

Some Properties and Homomorphisms of Pseudo-Q-Algebras

Shwan A. Bajalan, Sule A. Özbal*

Abstract. In this paper, we study pseudo-*Q*-algebras and investigate some of their properties. We also consider ideals, minimal elements and center of pseudo-*Q*-algebras. Additionally, we define homomorphism of these algebras.

Key Words and Phrases: *Q*-algebras, subalgebras, ideals, pseudo-*Q*-algebras, minimal element, centre, homomorphism.

2010 Mathematics Subject Classifications: 03G25, 06F35

1. Introduction

BCK-algebras and BCI-algebras were introduced by Imai. and Iseki as two classes of abstract algebras in 1966 [7], [8]. It is known that the class of BCK-algebras is a proper subclass of BCI-algebras. In 1983, BCH-algebras as a wide class of abstract algebras were introduced by Hu and Li [12], [18]. In their study, it is given that the class of BCI-algebras are proper subclasses of BCH-algebras. In 1999, the notion of d-algebras that is another useful generalization of BCK-algebras was introduced by Neggers and Kim [19]. In 2001, a new notion called a *Q*-algebras was introduced by J. Neggers, S. S. Ahn and H. S. Kim [11]. At the same time pseudo-BCK-algebras as an extension of BCK-algebras was introduced by G. Geordescu, and A. Iorgulescu [3]. In 2008, pseudo-BCK-algebras as a natural generalization of BCI-algebras and pseudo-BCK-algebras were introduced by W. A. Dudek and Y. B. Jun [14]. These algebras have also connections with other algebras of logics such as pseudo-MV-algebras and pseudo-BL-algebras defined by G. Georgescu and A. Iorgulescu [5] and [4], respectively. As a generalization of many algebras, these pseudo algebras has been studied by many researchers [1], [2], [16] and [9], [15]. In this paper, we consider pseudo-*Q*-algebras. We state some basic properties of pseudo-*Q*-algebras and provide some characterization of these algebras. Additionally, we consider the ideals and homomorphisms of pseudo-*Q*-algebras.

*Corresponding author.

2. Preliminaries

Definition 2.1. [11] A Q-algebra $(X; *, 0)$ is a nonempty set X with a constant 0 and a binary operation $*$ satisfying the following axioms:

- (I) $x * x = 0$;
- (II) $x * 0 = x$;
- (III) $(x * y) * z = (x * z) * y$ for all $x, y, z \in X$.

For brevity, we also call X a Q-algebra. On X we can define a binary relation \leq by $x \leq y$ if and only if $x * y = 0$ for all $x, y \in X$. Recently, Ahn and Kim [13] introduced the notion of QS -algebras. A Q -algebra X is said to be a QS -algebra if it satisfies the additional relation:

- (IV) $(x * y) * (x * z) = z * y$, for any $x, y, z \in X$.

Definition 2.2. [11] Let $(X; *, 0)$ be a Q -algebra and $I(\neq \emptyset) \subseteq X$. The set I is called an ideal of X if for any $x, y, z \in X$ the following hold:

- (1) $0 \in I$;
- (2) $x * y \in I$ and $y \in I$ imply $x \in I$.

Obviously, $\{0\}$ and X are ideals of X . We call $\{0\}$ and X the zero ideal and the trivial ideal of X , respectively. An ideal I is said to be proper if $I \neq X$.

Definition 2.3. [11] An ideal I of a Q -algebra $(X; *, 0)$ is said to be implicative if $(x * y) * z \in I$ and $y * z \in I$, then $x * z \in I$, for any $x, y, z \in X$.

+99+9++9+99+96+

Example 2.4. [11] Let $X = \{0, 1, 2, 3\}$ be a set with the following table:

*	0	1	2	3
0	0	0	0	0
1	1	0	0	0
2	2	0	0	0
3	3	3	3	0

Then $(X; *, 0)$ is a Q -algebra, which is not a $BCH/BCI/BCK$ -algebra. Neggers and Kim [6] introduced the related notion of B -algebra, that is, algebras $(X; *, 0)$ which satisfy (I) $x * x = 0$; (II) $x * 0 = x$; (V) $(x * y) * z = x * (z * (0 * y))$, for any $x, y, z \in X$. It is easy to see that B -algebras and Q -algebras are different notions. For instance, this example illustrates a Q -algebra, but not a B -algebra, since $(3 * 2) * 1 = 0 \neq 3 = 3 * (1 * (0 * 2))$.

Consider the following example. Let $X = \{0, 1, 2, 3, 4, 5\}$ be a set with the following table [11]:

*	0	1	2	3	4	5
0	0	2	1	3	4	5
1	1	0	2	4	5	3
2	2	1	0	5	3	4
3	3	4	5	0	2	1
4	4	5	3	1	0	2
5	5	3	4	2	1	0

Then $(X; *, 0)$ is a B -algebra but not Q -algebra since $(5 * 3) * 4 = 3 \neq 4 = (5 * 4) * 3$.

The following example shows that a Q -algebra may not satisfy the associative law.

Example 2.5. [11] (a) Let $X = \{0, 1, 2\}$ with the table as follows:

*	0	1	2
0	0	2	1
1	1	0	2
2	2	1	0

Then X is a Q -algebra, but associativity does not hold, since $(0 * 1) * 2 = 0 \neq 1 = 0 * (1 * 2)$.

(b) Let Z and R be the set of all integers and real numbers, respectively. Then $(Z; -, 0)$ and $(R; \div, 1)$ are nonassociative Q -algebras where " - " is the usual subtraction and \div is the usual division.

Theorem 2.6. [11] Every Q -algebra $(X; *, 0)$ satisfying the associative law is a group under the operation $*$.

Proof. Putting $x = y = z$ in the associative law $(x * y) * z = x * (y * z)$ and using (I) and (II) of Definition 2.1, we obtain $0 * x = x * 0 = x$. This means that 0 is the zero element of X . By (I), every element x of X has as its inverse the element x itself. Therefore $(X; *)$ is a group. \square

3. Pseudo-Q-algebras

Definition 3.1. ([10]) A pseudo-BCH-algebra is an algebra $(X; *, \diamond, 0)$ of type $(2; 2; 0)$ satisfying for all $x, y, z \in X$ the axioms:

(pBCH-1) $x * x = x \diamond x = 0$;

(pBCH-2) $(x * y) \diamond z = (x \diamond z) * y$;

(pBCH-3) $x * y = y \diamond x = 0 \Rightarrow x = y$;

(pBCH-4) $x * y = 0 \iff x \diamond y = 0$.

Definition 3.2. ([14]) A pseudo-BCI-algebra is a structure $X = (X; \leq; *, \diamond, 0)$, where \leq is a binary relation on the set X , $*$ and \diamond are binary operations on X and 0 is an element of X , satisfying the axioms for all $x, y, z \in X$:

(pBCI-1) $(x * y) \diamond (x * z) \leq z * y, (x \diamond y) * (x \diamond z) \leq z \diamond y$;

(pBCI-2) $x * (x \diamond y) \leq y, x \diamond (x * y) \leq y$;

(pBCI-3) $x \leq x$;

(pBCI-4) $x \leq y, y \leq x \Rightarrow x = y$;

(pBCI-5) $x \leq y \Rightarrow x * y = 0 \Rightarrow x \diamond y = 0$.

A pseudo-BCI-algebra X is called a pseudo-BCK-algebra if it satisfies the identity

(pBCK) $0 * x = 0 \diamond x = 0$.

† 1. ([12]) Every pseudo-BCH-algebra satisfies (pBCI-2) - (pBCH-5)

Definition 3.3. [17] A pseudo- Q -algebra is a non-empty set X with a constant 0 and two binary operations $*$ and \diamond satisfying the following axioms:

(PQ1) $x * x = x \diamond x = 0$;

(PQ2) $x * 0 = x \diamond 0 = x$;

(PQ3) $(x * y) \diamond z = (x \diamond z) * y$, for all $x, y, z \in X$.

Definition 3.4. Let $(X; *, \diamond, 0)$ be a pseudo- Q -algebras and let $\emptyset \neq I \subset X$. I is called a pseudo subalgebra of X if $x * y, x \diamond y \in I$ whenever $x, y \in I$. I is called ideal of X if it satisfies:

(I1) $0 \in I$;

(I2) $x * y$ or $x \diamond y \in I$ and $y \in I$ imply $x \in I$ for all $x, y \in X$.

We will denote by $\text{Id}(X)$ the set of all ideals of X . Obviously, $\{0\}, X \in \text{Id}(X)$.

Example 3.5. Let $X = \{0, 1, 2, 3\}$. Define the binary operations " $*$ " and " \diamond " on X by the following tables:

$*$	0	1	2	3	\diamond	0	1	2	3
0	0	0	0	0	0	0	0	0	0
1	1	0	1	0	1	1	0	0	0
2	2	0	0	0	2	2	2	0	0
3	3	2	3	0	3	3	3	1	0

Then it is easy to show that $(X; *, 0)$ and $(X; \diamond, 0)$ are not Q -algebras, but $(X; *, \diamond, 0)$ is a pseudo- Q -algebra. Let $I = \{0, 1\}$. Then I is a pseudo subalgebra of X , but not an ideal of X , since $2 * 1 = 0$, and $0, 1 \in I$ but $2 \notin I$.

Proposition 3.6. If $(X; *, \diamond, 0)$ is a pseudo- Q -algebra, then (PQ4) $(x * (x \diamond y)) \diamond y = (x \diamond (x * y)) * y = 0$, for any $x, y \in X$.

Proof. Let x, y be in X . Then by (PQ1) and (PQ3), we have $(x * (x \diamond y)) \diamond y = (x \diamond y) * (x \diamond y) = 0$ and $(x \diamond (x * y)) * y = (x * y) \diamond (x * y) = 0$. \square

We now investigate some relations between pseudo- Q -algebras and pseudo-BCH-algebras. The following theorems are easily proven, and we omit their proofs.

Theorem 3.7. Every pseudo-BCH-algebra X is a pseudo- Q -algebra. Every pseudo- Q -algebra X satisfying condition

$$(pBCH)(x * y) = (y \diamond x) = 0 \quad \text{implies} \quad x = y$$

is a pseudo-BCH-algebra.

Theorem 3.8. [17] Every pseudo- Q -algebra X satisfying

$$x * (x \diamond y) = x * y$$

or

$$x \diamond (x * y) = x \diamond y$$

for all $x, y \in X$ is a trivial algebra.

Proof. Putting $x = y$ in the equation $x * (x \diamond y) = x * y$ or $x \diamond (x * y) = x \diamond y$, we obtain $x * 0 = 0$ or $x \diamond 0 = 0$. By (PQ2), we have $x = 0$. Hence X is a trivial algebra. \square

Definition 3.9. Let $(X; *, \diamond, 0)$ be a pseudo- Q -algebras. Define the relation " \leq " on X by

$x \leq y$ if and only if $x * y = 0$ (or equivalently, $x \diamond y = 0$)

for all $x, y \in X$.

Proposition 3.10. In a pseudo- Q -algebra $(X; *, \diamond, 0)$ the following properties hold for all $x, y \in X$:

$$(1) x \leq 0 \Rightarrow x = 0;$$

$$(2) x * (x \diamond y) \leq y, x \diamond (x * y) \leq y; [17]$$

$$(3) 0 * x = 0 \diamond x; [17]$$

$$(4) x \leq y \Rightarrow 0 * x = 0 \diamond y;$$

$$(5) 0 \diamond (0 * (0 \diamond x)) = 0 \diamond x, 0 * (0 \diamond (0 * x)) = 0 * x;$$

$$(6) 0 * (x * y) = (0 \diamond x) \diamond (0 * y); [17]$$

$$(7) 0 \diamond (x \diamond y) = (0 * x) * (0 \diamond y) [17].$$

Proof. (1) Let $x \leq 0$. Then we get $x * 0 = 0$. By (PQ2) we have $x * 0 = x \diamond 0 = x$. So $x * 0 = 0 = x \diamond 0 = x$. Hence we get $x = 0$.

(2) By using (PQ3) and (PQ1), we have

$$(x * (x \diamond y)) \diamond y = (x \diamond y) * (x \diamond y) = 0$$

. Hence $x * (x \diamond y) \leq y$. Similarly, $x \diamond (x * y) \leq y$.

(3) By using (PQ1) and (PQ3), we get

$$0 * x = (x \diamond x) * x = (x * x) \diamond x = 0 \diamond x$$

(4) Let $x \leq y$. Then $x \diamond y = 0$ and therefore,

$$0 * x = (x \diamond y) * x = (x * x) \diamond y = 0 \diamond y$$

(5) From (2) it follows that $0 * (0 \diamond x) \leq x$ and $0 \diamond (0 * x) \leq x$. Hence, using (3) and (4) we obtain

$$0 \diamond (0 * (0 \diamond x)) = 0 \diamond x,$$

$$0 * (0 \diamond (0 * x)) = 0 * x$$

(6) By using (PQ1) and (PQ3), we have

$$\begin{aligned} (0 \diamond x) \diamond (0 * y) &= (((x * y) * (x * y)) \diamond x) \diamond (0 * y) \\ &= (((x \diamond x) * y) * (x * y)) \diamond (0 * y) \\ &= ((0 * y) * (x * y)) \diamond (0 * y) \\ &= ((0 * y) \diamond (0 * y)) * (x * y) \\ &= 0 * (x * y) \end{aligned}$$

(7) The proof is similar to the proof of (6). \square

† 2. Every pseudo- Q -algebra satisfies (pBCI-2) and (pBCI-3).

Theorem 3.11. *Let $(X; *, \diamond, 0)$ be a pseudo- Q -algebra. The following statements are equivalent:*

- (i) $x * (y * z) = (x * y) * z$, for all $x, y, z \in X$;
- (ii) $0 * x = x = 0 \diamond x$, for every $x \in X$;
- (iii) $x * y = x \diamond y = y * x$, for all $x, y \in X$;
- (iv) $x \diamond (y \diamond z) = (x \diamond y) \diamond z$, for all $x, y, z \in X$.

Proof. (i) \Rightarrow (ii) Let $x \in X$. We have $x = x * 0 = x * (x * x) = (x * x) * x = 0 * x$. By (3), we have $0 \diamond x = x$.

(iv) \Rightarrow (ii) The proof is similar to the above proof.

(ii) \Rightarrow (iii) Let (ii) hold and $x, y \in X$. By using proposition 3.10(6) and (PQ3) we obtain

$$\begin{aligned} x * y &= 0 * (x * y) = (0 \diamond x) \diamond (0 * y) \\ &= x \diamond y. \\ &= (0 * x) \diamond y = (0 \diamond y) * x = y * x \end{aligned}$$

(iii) \Rightarrow (i) Let $x, y, z \in X$. Using (iii) and (PQ3) we get

$$x * (y * z) = (y \diamond z) * x = (y * x) \diamond z = (x * y) * z.$$

(iii) \Rightarrow (iv) has a proof similar to the proof of (iii) \Rightarrow (i).

Hence all the conditions are equivalent. □

Theorem 3.12. *Every pseudo-Q-algebra $(X; *, \diamond, 0)$ satisfying the associative law is a group under each operation " * " and " \diamond ".*

Proof. Putting $x = y = z$ in the associative law $(x * y) * z = x * (y * z)$ and using (I) and (II), we obtain $0 * x = x * 0 = x$. This means that 0 is the zero element of X . By (I), every element x of X has as its inverse the element x itself. Therefore $(X; *)$ and $(X; \diamond)$ are a group. □

Definition 3.13. An element a of a pseudo-Q-algebra X is said to be *minimal* if for every $x \in X$ the following implication

$$x \leq a \Rightarrow x = a$$

holds.

Proposition 3.14. *Let X be a pseudo-Q-algebra and let $a \in X$. Then the following conditions are equivalent for every $x \in X$:*

- (i) a is minimal;
- (ii) $x \diamond (x * a) = a$;
- (iii) $0 \diamond (0 * a) = a$;
- (iv) $a * x = (0 * x) \diamond (0 * a)$;
- (v) $a * x = 0 \diamond (x * a)$.

Proof. (i) \Rightarrow (ii) By proposition 3.10(1), $x \diamond (x * a) \leq a$ for all $x \in X$. Since a is minimal, we get (ii).

(ii) \Rightarrow (iii) Obvious.

(iii) \Rightarrow (iv) We have $a * x = (0 \diamond (0 \diamond a)) * x = (0 * x) \diamond (0 * a)$.

(iv) \Rightarrow (v) Using proposition 3.10(3) and 3.10(6) we see that $0 \diamond (x * a) = 0 * (x * a) = (0 * x) * (0 * a) = (0 * x) \diamond (0 * a) = a * x$.

(v) \Rightarrow (i) Let $x \leq a$. Then $x * a = 0$ and hence $a * x = 0 \diamond (x * a) = 0$. Thus $a \leq x$. Consequently, $x = a$. \square

Replacing " * " by " \diamond " and " \diamond " by * in Proposition 3.14 we obtain

Proposition 3.15. *Let $(X; *, \diamond, 0)$ be a pseudo-Q-algebra and let $a \in X$. Then for every $x \in X$ the following conditions are equivalent:*

- (i) a is minimal;
- (ii) $x * (x \diamond a) = a$;
- (iii) $0 * (0 \diamond a) = a$;
- (iv) $a \diamond x = (0 \diamond x) * (0 \diamond a)$;
- (v) $a \diamond x = 0 * (x \diamond a)$.

Proposition 3.16. *Let $(X; *, \diamond, 0)$ be a pseudo-Q-algebra and let $a \in X$. Then a is minimal if and only if there is an element $x \in X$ such that $a = 0 * x$.*

Proof. Let a be a minimal element of $(X; *, \diamond, 0)$. By Proposition 3.14, we have $a = 0 * (0 \diamond a)$. If we set $x = 0 \diamond a$, then $a = 0 * x$.

Conversely, suppose that $a = 0 * x$ for some $x \in X$. Using Proposition 3.10 (5) we get $0 * (0 \diamond a) = 0 * (0 \diamond (0 * x)) = 0 * x = a$. From Proposition 3.15 it follows that a is minimal. \square

Definition 3.17. For $x \in X$, set

$$\bar{x} = 0 * (0 \diamond x).$$

By Proposition 3.10 (3), $\bar{x} = 0 * (0 * x) = 0 \diamond (0 \diamond x) = 0 * (0 \diamond x)$.

Proposition 3.18. *Let X be a pseudo-Q-algebra. For any $x, y \in X$ we have:*

- (a) $\bar{x * y} = \bar{x} * \bar{y}$;
- (b) $\bar{x \diamond y} = \bar{x} \diamond \bar{y}$;
- (c) $\bar{\bar{x}} = \bar{x}$.

Proof. (a) Using proposition 3.10(6) and 3.10(7) we get

$$\begin{aligned}\overline{x * y} &= 0 \diamond (0 * (x * y)) = 0 \diamond [(0 \diamond x) \diamond (0 * y)] \\ &= [0 * (0 \diamond x)] * [0 \diamond (0 * y)] = \overline{x} * \overline{y}.\end{aligned}$$

(b) Has a proof similar to (a).

(c) By Proposition 3.10(5), $0 * (0 \diamond (0 * x)) = 0 * x$, that is, $0 * \overline{x} = 0 * x$.
Hence $\overline{\overline{x}} = 0 \diamond (0 * \overline{x}) = 0 \diamond (0 * x) = \overline{x}$. \square

Definition 3.19. Following the terminology from BCH-algebras (see [10], Definition 5) the set $\{x \in X : x = \overline{x}\}$ will be called *the centre of* $(X; *, \diamond, 0)$. We shall denote it by $CenX$. By Proposition 3.14, $CenX$ is the set of all minimal elements of X . We have

$$CenX = \{\overline{x} : x \in X\}.$$

Proposition 3.20. Let $(X; *, \diamond, 0)$ be a pseudo-Q-algebra. Then $CenX$ is a subalgebra of $(X; *, \diamond, 0)$.

Proposition 3.21. Let X be a pseudo-Q-algebra and let $x, y \in CenX$. Then for every $z \in X$ we have

$$x \diamond (z * y) = y * (z \diamond x).$$

Proof. Let $z \in X$. Using Propositions 3.15 and 3.14, we obtain

$$x \diamond (z * y) = [z * (z \diamond x)] \diamond (z * y) = [z \diamond (z * y)] * (z \diamond x) = y * (z \diamond x).$$

\square

Proposition 3.22. Let $(X; *, \diamond, 0)$ be a pseudo-Q-algebra and let $I \in Id(X)$. For any $x, y \in X$, if $y \in I$ and $x \leq y$, then $x \in I$.

Proof. Straightforward. \square

Proposition 3.23. Let $(X; *, \diamond, , 0)$ be a pseudo-Q-algebra and I be a subset of X satisfying (I1). Then I is an ideal of $(X; *, \diamond, 0)$ if and only if for all $x, y \in X$, (I2'') if $x \diamond y \in I$ and $y \in I$, then $x \in I$.

Proof. Let I be an ideal of $(X; *, \diamond, 0)$. Suppose that $x \diamond y \in I$ and $y \in I$. By proposition 3.10(2), $x * (x \diamond y) \leq y$ and from Proposition 3.22 it follows that $x * (x \diamond y) \in I$. Therefore, since $x \diamond y \in I$ and I satisfies (I2), we obtain $x \in I$, that is, (I2'') holds. The proof of the implication (I2'') \Rightarrow (I2) is analogous. \square

Definition 3.24. An ideal I of a pseudo-Q-algebra $(X; *, \diamond, 0)$ is said to be closed if $0 * x \in I$ for every $x \in I$.

Theorem 3.25. *An ideal I of a pseudo- Q -algebra $(X; *, \diamond, 0)$ is closed if and only if I is a subalgebra of $(X; *, \diamond, 0)$.*

Proof. Suppose that I is a closed ideal of $(X; *, \diamond, 0)$ and let $x, y \in I$. By (PQ3) and (PQ1), we have

$$\begin{aligned} ((x * y) * (0 * y)) \diamond x &= [(x * y) \diamond x] * (0 * y) \\ &= [(x \diamond x) * y] * (0 * y) \\ &= (0 * y) * (0 * y) = 0 \end{aligned}$$

Hence $[(x * y) * (0 * y)] \diamond x \in I$. Since $x, 0 * y \in I$, we have $x * y \in I$. Similarly, $x \diamond y \in I$. Conversely, if I is a subalgebra of $(X; *, \diamond, 0)$, then $x \in I$ and $0 \in I$ imply $0 * x \in I$. \square

Definition 3.26. [17] Let $(X; *, \diamond, 0)$ be a pseudo- Q -algebra. For any nonempty subset S of X , we define

$$G(S) = \{x \in S \mid 0 * x = x = 0 \diamond x\},$$

if $S = X$ then $G(x)$ is called the G -part of X .

Definition 3.27. For any pseudo- Q -algebra $(X; *, \diamond, 0)$, the set

$$B(X) = \{x \in X \mid 0 * x = 0 = 0 \diamond x\}$$

is called the p -radical of X .

If $B(X) = \{0\}$, then we say that X is a p -semisimple pseudo- Q -algebra. The following property is obvious:

$$G(X) \cap B(X) = \{0\}.$$

Proposition 3.28. *If $(X; *, \diamond, 0)$ is a pseudo- Q -algebra and $x, y \in X$, then $y \in B(X)$ if and only if $(x * y) \diamond x = 0 = (x \diamond y) * x$.*

Proof. By (PQ3) and (PQ1) we have $(x * y) \diamond x = (x \diamond x) * y = 0 * y = 0$ and $(x \diamond y) * x = (x * x) \diamond y = 0 \diamond y = 0$ if and only if $y \in B(X)$ \square

Proposition 3.29. *Let $(X; *, \diamond, 0)$ be a pseudo- Q -algebra. Then $B(X)$ is an ideal of X .*

Proof. Since $(0 * 0) * 0 = 0$, by Proposition 3.28, we get $0 \in B(X)$. Let $x * y \in B(X)$ and $y \in B(X)$. Then by Proposition 3.28, we have $((x * y) * x) \diamond (x * y) = 0$. By (PQ3), $((x * y) \diamond (x * y)) * x = 0 * x = 0$. Hence $x \in B(X)$. Therefore $B(X)$ is an ideal of X . \square

Proposition 3.30. *If S is a subalgebra of a pseudo- Q -algebra $(X; *, \diamond, 0)$, then $G(X) \cap S = G(S)$.*

Proof. It is obvious that $G(X) \cap S \subseteq G(S)$. If $x \in G(S)$, then $0 * x = x$ and $x \in S \subseteq X$. Then $x \in G(X)$ and so $x \in G(X) \cap S$, which proves the proposition. \square

Theorem 3.31. *Let $(X; *, \diamond, 0)$ be a pseudo-Q-algebra. If $G(X) = X$, then X is p-semisimple.*

Proof. Assume that $G(X) = X$.

By $G(X) \cap B(X) = \{0\}$, we have $\{0\} = G(X) \cap B(X) = X \cap B(X) = B(X)$. Hence X is p-semisimple. \square

4. Homomorphism

Definition 4.1. Let X and Y be a pseudo-Q-algebras. A mapping $f : X \rightarrow Y$ is called a *homomorphism* of pseudo-Q-algebras if

$$f(x * y) = f(x) * f(y) \text{ and } f(x \diamond y) = f(x) \diamond f(y) \text{ for all } x, y \in X.$$

Note that if $f : X \rightarrow Y$ is a homomorphism of pseudo-Q-algebras, then $f(0_X) = 0_Y$ where 0_X and 0_Y are zero elements of X and Y , respectively.

Example 4.2. Let $(X; *, \diamond, 0)$ be a pseudo-Q-algebras, then the function $f : X \rightarrow X$ such that $f(x) = 0 \diamond x$ for any $x \in X$ is a homomorphism of pseudo-Q-algebras.

$$\begin{aligned} f(x) * f(y) &= (0 \diamond x) * (0 \diamond y) \\ &= (0 \diamond x) * (0 * y) \\ &= (0 * (0 * y)) \diamond x \\ &= (0 \diamond (0 * y)) \diamond x \\ &= (0 \diamond x) \diamond (0 * y) \\ &= 0 * (x * y) \\ &= 0 \diamond (x * y) = f(x * y) \end{aligned}$$

$$\begin{aligned} f(x) \diamond f(y) &= (0 \diamond x) \diamond (0 \diamond y) \\ &= (0 * x) \diamond (0 \diamond y) \\ &= (0 \diamond (0 \diamond y)) * x \\ &= (0 * (0 \diamond y)) * x \\ &= (0 * x) * (0 \diamond y) \\ &= 0 \diamond (x \diamond y) = f(x \diamond y) \end{aligned}$$

Example 4.3. Define $\Phi : X \rightarrow \text{Cen}X$ by $\Phi(x) = \bar{x}$ for all $x \in X$. By Proposition 3.18, Φ is a homomorphism from X onto $\text{Cen}X$.

Theorem 4.4. Let $f : X \rightarrow Y$ be a homomorphism of pseudo-Q-algebras. If B is a pseudo strong ideal of Y , then $f^{-1}(B)$ is a pseudo strong ideal of X .

Proof. Assume that B is a pseudo strong ideal of Y . Obviously, $0_x \in f^{-1}(B)$. Let $x, y, z \in X$ be such that $(x * y) \diamond z, (x \diamond y) * z, y \in f^{-1}(B)$. Then $(f(x) * f(y)) \diamond f(z) = f((x * y) \diamond z), f(y) \in B$. Since B is a pseudo strong ideal of Y , it follows from (PI3) and (PI3') that $f(x * z) = f(x) * f(z), f(x \diamond z) = f(x) \diamond f(z) \in B$ so that $x * z, x \diamond z \in f^{-1}(B)$. Hence $f^{-1}(B)$ is a pseudo strong ideal of X . \square

Theorem 4.5. Let $f : X \rightarrow Y$ be a homomorphism of pseudo-Q-algebras.

- (i) If B is a pseudo ideal of Y , then $f^{-1}(B)$ is a pseudo ideal of X .
- (ii) If f is surjective and I is a pseudo ideal of X , then $f(I)$ is a pseudo ideal of Y .

Proof. (i) Straightforward.

(ii) Assume that f is surjective and let I be a pseudo ideal of X . Obviously, $0_Y \in f(I)$. For every $y \in f(I)$, let $a, b \in Y$ be such that $a * y \in f(I), b \diamond y \in f(I)$. Then there exist $x_*, x_\diamond \in I$ such that $f(x_*) = a * y$ and $f(x_\diamond) = b \diamond y$. Since $y \in f(I)$, there exists $x_y \in I$ such that $f(x_y) = y$. Also f is surjective, there exist $x_a, x_b \in X$ such that $f(x_a) = a$ and $f(x_b) = b$. Hence $f(x_a * x_y) = f(x_a) * f(x_y) = a * y \in f(I)$ and $f(x_b \diamond x_y) = f(x_b) \diamond f(x_y) = b \diamond y \in f(I)$, which imply that $x_a * x_y \in I$ and $x_b * x_y \in I$. Since I is a pseudo ideal of X , we get $x_a, x_b \in I$ and thus $a = f(x_a), b = f(x_b) \in f(I)$. Therefore $f(I)$ is a pseudo ideal of X . \square

Corollary 4.6. Let $f : X \rightarrow Y$ be a homomorphism of pseudo-Q-algebras. Then $\text{Kerf} = \{x \in X | f(x) = 0\}$ is a pseudo strong ideal(ideal) of X .

Proposition 4.7. Let $f : (X; *_1, \diamond_1, 0) \rightarrow (Y; *_2, \diamond_2, 0)$ be a homomorphism of pseudo-Q-algebras. Then $x *_1 y, y \diamond_1 x \in \text{Kerf}$ if $f(x) = f(y), \forall x \in X$.

Proof. Assume that $f(x) = f(y), \forall x \in X$. Then $f(x) *_2 f(y) = f(x *_1 y) = 0$ and $f(x) \diamond_2 f(y) = f(x \diamond_1 y) = 0$. Hence $x *_1 y, y \diamond_1 x \in \text{Kerf}$. \square

Proposition 4.8. Let $f : (X; *_1, \diamond_1, 0) \rightarrow (Y; *_2, \diamond_2, 0)$ be a homomorphism of pseudo-Q-algebras. If $y \in \text{Kerf}$, then $x *_1 (x *_1 y), (x *_1 y) *_1 x, x \diamond_1 (x *_1 y), (x *_1 y) \diamond_1 x, x *_1 (x \diamond_1 y), (x *_1 y) *_1 x, x \diamond_1 (x \diamond_1 y), (x \diamond_1 y) \diamond_1 x \in \text{Kerf}$.

Lemma 4.9. Let $f : X \rightarrow Y$ be a homomorphism of pseudo-Q-algebras. Then f is a monomorphism if and only if $\text{Kerf} = \{0\}$.

Theorem 4.10. Let X, Y and Z be pseudo-Q-algebras, and $h : X \rightarrow Y$ be an onto homomorphism of pseudo-Q-algebras and $g : X \rightarrow Z$ be a homomorphism of pseudo-Q-algebras. If $\text{Ker}h \subset \text{Ker}g$, then there exists a unique homomorphism of pseudo-Q-algebras $f : Y \rightarrow Z$ satisfying $f \circ h = g$.

Theorem 4.11. Let X, Y and Z be pseudo-Q-algebras, and $g : X \rightarrow Z$ be a homomorphism of pseudo-Q-algebras and $h : Y \rightarrow Z$ be an one-to-one homomorphism of pseudo-Q-algebras. If $\text{Img} \subset \text{Im}h$, then there exists a unique homomorphism of pseudo-Q-algebras $f : X \rightarrow Y$ satisfying $h \circ f = g$.

References

- [1] G. Dymek, *Atoms and ideals of pseudo-BCI-algebras*, Comment. Math. **52** (2012), 73-90.
- [2] G. Dymek, *p-semisimple pseudo-BCI-algebras*, J. Mult.-Valued Logic Soft Comput. **19** (2012), 461-474.
- [3] G. Georgescu, A. Iorgulescu, *Pseudo-BCK algebras*, an extension of BCK algebras, in: Proc. of DMTCS01: Combinatorics, Computability and Logic, Springer, London. **2001** (2001), 97-114.
- [4] G. Georgescu, A. Iorgulescu, *Pseudo-BL-algebras*, a noncommutative extension of BL algebras, in: Abstracts of the Fifth International Conference FSTA 2000; Slovakia, February. **2000** (2000), 90-92.
- [5] G. Georgescu, A. Iorgulescu, *Pseudo-MV-algebras*, a noncommutative extension of MV algebras, in: The Proc. of the Fourth International Symp. on Economic Informatics, Bucharest, Romania, May. **1999** 1999, 961-968.
- [6] J. Neggers, H.S. Kim, *On B-algebras*, in preparation.
- [7] K. Iseki, *On BCI-algebras*, Math. Sem. Notes Kobe Univ. **1** (1980), 125-130.
- [8] K. Iseki, S. Tanaka, *An introduction to the theory of BCK-algebras*, Math. Japon. **1** (1978), 1-26.
- [9] K. J. Lee, Ch. H. Park, *Some ideals of pseudo-BCI-algebras*, J. Appl. Informatics. **27** (2009), 217-231.
- [10] M. A. Chaudhry, *On BCH-algebras*, Math. Japonica. **36** (1991), 665-676.
- [11] N. Joseph, S. A. Sun, S.K. Hee, *ON Q-ALGEBRAS*, Hindawi Publishing Corp, IJMMS. **27:12** (2001), 749-757.
- [12] Q. L. Hu, X. Li, *On BCH-algebras*, Math. Sem. Notes Kobe Univ. **2** (1983), part 2, 313-320.
- [13] S. S. Ahn, H. S. Kim *On QS-algebras*, J. Chungcheong Math. Soc. **12**. (1999), 33-41.
- [14] W. A. Dudek, Y. B. Jun, *Pseudo-BCI-algebras*, East Asian Math. J. **24** (2008), 187-190.
- [15] Y. B. Jun, H. S. Kim, J. Neggers, *Pseudo-d-algebras*, Information Sciences. **179** (2009), 1751-1759.
- [16] Y. H. Kim, K. S. So, *On minimality in pseudo-BCI-algebras*, Commun. Korean Math. Soc. **27** (2012), 7-13.

- [17] Y. B. Jun, H. S. Kim and S. SH. Ahn, *Structures of Pseudo Ideal and Pseudo Atom in a Pseudo Q-Algebra*, Kyungpook Math. J. 56(2016), p. 95 - 106.
©Kyungpook Mathematical Journal.
- [18] Q. P. and X. Li *On proper BCH-algebras*, Math. Japon.4 (1985), 659-661.
- [19] Neggers, J. and Kim, H. S. *On d-algebras*, Math. Slovaca.1 (1999), 19-26.

Shwan A. Bajalan

Faculty of Science and Letter, Department of Mathematics, Yaşar Üniversitesi, 35100-Izmir, Turkey.
E-mail: shwan.adnan@hotmail.com

Sule A. Özbal

Faculty of Science and Letter, Department of Mathematics, Yaşar Üniversitesi, 35100-Izmir, Turkey.
E-mail:sule.ayar@yasar.edu.tr

Received 01 September 2016

Published 29 September 2016