}n≥0.
Using this relation, we deduce by induction

P̃ (1)
n (0) = 2(−1)n+1

(

Γ(n+ 2)− 2Γ(n + 5
2 )√

π

)

, n ≥ 0 . (43)

Using 6, 42 and 43, we obtain

P̃n(0, λ) =
(−1)n√

π
dn(λ) , n ≥ 0 , (44)

and

∆n =
Γ(2n+ 2)

22n

(

λ2Θ(2)
n + λ(1 + 2Θ(1)

n ) + 1 + Θ(0)
n

)

, n ≥ 0 ,

with

dn(λ) = (1− 2λ)
√
πΓ(n+ 1) + 4λΓ(n +

3

2
) , n ≥ 0 ,

and










































Θ
(2)
n = 2

n−1
∑

ν=0

(
√
π
Γ(ν + 2)

Γ(ν + 5
2)

+
4√
π

Γ(ν + 5
2)

Γ(ν + 2)
− 4) ,

Θ
(1)
n = 2

n−1
∑

ν=0

(1−
√
π
Γ(ν + 2)

Γ(ν + 5
2)
) ,

Θ
(0)
n =

√
π
2

n−1
∑

ν=0

Γ(ν + 2)

Γ(ν + 5
2 )

.

Or,
Γ(ν + 2)

Γ(ν + 5
2)

= σν+1 − σν ,
Γ(ν + 5

2)

Γ(ν + 2)
= ων+1 − ων ,

with






σν = 2 Γ(ν+2)

Γ(ν+ 3

2
)
, ν ≥ 0 ,

ων = 2
3

Γ(ν+ 5

2
)

Γ(ν+1) , ν ≥ 0 .

Therefore for n ≥ 0, we have

∆n =
Γ(2n+ 2)

22n
en(λ) , (45)

with

e0(λ) = λ+ 1 ,

en(λ) = 4(
√
π

Γ(n+2)

Γ(n+ 3

2
)
+ 4

3

Γ(n+ 5

2
)

Γ(n+1) − 2n− 3)λ2 + (18n + 17− 4
√
π

Γ(n+2)

Γ(n+ 3

2
)
)λ

+
√
π

Γ(n+2)

Γ(n+ 3

2
)
− 1 , n ≥ 1 .

13



Then, u is regular for every λ 6= 0 such that

dn(λ)en(λ) 6= 0 , n ≥ 0 . (46)

From 20 and 44, we get

ãn =
dn+1(λ)

dn(λ)
, n ≥ 0 . (47)

Using 24, 45 and 47, we obtain



































γ1 = 1 , γ2 = −λ− 1 , γ3 = λ ,

γ2n+4 = (n+ 1)(2n + 3)en+1(λ)
2en(λ)

, n ≥ 0 ,

γ4n+5 = 2 (n+1)d2n+2(λ)e2n(λ)
(4n+3)(2n+1)d2n+1(λ)e2n+1(λ)

, n ≥ 0 ,

γ4n+7 =
(2n+3)d2n+3(λ)e2n+1(λ)

(4n+5)(2n+2)d2n+2(λ)e2n+2(λ)
, n ≥ 0 .

Taking into account that the linear functional v is Laguerre-Hahn and by virtue of , the
linear functional u is also Laguerre-Hahn. It satisfies 29 and 32 with
{

Φ(x) = x4 , Ψ(x) = −2λ−1x5(x2 + 1− λ) , B(x) = λ−1x8 ,

C(x) = 2λ−1x5(x2 + 1− λ)− 4x3 , D(x) = (λ−1x2 − 2)(x2 + 1)2 − x2 + 2λ+ 1 .

From 41, we have

X(0) = 1− 2λ , C̃(0)−X
′

(0) = 0 , C̃
′

(0)− Y (0)− 1

2
X

′′

(0) = −5− λ−1 .

Now it is enough to use to obtain the following.

(i) If λ satisfies 46 and λ−1 6= 2, then the class of is s = 6.

(ii) If λ−1 = 2, then the class of is s = 4.

Example 4.2. Let v be the associated linear functional of the first order of J (α,−α).
Here [9, 11]

ρ2n+1 =
(2n+α+2)(2n−α+2)

(4n+3)(4n+5) ,

ρ2n+2 =
(2n+α+3)(2n−α+3)

(4n+5)(4n+7) , n ≥ 0 ,
(48)

Φ̃(x) = x2 − 1 , Ψ̃(x) = −4x , B̃(x) =
1− α2

3
,

C̃(x) = 2x , D̃(x) = 3 .

(49)

We assume (1− α2) 6= 0, then v is a Laguerre-Hahn linear functional of class s̃ = 0.

By applying the same process as we did to obtain 44, 45 and using the above results,
we can get for n ≥ 0

P̃n(0, λ) =
(−1)n

Γ(2n+ α+ 5
2)
fn(λ) , (50)

14



and

∆n =
3πΓ(2n + α+ 2)Γ(2n − α+ 2)

24n+2(4n + 3)Γ(α+ 2)Γ(2 − α)Γ2(2n+ 3
2 )

gn(λ) , (51)

where

fn(λ) = (1− 3λ)
Γ(n+ 1 + α

2 )Γ(n+ 1− α
2 )

Γ(1 + α
2 )Γ(1− α

2 )
+ 3λ

Γ(n+ 3
2 +

α
2 )Γ(n + 3

2 − α
2 )

Γ(32 +
α
2 )Γ(

3
2 − α

2 )
, n ≥ 0 ,

and

g0(λ) = λ+ 1 ,

gn(λ) =
2
3πΓ(2 + α)(2 − α)

{

(1−3λ)2

Γ2(1+α

2
)Γ2(1−α

2
)

(

Γ(n+2+α

2
)Γ(n+2−α

2
)

Γ(n+ 3

2
+α

2
)Γ(n+ 3

2
−α

2
)
− Γ(2+α

2
)Γ(2−α

2
)

Γ( 3
2
+α

2
)Γ( 3

2
−α

2
)

)

+ 3λ2

Γ2( 3
2
+α

2
)Γ2( 3

2
−α

2
)

(

Γ(n+ 5

2
+α

2
)Γ(n+ 5

2
−α

2
)

Γ(n+1+α

2
)Γ(n+1−α

2
) − Γ( 5

2
+α

2
)Γ( 5

2
−α

2
)

Γ(1+α

2
)Γ(1−α

2
)

)

+ 3λ(1−3λ)n(2n+5)

2Γ(1+α

2
)Γ(1−α

2
)Γ( 3

2
+α

2
)Γ( 3

2
−α

2
)

}

, n ≥ 1 .

Then, u is regular for every λ 6= 0 such that

fn(λ)gn(λ) , n ≥ 0 . (52)

From 20 and 50, we obtain

ãn =
fn+1(λ)

(2n+ α+ 7
2)(2n + α+ 5

2)fn(λ)
, n ≥ 0 .

Using 48, 50, 51 and 24, we get



































γ1 = 1 , γ2 = −λ− 1 , γ3 =
λ(α2+15λ−4)

15(λ+1) ,

γ2n+4 =
∆n+1

∆n

, n ≥ 0 ,

γ4n+5 =
(2n+α+2)(2n−α+2)ã2n+1∆2n

(4n+3)(4n+5)∆2n+1
, n ≥ 0 ,

γ4n+7 =
(2n+α+3)(2n−α+3)ã2n+2∆2n+1

(4n+5)(4n+7)∆2n+2
, n ≥ 0 .

According to , the linear functional u is also Laguerre-Hahn. It satisfies 29 and 32 with











Φ(x) = x4(x2 − 1) , Ψ(x) = 2
3λ

−1(1− α2)x5(x2 + 1)− 4x5 , B(x) = −λ−1

3 (1− α2)x8 ,

C(x) = −2
3λ

−1(1− α2)x5(x2 + 1)− 2x3(x2 − 2) ,

D(x) = −λ−1(1−α2)
3 x2(x2 + 1)2 − (x2 − 2)2 + 5− 3λ .

From 49, we have

X(0) = 3λ−1 , C̃(0)−X
′

(0) = 0 , C̃
′

(0)−Y (0)−1

2
X

′′

(0) = 4−λ−1

3
(1−α2) , Φ̃(0) = −1 .

15



Now it is enough to to obtain the following.

(i) If λ satisfies (52) and λ−1 6= 3, then the class of is s = 6.

(ii) If λ−1 = 3 and 3 + α2 6= 0, then the class of is s = 4.

(iii) If λ−1 = 3 and 3 + α2 = 0, then the class of is s = 3.
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Thése, Universite Pierre et Marie Curie, Paris, 1988.

[10] J. H. Lee and K. H. Kwon,Division problem of moment functionals, Rocky Mountain
J. Math., 32 (2) (2002), 739-758.

[11] F. Marcellán and E. Prianes,Perturbations of Laguerre-Hahn linear functionals, Jour-
nal of Computational and Applied Mathematics 105 (1999), no. 1-2, 109-128.

[12] P. Maroni and I. Nicolau,On the inverse problem of the product of a form by a mono-
mial: the case n=4. Part I, Integral Transforms Spec. Funct., 21 (1) (2010), 35-56.

[13] P. Maroni and I. Nicolau,On the inverse problem of the product of a form by a poly-
nomial: The cubic case, Appl. Numer. Math., 45 (2003), 419-451.

16



[14] P. Maroni,On a regular form defined by a pseudo-function, Numer. Algorithms 11,
(1996), 243-254.
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