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Some Common Fixed Point Theorems for Generalized
Contraction Involving Rational Expressions in b-metric
Spaces

G. S. Saluja

Abstract. In this paper, we establish some common fixed point theorems via generalized contrac-
tion involving rational expressions for a pair of mappings in the setting of b-metric spaces. Also,
as a consequence, some results of integral type for such class of mappings is obtained. Our results
extend and generalize several known results from the existing literature.
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1. Introduction and Preliminaries

Fixed point theory has the diverse applications in different branch of mathematics,
statistics, engineering, and economics in dealing with the problem arising in approximation
theory, potential theory, game theory, theory of differential equations, theory of integral
equations and others. The Banach contraction mapping [2] is one of the pivotal results
of analysis. It is a very popular tool in solving existence problems in different fields of
mathematics. This famous theorem can be stated as follows.

Theorem 1.1. (/2]) Let (X,d) be a complete metric space and T be a mapping of X into
itself satisfying:

d(Tz,Ty) < kd(z,y), Vz,ye X (1.1)
where k is a constant in [0,1). Then T has a fived point * € X.

There are many generalizations of the Banach contraction principle in literature (see,
[3, 4, 5, 11, 14, 15]).

In [1], Bakhtin introduced b-metric spaces as a generalization of metric spaces. He
proved the contraction mapping principle in b-metric spaces that generalized the famous
contraction principle in metric spaces. Czerwik used the concept of b-metric space and
generalized the renowned Banach fixed point theorem in b-metric spaces (see, 7, 8]).

In this paper, we study common fixed point in b-metric spaces satisfying generalized
contraction involving rational expressions. Our results extend many known results from
the existing literature.

http://www.jcam.azvs.az 70 © 2011 JCAM All rights reserved.



Some Common Fixed Point Theorems for Generalized Contraction... 71

Definition 1.1. Let X be a nonempty set and let d: X x X — R4 be a function satisfying
the conditions:

(d1) 0 <d(z,y) withx #y and d(x,y) =0 & =z =y;

(do) d(z,y) = d(y,z) for all z,y € X;

(ds) d(z,y) < d(z,z) +d(z,y) for all z,y,z € X.

The d is called a metric on X and the pair (X, d) is called a metric space.

Definition 1.2. ([1]) Let X be a nonempty set and s > 1 be a given real number. A
mapping d: X x X — Ry is called a b-metric if for all x, y, z € X, the following conditions
are satisfied:

(b1M) d(xz,y) =0 & z=y;
(02M) d(z,y) = d(y,z);
(b3M) d(x,y) < s[d(z,z) + d(z,y)].

The pair (X,d) is called a b-metric space.

It is clear from the definition of b-metric space that every metric space is a b-metric
space for s = 1. Therefore, the class of b-metric spaces is larger than the class of metric
spaces.

Some known examples of b-metric, which shows that a b-metric space is a generalization
of a metric space, are the following.

Example 1. ([9]) The set of real numbers together with the functional d(z,y) = |z — y|?
for all x,y € R is a b-metric space with constant s = 2. Also, we obtain that d is not a
metric on R.

Example 2. ([10]) Let X = (P with0 < p < 1, where (% = {{x,} CR: > 02 |z,|P < co}.

Let d: X x X — R defined by d(z,y) = (Zzozl |z, —yn\p) " where x = {z,}, y = {yn} €

(P, Then (X,d) is a b-metric space with the coefficient s = 2'/7 > 1, but not a metric
space.

Example 3. ([13]) Let p be a given real number in the interval (0,1). The space Ly[0,1] of
all real functions x(t),y(t) € [0,1] such that fol |x(t)[Pdt < 1, together with the functional

i) = ([ 1ot - viopar)"”

for each x,y € Lpl0,1] is a b-metric space with the coefficient s = 21/P > 1.

Example 4. (/9]) Let X = {0,1,2}. Defined: X x X — Ry as follows d(0,0) = d(1,1) =
d(2,2) =0, d(1,2) = d(2,1) = d(0,1) = d(1,0) = 1, d(2,0) = d(0,2) =p > 2 for s = §
where p > 2, the function defined as above is a b-metric space but not a metric space for
p > 2.

Example 5. ([9]) Let X = {1,2,3,4} and E = R%. Defined: X x X — R by

=1 e =1 -
d(%y):{(lx i 6’Iw yl™) Zriii
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Then (X, d) is a b-metric space with the coefficient s = g > 1. But it is not a metric
space since the triangle inequality is not satisfied,

d(1,2) > d(1,4) + d(4,2), d(3,4) > d(3,1) +d(1,4).

In our main result we will use the following definitions which can be found in [9] and
[13].

Definition 1.3. Let (X,d) be a b-metric space, x € X and {z,} be a sequence in X.
Then

e {z,} is a Cauchy sequence whenever, if for ¢ > 0, there exists a positive integer N
such that for all n,m > N, d(xp, xm) < €;

o {x,} is called convergent if for e > 0 and n > N, we have d(x,,z) < €, where x is
called the limit point of the sequence {x,}. We denote this by lim,_, T, = T or T, =
as n — 0o;

e (X, d) is said to be a complete b-metric space if every Cauchy sequence in X converges
to a point in x.

Remark 1.1. In a b-metric space (X,d), the following assertions hold:
(i) a convergent sequence has a unique limit;
(ii) each convergent sequence is Cauchy;
(iii) in general, a b-metric is not continuous.

2. Main Results

In this section we shall prove some common fixed point theorems for generalized con-
traction involving rational expressions in the framework of b-metric spaces.

Theorem 2.2. Let (X, d) be a complete b-metric space (CHMS) with the coefficient s > 1.
Suppose that the mappings S, T: X — X satisfy:

as[l + d(z, Sx)]d(y, Ty)
1+ d(z,y)
+as [d(z, Sz) + d(y, Ty)]
+ay [d(z, Ty) + d(y, Sz)] (2.1)

d(Sz,Ty) < apd(z,y)+

for all x,y € X, where ay, as, a3, a4 are nonnegative reals with ay + az + (s + 1)ag + s(s +
1)ag < 1. Then S and T have a unique common fized point in X .

Proof. Let xg be an arbitrary point in X and define
Topt1 = STk, Toptr2 = Twopt1, k=0,1,2,....
Then from (2.1), we have

d(Top i1, Tory2) = d(Swor, TToni1)
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This implies that

d(zoy1, Topt2) <

Similarly, we have

d(Z2k42, Tokt3)

This implies that

d(Tokt2, Takt3) < (

IN

IN

az[l + d(@ak, Swor)]d(@2p+1, T2k+1)
1+ d(z2k, Tog+1)
+ag [d(wok, Swar) + d(Top 11, TT2k11)]
+ay [d(zor, T2opt1) + d(Tok41, STok)]
az[1 + d(xor, Top+1)|d(Tori1, Torg2)
1+ d(z2k, Top+1)
+as [d(zor, Tokt1) + d(Tops1, Top12)]
+aq [d(zor, okt 2) + d(Topr1, Topr1)]
= (a1 + a3) d(zak, Tops1) + (a2 + a3) d(vop11, Top12)
+aq d(xog, Topy2)
(a1 + a3) d(wor, Top41) + (a2 + az) d(vopy1, Tary2)
+say [d(Tak, Tog+1) + d(Tak+1, Tart2)]
= (a1 + a3 + say) d(2ok, o 11)
+(a2 + a3 + saq) d(T2p41, Tok12)- (2.2)

< ay d(zok, Tog+1) +

= a1 d(wok, Top41) +

IN

( a1 + asz + saq

d . 2.3
T ) dlw, wak) (2.3)

d(Szop11, TT2p42)
as[l + d(zory1, STor11)]d(Tor 12, TTok 1 2)
1 +d(wopt1, Tors2)

+a3 [d(T2p41, STorp11) + d(T2n12, TT2x12)]

+aq [d(zory1, T2kt 2) + d(Top12, SToR41)]

az[1l + d(wop11, Tort2)|d(Tor2, Tog13)
1+ d(wop41, Topy2)

+ag [d(@ok11, Tok+2) + d(Tok+2, Tokt3)]

+aq [d(T2p41, Tok+3) + d(Ton12, Tog+2)]

(a1 + a3) d(@op41, Tory2) + (a2 + a3) d(2op42, Tort3)

+aq d(Tops1, Tor43)

(a1 + a3) d(@op41, Tory2) + (a2 + a3) d(op42, Tor43)

+sa [d(ok11, Tokt2) + d(T2k+2, Tok+3)]

(a1 + a3 + saq) d(T2k+1, Tog+2)

+(ag + a3 + saq) d(T2x+2, Tok+3)- (2.4)

a1 d(xok41, Togt2) +

ai d(xok41, Togt2) +

a1 + as + saq
1—ao— a3 — say

) d(Tok+1, Tok+2)- (2.5)
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0_( a1 + a3 + saq )
-\l —ay —as—sas/’

AS a1 +as+ (s+ 1)as + s(s+ 1)ag < 1, it follows that 0 < § < 1/s.

By induction, we have

d(xn—l—lvxn) < ed(wmwn—l) < 0> d(wn—laxn—2) <...

G"d(xl, .1‘()). (2.6)

Let B, = d(zp41,Ty), Bo = d(z1,x0), then (2.6), reduces to

B, < 0"B,. (2.7)

Hence for any m,n > 1 and m > n, we have

IN

d(xp, Tm)

IA
»

IN

<

sld(zn, Tnt1) + d(Tns1, Tm)]
sd(xp, Tpy1) + sd(Tpt1, Tim)

d(@n, Tnt1) + 2 [d(@ng1, Tnr2) + d(Tni, 2m)]
5d(xn, Tny1) + 2d(Tpy1, Tnyo) + 2d(Tpy2, Tn)
5d(2n, Tny1) + 82d(Tny1, Tnyo) + 85d(Tny2, Tnyz)
4o ST A 1, T
[s0™ + s20" T 4 $P0" T2 4 4 s By
s0™1 + 50 + s%0% 4 s°0% 4 - - - 4 (s0)™ | By

[18—020]]30'

Since sf < 1, therefore taking limit m,n — oo, we have

m,lrlzgloo d(xm, xy) = 0.

Hence {z,} is a Cauchy sequence in complete b-metric space X. Since X is complete, so
there exists © € X such that lim,, .., z,, = u. Now, we have to show that u is a common
fixed point of S and T'. For this consider

d(xQTH—la TU)

= d(Sxop, Tu)

as[l + d(zay, Sxan)]d(u, Tu)
1+ d(xon,u)

+az [d(z2n, STan) + d(u, Tu)]

+ay [d(xon, Tu) + d(u, Szay,)]

as[l + d(zaop, xon+1)]d(u, Tu)
1+ d(zop, u)

+as [d(xon, Tant1) + d(u, Tu)]

< ay d(xon,u) +

IN

ay d(xon,u) +
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+ay [d(@on, Tu) + d(u, Tan41)]
Taking limit n — oo, we have
d(u,Tu) < (a1 + a3 + aq)d(u, Tw).

The above inequality is possible only if d(u,Tu) = 0 and so Tu = u. Thus u is a fixed
point of T.

In an exactly the same fashion we can prove that Su = u. Hence Su = Tu = u. This
shows that u is a common fixed point of S and T

Uniqueness

Let v be another common fixed point of S and T, that is, Sv = Twv = v such that
u # v. Then from (2.1), we have

d(u,v) = d(Su,Tv)
as[1l + d(u, Su)]d(v,Tv)
1+ d(u,v)

+as [d(u, Su) + d(v, Tv)]

+ay [d(u, Tv) + d(v, Su)]

as[1l + d(u,u)]d(v,v)
1+ d(u,v)

d(v,v)]

d(v,u)]

= (a1 + 2a4)d(u,v).

< ayd(u,v) +

= ard(u,v) +

The above inequality is possible only if d(u,v) = 0 and so v = v.Thus v is a unique
common fixed point of S and T". This completes the proof. O

Putting S = T in Theorem 2.2, then we have the following result.

Corollary 2.1. Let (X, d) be a complete b-metric space (CbMS) with the coefficient s > 1.
Suppose that the mapping T: X — X satisfies:

az[l + d(z, Tz)|d(y, Ty)
1+d(z,y)
+as [d(z, Tx) + d(y, Ty)]
+ay [d(z, Ty) + d(y, Tx)] (2.8)

d(Tz,Ty) < ard(z,y)+

for all x,y € X, where ay, as, a3, aq are nonnegative reals with a1 + as + (s + 1)ag + s(s +
1)ag < 1. Then T has a unique fized point in X.

Proof. The proof of corollary 2.1 is immediately follows from Theorem 1.1 by taking S = T.
This completes the proof. ]
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Corollary 2.2. Let (X, d) be a complete b-metric space (CbMS) with the coefficient s > 1.
Suppose that the mapping T: X — X satisfies (for fivzed n):

az[1 +d(z, T"x)]d(y, T"y)
1+d(z,y)
+as [d(z, T"z) + d(y, T"y)]
+ay [d(z, T"y) + d(y, T"z)] (2.9)

dT"z,T"y) < a1 d(z,y)+

for all x,y € X, where ay, as, a3, aq are nonnegative reals with a1 + as + (s + 1)ag + s(s +
1)ag < 1. Then T has a unique fized point in X.

Proof. By Corollary 2.1, there exists u € X such that T™u = u. Then

d(Tu,u) = d(TT"u, T"u) =d(T"Tu,T"u)
az[l + d(Tu, T"Tu)|d(u, T™u)
1+ d(Tu,u)
+az [d(Tu, T"Tu) + d(u, T"u)]
+ay [d(Tu, T"w) + d(u, T"Tu)]
az[l + d(Tu, TT"u)|d(u, T™u)
1+ d(Tu,u)
+az [d(Tu, TT"u) 4+ d(u, T"u)]
+ay [d(Tu, T"w) + d(u, TT"u)]
az[l + d(Tu, Tu)|d(u, u)
1+ d(Tu,u)
+as [d(Tu, Tu) + d(u, u)]
+aq [d(Tu,u) + d(u, Tu)]
= (a1 4+ 2a4) d(Tu,u).

< a1 d(Tu,u) +

= a1 d(Tu,u) +

= a1 d(Tu,u) +

The above inequality is possible only if d(Tu,u) = 0 and so Tu = u. This shows that T’
has a unique fixed point in X. This completes the proof. ]

Putting a1 = k, as = az = a4 = 0 in Corollary 2.1, then we have the following result.

Corollary 2.3. Let (X, d) be a complete b-metric space (CbMS) with the coefficient s > 1.
Suppose that the mapping T: X — X satisfies:

d(Tx,Ty) < kd(z,y)

for all z,y € X, where k € (0,1) is a constant with sk < 1. Then T has a unique fized
point in X.

Remark 2.2. Corollary 2.3 extends well known Banach contraction principle from com-
plete metric space to that setting of complete b-metric space considered in this paper.

Putting a3 = b, a1 = a2 = a4 = 0 in Corollary 2.1, then we have the following result.
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Corollary 2.4. Let (X, d) be a complete b-metric space (CbMS) with the coefficient s > 1.
Suppose that the mapping T: X — X satisfies:

d(Tz,Ty) < bld(z,Tx)+d(y,Ty)]

for all x,y € X, where b € (0, %) is a constant with (s +1)b < 1. Then T has a unique
fized point in X.

Remark 2.3. Corollary 2.4 extends Kannan [12] contraction from complete metric space
to that setting of complete b-metric space considered in this paper.

Putting a4 = ¢, a1 = as = a3 = 0 in Corollary 2.1, then we have the following result.

Corollary 2.5. Let (X, d) be a complete b-metric space (CbMS) with the coefficient s > 1.
Suppose that the mapping T: X — X satisfies:

d(Tz,Ty) < cld(z,Ty)+d(y,Tx)]

for all z,y € X, where ¢ € (0, %) is a constant with s(s +1)c < 1. Then T has a unique
fized point in X.

Remark 2.4. Corollary 2.5 extends Chatterjea [6] contraction from complete metric space
to that setting of complete b-metric space considered in this paper.

Other consequences of our results for the mappings involving contractions of integral
type are the following.

Denote A the set of functions ¢: [0,00) — [0, 00) satisfying the following hypothesis:
(h1l) ¢ is a Lebesgue-integrable mapping on each compact subset of [0, c0);
(h2) for any & > 0 we have [ @(t)dt > 0.

Theorem 2.3. Let (X,d) be a complete b-metric space (CbMS) with the coefficient s > 1.
Suppose that the mappings S, T: X — X satisfy:

d(Sx,Ty) d(x7y) W
/ P(t)dt < a1/ 1/1(t)dt—|—a2/ T p)dt
0 0 0

[d(z,Sz)+d(y,Ty)]
—I—a3/ P(t)dt
0
[d(z,Ty)+d(y,Sz)]
+(14/ P(t)dt

0

for all x,y € X, where ay, as, a3, a4 are nonnegative reals with a1 + as + (s+ 1)ag + s(s +
1ag <1 and € A. Then S and T have a unique common fized point in X.

Putting S = T in Theorem 2.3, we have the following result.
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Theorem 2.4. Let (X,d) be a complete b-metric space (CbMS) with the coefficient s > 1.
Suppose that the mapping T: X — X satisfies:

d(Tz,Ty) d(z,y) [1+d(ﬁTda(f)]d()y,Ty)
/ p)dt < a / P(t)dt + a / Tyt
0 0 0

/[d(var)er(y,Ty)]

+as Y(t)dt

0
/[d($7Ty)+d(y7T<v)]

+ay P(t)dt

0

for all x,y € X, where ay, ag, a3, a4 are nonnegative reals with ay + az + (s + 1)ag + s(s +
1ag <1 and € A. Then T has a unique fixed point in X.

Putting S =T, a1 = k and ag = a3 = a4 = 0 in Theorem 2.3, we have the following
result.

Theorem 2.5. Let (X, d) be a complete b-metric space (CHMS) with the coefficient s > 1.
Suppose that the mapping T: X — X satisfies:

d(Txz,Ty) d(z,y)
/ Y)dt < k / Y(t)dt
0 0

for all z,y € X, where k is a nonnegative constant with 0 < sk <1 and v» € A. Then T
has a unique fixed point in X.

Remark 2.5. Theorem 2.5 extends Theorem 2.1 of Branciari [3] from complete metric
space to that setting of complete b-metric space considered in this paper.

Corollary 2.6. (/3], Theorem 2.1) Let (X,d) be a complete metric space (CMS). Suppose
that the mapping T: X — X satisfies:

d(Txz,Ty) d(z,y)
/ Y)dt <k / Y(t)dt
0 0

for all x,y € X, where k is a nonnegative constant with 0 < k <1 and ¥ € A. Then T
has a unique fixed point in X.

Putting S =T, a3 = p and a3 = a2 = a4 = 0 in Theorem 2.3, we have the following
result.

Theorem 2.6. Let (X, d) be a complete b-metric space (CHMS) with the coefficient s > 1.
Suppose that the mapping T: X — X satisfies:

d(Tz,Ty) [d(z,Tz)+d(y,Ty)]
/ 1/J(t)dt < u / @D (t)dt
0 0

for all z,y € X, where u is a nonnegative constant with 0 < p < 1/(s+ 1) and ¢ € A.
Then T has a unique fived point in X.
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Remark 2.6. Theorem 2.6 extends Kannan [12] contraction from complete metric space
to that setting of complete b-metric space for integral type contraction considered in this

paper.

Putting S =T, ay = 6 and a; = as = a3 = 0 in Theorem 2.3, we have the following
result.

Theorem 2.7. Let (X, d) be a complete b-metric space (CHMS) with the coefficient s > 1.
Suppose that the mapping T: X — X satisfies:

d(Tz,Ty) [d(z,Ty)+d(y,Tx)]
/ vt < 5 / W(t)dt
0 0

for all x,y € X, where § is a nonnegative constant with 0 < s(s+ 1)d < 1 and ¥ € A.
Then T has a unique fized point in X.

Remark 2.7. Theorem 2.7 extends Chatterjae [6] contraction from complete metric space
to that setting of complete b-metric space for integral type contraction considered in this

paper.
Now, we give some examples in support of our results.

Example 6. Let X = [0,1] and d(z,y) = |x — y|*>. Then (X,d) is a b-metric space with
the coefficient s = 2. We consider the mapping T: X — X defined by T'(x) = 5. Hence

b TR
d(TzTy) = |3-3

1

= §|x—y|2
1

< §|x—y|2
1

= §d(x,y).

Clearly 0 € X 1is the unique fixed point of T'.

Example 7. Let X = [0,1] and d(x,y) = |z — y|* for all x,y € X be a b-metric space
with the coefficient s = 2. We define the mapping T: X — X defined by

T(z) = % ifz € [0,1) and T(1) = 0

then T satisfies all the conditions of Corollary 2.1 for a; = % and ap = a3 = a4 = 0 with
sa; +as + (s + 1)ag + s(s + 1)ay < 1 having x = % is 1ts unique fived point in X.
Example 8. Let X = {0,1,2,3,4} and d(z,y) = |v —y|?® for all z,y € X be a b-metric
space with the coefficient s = 2, we define the mapping T by

T(z) = { 3, ifx=0,

2, otherwise.
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Let us take v =0, y =1 and s = 2. Then from condition (2.8) we have

1=d(Tx,Ty) < a1 + bas + 10a3 + 8ay.

The above inequality is satisfied for a1 = as = % and az = aq4 = 0 with sa; + as + (s +
1)as + s(s 4+ 1)aqy < 1. Then all the conditions of corollary 2.1 are satisfied and 2 is of
course a unique fixed point of T.

3. Conclusion

In this paper, we establish some common fixed point theorems for generalized contrac-

tion involving rational expressions in the setting of b-metric spaces. Also, as a consequence,
we obtain some results of integral type contraction for such class of mappings. Our results
extend and generalize several results from the existing literature.
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