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Necessary and sufficient conditions for the boundedness
of B-Riesz potential in modified B-Morrey spaces

Javanshir J. Hasanov*, Xayyam A. Badalov, Ayna E. Fleydanli

Abstract. We consider the generalized shift operator, associated with the Laplace-Bessel differ-

k

ential operator Ap = > It

i=1""
operator M., (B-maximal operator), fractional maximal operator M, ~ (B-fractional maximal op-
erator) and the Riesz potential operator I, ., (B-Riesz potential operator), associated with the
generalized shift operator are investigated. We prove that the B-maximal operator M, is bounded
in the modified B-Morrey space Z,Mﬁ foralll < p < ooand 0 < A < n+|y|. We study the B-Riesz
potential and their modified version in the modified B-Morrey space and B-BMO space. We prove

that the fractional maximal operator M, ~ and the Riesz potential operator I, ~, 0 < a < n + |v|

‘Z, + > 88—;,% >0,i=1,...,k, |y =m + ...+ v The maximal
i T on)

are bounded from the modified Morrey space L1, to the weak modified Morrey space WLg x 5
if and only if, a/(n+ |y]) < 1—1/q < a/(n+|y] — A) and from Ly x~ to Ly if and only if,
a/(n+y]) <1/p—1/g<a/(n+[y[=A).

Key Words and Phrases: B—fractional maximal operator, B—Riesz potential, B—-Morrey space,
modified B-Morrey space, Sobolev -Morrey type estimate, B-BMO space.
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Introduction

For x € R™ and ¢t > 0, let B(x,t) denote the open ball centered at = of radius ¢ and
“B(z,t) = R"\ B(z,1).

One of the most important variants of the Hardy-Littlewood maximal function is the
so-called fractional maximal function defined by the formula

Mo f(z) = sup | Bz, £)| "+ / FW)ldy, 0<a<n,
t>0

B(z,t)

where |B(x,t)| is the Lebesgue measure of the ball B(x,t).
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It coincides with the Hardy-Littlewood maximal function M f = My f and is intimately
related to the Riesz potential operator

Iaf(m):/ M, 0<a<n
R T —y["
(see, for example, [2] and [34]).

The operators M, and I, play important role in real and harmonic analysis (see, for
example [41]).

In the theory of partial differential equations, together with weighted L, ,,(R™) spaces,
Morrey spaces Ly »(R™) play an important role. Morrey spaces were introduced by C. B.
Morrey in 1938 in connection with certain problems in elliptic partial differential equations
and calculus of variations (see [32]). Later, Morrey spaces found important applications
to Navier-Stokes ([42]) and Schrédinger ([35], [36], [37], [39]) equations, elliptic problems
with discontinuous coefficients ([6], [21]), and potential theory ([2], [3]). An exposition of
the Morrey spaces can be found in the book [26].

Definition 1. Let 1 < p < o0, 0 < XA < n, [t}y = min{l,t}. We denote by L, \(R™)
Morrey space, and by L, \(R™) the modified Morrey space, the set of locally integrable
functions f(x), x € R™, with the finite norms

1/p
1£l,, = s (t—A / If(y)lpdy> ,
: zER™, >0 B(z,t)

1/p
~ = su t ’\/ Pd
||fH[m e ng>0 ([ It ) 1f () y)

respectively.

Note that _
Lpo(R™) = Lpo(R") = Ly(R"),

Lpa(R") Cr Lpa(R) N LyRY) and - max{|f], .. 1F]5,} < £z, |

and if A <0 or A > n, then L, \(R") = EP,A(R”) = O, where O is the set of all functions
equivalent to 0 on R"™.

Definition 2. [10, 11, 14] Let 1 < p < 00,0 < X < n. We denote by WL, \(R") the

weak Morrey space and by WEP,A(R”) the modified weak Morrey space as the set of locally
integrable functions f(z), x € R™ with finite norms

_ 1/p
Ilhwe,, =swr s (17 [{y € Bt 1f@)>rH)
’ r>0 xeR™,t>0

1Flhyz,, =swr s (07 1w e Ba.o) : 1fw)] > )"
Wlyx 50 TER™, >0 ! T

respectively.
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Note that

W Ly(R™) = WLy o(R") = WL, o(R"),
Lya(R") € WLA(R") and |[flyr,, < I/, , -
Lya(R") € WL AR and [fllyz < If1, -

The classical result by Hardy-Littlewood-Sobolev states that if 1 < p < ¢ < oo, then
I, is bounded from L,(R"™) to Ly(R™) if and only if & = n (IlJ - 5) and for p =1 < ¢ < o0,

I, is bounded from L;(R") to W L,(R") if and only if o = n (1 - 5). D. R. Adams [2]
studied the boundedness of the Riesz potential in Morrey spaces and proved the follows
statement

Theorem A. Let 0 < a<n and 0 < A < n, 1§p<”f;)‘

1)If1<p< "T_A, then condition * — 1 = 2 is necessary and sufficient for the
boundedness 1, from Ly x(R™) to L x(R"™).

2) If p =1, then condition 1— % = -9 is necessary and sufficient for the boundedness
I, from Ly x(R™) to WLg\(R™).

Ifa= %— %, then A = 0 and the statement of Theorem A reduces to the aforementioned
result by Hardy-Littlewood-Sobolev.

Recall that, for 0 < a < n,

Mof(z) < oi L(|f])(@),

hence Theorem A also implies the boundedness of the fractional maximal operator Mg,
where v, is the volume of the unit ball in R”. F. Chiarenza and M. Frasca [8] proved
that the maximal operator M is also bounded from L, \ to L,y for all 1 < p < oo and
0<A<n.
In [16] the boundedness of the Riesz potential in modified Morrey spaces is studied
and the following statement is proved.
Theorem C. Let 0<a<nand 0 < A <n

1)Ifl<p< %, then condition 5 < I% —
boundedness of I* from EPJ\(R”) to EW\(R”).

2) If p = 1, then condition & < 1 — % < %5 is necessary and sufficient for the
boundedness of I* from L, A(R™) to WLq A(R™).

3) If === A<p< < &, then the operator I is bounded from Lp ,\(]R”) to BMO(R™).

Moreover, if the mtegral 1¢f exists almost everywhere for f € Lp7,\(]R”), "a)‘ <p<g,

then I1¢f € BMO(R"™) and the following inequality is valid

1 fllBao < CllAz, s

1
< 25 is necessary and sufficient for the

Q= S

where C' > 0 is independent of f.
If A\ =0, then a = % — % and the statement of Theorem C also reduces to the
aforementioned result by Hardy-Littlewood-Sobolev.
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The maximal operator, singular integral, potential and related topics associated with
the Laplace-Bessel differential operator

k
Ap = >0, i=1,...,k
B= — xzamz 282’ iz !

In this paper, we consider the generalized shift operator generated by the Laplace-
Bessel differential operator Ap in terms of which the B-maximal operator and the B-Riesz
potential are investigated. We study the B-Riesz potential in the modified B-Morrey
space and B-BMO space. The inequality of Hardy-Littlewood-Sobolev -Morrey type is
established for the B-Riesz potentials.

We obtain necessary and sufficient conditions for the operator I, , to be bounded from
the modified B-Morrey space Lp Ay tO Lq Ay

The structure of the paper is as follows. In Section 1 we present some definitions and
auxiliary results. In Section 2 we study some embeddings into the modified B-Morrey
spaces. In Section 3 the boundedness of the B-maximal operator on modified B-Morrey
space E@ A,y is proved. The main result of the paper is the inequality of Hardy-Littlewood-
Sobolev-Morrey type for the B-Riesz potential, established in Section 4.

1. Definitions, notation and preliminaries

Suppose that R" is n-dimensional Euclidean space, z = (z1,...,2,) € R", |z|> =
St 1<k <nn>2 a2 = (v1,...,75) € RF, 2" = (2p41,...,2,) € R,
z = (2,2") e R", Ry, = {z = (2/,2") € Ra1 > 0,...,23 > 0}, E(z,t) = {y €
Rz,+; |z —yl <t} EQO,r)=Er,v=1,--7%) 71 >0,y >0, h/| =7+t Yk
( /)'y — x"fl . 'Yk

IR

For measurable E C R}, suppose |E|, = [p(a')Vdz, then |E,|, = w(n, k,7)r?, Q =

n + ||, where

k
wlnk) = [ @pde =245 0@+ 2/2) [] T(0i+1)/2).
1 i=1

Denote by TY the generalized shift operator (B—shift operator) acting according to the

TV f(z / / 52" —y") dv(B),

where (z;,vi)p = (ac? —2:1:iyicosﬁi+yi2)§, 1 < i < k (@)p =

k
((@1,91)815 -+ (T, Uk) ), dv (B) = [1 sin? 1 B; dBy...dBk, 1 <k <n and
i=1

5o e

1 T3

law

[NIEy

Cop=m
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We remark that the generalized shift operator 7Y is closely connected with the Bessel
differential operator B.
Let Lp,(R} ) be the space of measurable functions on R} | with finite norm

1£l12ps = 1PNy g ) = (/R

k,+

1/p
|f(x)|p(g;/)7dx> , 1< p<oo.

For p = oo the spaces LOOW(RZ ) are defined by means of the usual modification

1o = 1|z = esssupl f ()]

z€RY |

The translation operator TY generates the corresponding B-convolution
(Foo /’ F )T () ' dy.

for which the Young inequality

1 1 1
1f@gllp,. <Iflle,, gz, » 1<pgr<oo, » +5 = 7T 1

holds.

Lemma 1.

| s ray=cs}

< zl—i-zl,.. \/zk—kzk, >duzz

where (z,2) € R™ x (0,00)%, du(z,2') = (2 )" Ydzd?', d2/ = dz,---dzy, (Z)7' =
(gl)"ﬂ—l .. (Ek)%_1~

Lemma 2. For all x € R” the following equality is valid

gy de—C' / ( 2+722,..., Z2+22,z”>d
Lw)m< oot (VAT 3

where B((z,0),t) = {(z,2') € R" x (0,00)* : RV \/zk—l—zk,a: -

N < t}, du(z, ) = (2/)"tdzdy, d2 = dzl~~~dz;€, (/)1 (211)"’1 L. Y=t
Lemma 3. For all x € RZ’+ the following equality is valid

TYg(z)(y 'Ydy:/ ( 24+722,..., z2+22,z”>d,uz?
At (@) I CE R ST (2.7)

where E((x,0),t) = {(z,2/) € R" x (O,oo)k' (- 2,7 <t}

The proof of Lemmas 2, 3 is straightforward via the following substitutions

R X (0,00)

2 =a" 2z =wjcosay, Z;=wisina, 0<a;<m, i=1,...,k,
reRE ., 2 = (Z1,...,%k), (2,2)) €ER" x (0,00)%, 1 <k <n.

Lemma 4. Let 0 < a < Q. Then for 2|z| < |y| the following inequality is valid
|T¥)|*=9 — |y|*= 9| < 2070 |y|* 97 a. (1)
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2. Some embeddings into the modified B-Morrey spaces

Definition 3. Let 1 <p < oo. By WL, (R} ,) we denote the weak Ly, space defined as
the set of locally integrable functions f(x), x € R} _ with the finite norms

1
1wz, =swpr[{z e Ry, o If@)] > r}])7

P r>0 v
Definition 4. [11] Let 1 < p < 00, 0 < A < Q, [ty = min{l,t}. We denote by
Lp)w(RZ’_F) the modified Morrey space, (= modified B-Morrey space) associated with the
Laplace-Bessel differential operator as the set of locally integrable functions f(x), x € R},

with the finite norms

1/p
115, = sw (> [ 2isareya)
AT 50,2€RP Ey
respectively.
Note that _
Lp,O,V(RZnL) = Lp( Z,+)a
Lyay(RE 4) C Lpy(R ) and [y, < ||f||,§p,M (2)
and if A < 0 or A > @, then L, (R} ,) = ©.
Note that

Lp,O,V(RZnL) = Lp,v( Z,+)=
Lpay(RE 4) Co Lpy(RE ) and [l < Hf”Zp,M’ (3)
~ .
<l 0

Lpry(Ri4) C- Lpay(RE ) and  [[f]l,
and if A < 0or A > @, then E@ /\W(RZ, +) = O, where © is the set of all functions equivalent
to 0 on RZHF.

Ay

Lemma 5. Let 1 <p<oo,0< AL Q. Then
LPJ\KY(RZ,Jr) = Lp)w( ZJF) N Lp,w( ZJF)

and for f € Lprs®eL) 11y, ., =11z, , -

PNy

Proof. Let f € ZP,AW(RZ’JF). Then by (3) and (4) we have

Lpa~(RE 1) Co Lpay (R ) N Ly o (Ry ).

Therefore, f € Lpxy(R,) N Lyy(R},) and the embedding Ly, (RE,) Cy
Lp’)‘”Y(RZHr) N Lp,fy(RZHr) is valid.
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Let f € Lpa~(Ri )N Lpy(Ry ). Then

1/p
Il = sup (W / Ty|f<x>|p<y'>wy)
AT zeRY >0 Ey
1/p 1/p
—wad s ([ Dis@rera) s ([ mlrpeya)
c€RY , 0<t<1 B zeRy L t>1 \J B,

< maux{||f||Lp,M ) HfHLm} )

Therefore, f € Ly (R} ) and the embedding Ly (R} ) N Ly (RY ) C Ly 4 (R )
is valid.

Thus Ly xRy ) = Ly (R ) N Ly y (R L) Co Lpay(RE ).

Let now f € Ly x(Rp_). Then

1/p
iy, = s (7 [ TP ay)
o t>0 Ey

n
aceleyJr7

A 1/p

- o () (15 [ ms@rwya)
1/p

— (W / tTy\f(m)V’(y’)”dy> 71z

T€ERY >0

Ay

It is known that for 1 < p < o0
LpgA(RE ) = Loo(Ry ) and ||f||1:p,@7 = w(n, kﬁ)l/p Il - (5)
From (5) and Lemma 5 for 1 < p < oo we have
vaQv'Y(RZrF) = LOO(RZ,Jr) N Lp,v( Z+)
Lemma 6. Let 1 <p<oo,0<a<@,0<A<@Q. Thenfor%ﬁpgg
Lpay(RE ) C L1,g-aqy(Ry ;)
and for [ € ZPM(R;;Q the following inequality
- 1/p' -
£z, . <wk ) Iz -

1s valid.

Proof. Let 0 < a < @, 0< A< Q, f€Lyry(RE,) and &2 < p < £ By the
Hoélder’s inequality we have

g, = s (577 [ Ty
xT t

R} >0
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, oyl a9 B ) 1/p
<ok ) s () P (W / Tylf(x)lp(y)ydy)

z€RY +7t>0

a—Q=2 1/p
— (k)" sup () () ([ﬂﬁ /E Ty|f<x>|p<y/>wy)

xGRZrH t>0

/ _ Qfa
<w(n k) Iz, s ()T

Note that
Q_ -2 _9=x _Q
sup ([tht™!)” “ [t]? P =max{ sup t* 7 ,supt® r} < oo
>0 0<t<1 t>1
—lr o, 8
a a

Therefore f € ZLQ,WY(}R};Jr) and

/
1z, <wmk)" 5z, -

Definition 5. [13]/ Let 1 < p < 00,0 < A < Q. We denote by WEP,AW(R}E#) the modified
weak B-Morrey space as the set of locally integrable functions f(x),x € Ry  with finite
norms

1/p
1wz, =swor sw (10 () dy
PAY r>0 >0,z€R] tyeBe: TV|f(2)|>r}

respectively.

Note that

WLPW( Z,+) = WLP,OKY(RZ,Jr)’

Lpro(RE L) C WEoao(RE,) and [fllyz < Iflz -

Definition 6. [10] We denote by BM O (R}, ) B-BMO space the set of locally integrable
functions f(x),x € R} ., with finite norms

o=, s IBLY [ 17750~ fr @)y < o,

t>0, zeR} 4

where fg,(z) = B [, [T°f(y) (/) dy.
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3. L, ,-boundedness of the B-maximal operator

In this section we study the Ly, » ,-boundedness of the B-maximal operator (see [10])

M, f(z) = sup| B[ / TV f(2)| (') dy.
>0 o

Theorem 1. 1. If f € Ly (]R%), 0< X< Q, then Myf € Wiy, (Rg#) and

1M flwz, ., < Cianllfllz, ,

where C1 ) 5 is independent of f.
20f f € Lyoy (REL), 1<p < 00,0 SA<Q, then My f € Ly, (RY) and

||MWfHEp’/\W < Cp,A,vapr’Ma

where C), 5 4 depends only on p,\,v,k and n.

Proof. We need to introduce the maximal operator defined on a space of homogeneous
type (Y,d,v). By this we mean a topological space Y = R" x (0,00)* equipped with a
continuous pseudometric d and a positive measure v satisfying

v(E((z,27),2t)) < Crv(B((z,27),t)) (7)

with a constant C; independent of (x ,2') and t > 0. Here E((z,2'),t) = {(y,y) €
Yo d(((@2), (9,y) < th dv(y,y) = ()7 My dy, (y) ™0 = ()T ()
d(($7$,)7 (yay/)) = ‘(.’E,.’E) (y Y )‘ = (‘Jj - y|2 ( - y/)2)§'

Let (Y, d,v) be a space of homogeneous type. Define

| F(y: )] dv(y)

M,F(z,7) = sup v(E((x,7), 1)~ /E .

t>0

where f(z, ') f(wa:l—i—f%,...,,/xi—i—fi,x”).

It is well known that the maximal operator M, is of weak type (1, 1) and is bounded
on Ly(Y,dv) for 1 < p < oo (see [7]). Here we are concerned with the maximal operator
defined by dv(y,y’) = (/)Y 'dy dy’. Tt is clear that this measure satisfies the doubling
condition (7).

It can be proved that

M, f <,/z§+z§,...,,/zg+zg,zﬂ) _ M7 (,/zg+z§,...,,/zg+z§,zﬂ,o), (8)

M, f(x) = My f(,0). (9)
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Indeed, Lemma 3

/Tyf< 22472, \/Zk—kzk, )
o

- / 7. 7)| dv(v.¥)
B((VF R TR0 )

|Et|,Y:yE<<\/z%+2%,...,\/z%+Ei,z",0> ,t>

imply (8). Furthermore, taking Zx = 0 in (8) we get (9).
Using Lemma 3 and equality (8) we have

| @y dy
-/ <va <\/zf+z%,..., Z,g+z§,z">>p (=, 7)
E((x,0),t)
:/(( (Mf<\/zl+z1,.. A7+ 7,2 0>> dv(z,2').
z,0),

In [19] it was proved that the analogue of the Fefferman-Stein theorem for the maximal
operator defined on a space of homogeneous type is valid, if condition (7) is satisfied.
Therefore

’Ydy

and

/ (M, ) by, vy, 7

E((z,2),t)

< / ey DPM (T vy, 7). (10)
E((z,x),t)

Then taking o(y,y') = f (\/y1 +7%, ..\ YE —l—gi,y”,O) and 1(y,y’) = 1 we obtain

from inequality (10) and Lemma 3 that

/E TY(M, ()P (/' dy

= MV7< VAT, ARy >> dv(y
/E((xO)t)< \/1 ! \/k k

SCZ/ B(o0), <\/y1 +y17" \/yk—k@%,y" 0) dV )
Z,
202/( o <\/y1+y1,-- A YE+Try ) dv(y,y')

-G /E TPy < C I,
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Corollary 1. Let f € Lllog (R?Jr), then

lim | £4]" /E TVf(2) (yV'dy = f(x)

for almost z € Ry .

Corollary 2. [12]
Jlff € Ll,'y (RZH’»)) then M’Yf € WLL’V(RZ,‘F) and

HM’YfHWLLy < CL’YHfHLl,w

where C1 5 1s independent of f.
2. If f € Lpy(RE ), 1 <p < oo, then Myf € Ly,(R} ) and

||M’YfHLp,'\/ S CP,’YHfHLp,fy?

where Cp,  depends only on p,v,k and n.

In Theorem 1 if we take A = 0, we obtained Corollary 2.

4. Hardy-Littlewood-Sobolev-Morrey type inequality for B-Riesz
potential

We consider the fractional B-maximal operator

o q
Mo f@) =suplE 7 [ TIr@lw ) dy. 0<a<a.

(o

the B-Riesz potential

Lo f@) = [ Tl 5wy, 0<a<Q,

Rk,+

and the modified B-Riesz potential

T () = [ (T2 = ol i ) S
K+
where E7 = R} ,\Ey.
The examples show that the B-Riesz potential I, is not defined for all functions
feLppyRE ), 0SA<Q,ifp> &,
For the B-Riesz potential the following Hardy-Littlewood-Sobolev-Morrey type in-
equality is valid.
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Theorem 2. Let 0 < a<Q,0<A <@ andlgpg%.

1)Ifl<p< %, then condition % < % — % < % is necessary and sufficient for
the boundedness of 1, from EPJ\,’Y(RZ,—F) to EQ,AW(RZ&).

2) If p = 1, then condition % <1- % < ﬁ is necessary and sufficient for the
boundedness of I~ from Ly (RE ) to WLy (R} ).

3) If % < p < %, then the operator fa,y is bounded from zp)w (RZ,+> to
BMO, (R, ).

Moreover, for f € ZPM (RZ’+), % <p< % the integral I, ~f exists almost every-

where, then Io~f € BMO, (RZ’+) and the following inequality is valid

HaqfllBro, < Clflz, -

where C' > 0 is independent of f.

Proof. 1) Sufficiency. Let f € Ep,)w (RZ7+>. Then

) = Y £ (o a—Q(,/
Lonf(2) ( /E -+ /R \E) TV (2)]y|* Q) dy
= A(z,t) + C(z,t). (11)

For A(x,t) we have

Az, 1)] < [E V| f()| [y|°~ 2y ) dy

—1
<Y e Pl
j=—00 Eait1,\ By,
Hence o
Az, 8)] < C3toM, f(z)  with  C3= % (12)

For C(z,t) by the Holder’s inequality we have

1/p
O, 1)| < < /| AT @P <y/>wy)

B ’ 1/p/
x ( / y (5 re@)r <y'>wy> Db (13)
Ry \E
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Let A < 8 <@ — ap. For J; we get

Z / T%f(z)\ﬂyrﬁ(y’wy)” '

_8 g 1/p
<t il (D2
j=0

1Og2 2% } o0 . 1/
; (2} Zt2< B > 2 "o<t<1
_8 1
=t 7 |flz,, 7= J' IT%[%HI
( > 27h) t>1
=0
1
=B (Cyt* + CstP)r, 0<t <1,
=t r HfHLp N C
6 t> 17
2,8
— Gl I, - (14)
For J5 we obtain
1
® 6 1 (Bra0)y . \7 B0 Q
Jo = / (f’)'ydf/ P9 1+(P+a Q>p dr = Cgtr T, (15)
spt t
From (15) and inequality (14) we have
A a—Q
C @] < GolfF 5 I, - (16)

Thus, (12) and (16) implies

Lo f(@)] < Caolt My f (@) + (777 £z, )

DAY

. _Q=2 _Q
< Chomin{t* M, () + 275 |fllz, My f () + 477 | fllz ).
}p/(Q*A)

Minimizing with respect to ¢, at ¢t = [(Mq,f(a:))_1 17z, or t =
P,y

/Q
(O £@) Sz, |7 we have

1
oy f(x)] < C1ymin (M)

17z,

po po

“g-x M =3
17z, , - (#) 171z, ,

PNy
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Then
1—
Lo ()] < Cua (M ()| 7577,
DAY

Hence, by Theorem 1, we have

| T t(@) 'y

t

< Coa |7 / TV (M, F@) () V'dy < Cuald} £
Lpxy E: Lpxy

which implies that I, is bounded from Ly, 5 (R} . ) to Ly (R} ).
Necessity. Let 1 <p < %, fe Ep,k,w (RZ +) and I, be bounded from EW\W(RZJF)

to ZQ7)‘7’Y(RZ,+)
Define f;(z) =: f(tx). Then

1/p
I, = s (10 [ Ts@reray)

r>0, 16R2,+

1/p

sw (1 [ ) 7))y

r>0,x€RZ,+

- Fa (1) v (fri? [ sy way) ;

7">0,x€RZ!+

_e 2
=Ll
where [t]; + = max{1,t} and

1/q

aafill,, =t s (W [ 79 Lo st )

r>0, xE]RZ’_‘_ Er

1/q

- [tr]l Ma - Y q(,/\Y
=t asup | —— sup [t?”]l T |Ia,'yf($)‘ (y) dy
r>0 [T]l r>0,2€RY | Eir
ca_Q, .2
— S, ol -

By the boundedness of Io, from Ly x (R} ) to Lo~ (RE )

Manflz < Crannt™t =377 11112
Y g ny = TPBAY L+ L

)
PNy

where C), 4 » 4 depends only on p,q,A,,k and n.
If % < %—i— G then in the case t — 0 we have H.Toé,ﬂyf||]5q’M =0forall f€ Ly,,(RE ).



32 Javanshir J. Hasanov, Xayyam A. Badalov, Ayna E. Fleydanli

As well as 1f > —|— =%, then as t — oo we obtain |1, f||+ =0 for all f €
o AT, 5

L DAY (Rk +)
Therefore £ &< 1 — 1<
q

Q
2) Sufficiency. Let fe L (]RZ,JF). We have

Hy€ B s TV|Laqf(@)] > 28},
< |{y€Et : Ty|A($7t)| >ﬁ}"y
+H{y € B : TYC(,b)] > B,

Taking into account inequality (12) and Theorem 1, we have

{y€ B : TV|A(,0)] > B},

g‘{yelﬂ :ZW(Myf(flf))>Cia}7

Cat®
< R,
and thus if Cy[t]}t=@ ||f||Z” = [, then |C(z,t)] < [ and consequently,
»AY
[{ye By : TY|C(x,t)| > B}|y =0.
Then
y A,
€ B+ TVl f(0)] > 26}, < Cuaffee—222
Q-2 Q
11z o= (fllz Q-
< Cy5(t]y min (TIM ; TIM
Finally

fll+ q
{y e B : TY|Iayf(x)] > 28}, < Ci5[t]} (L HZI’M>

Necessity. Let I, be bounded from ELM(RQ#) to qu)w(RZHr). We have

1/q
andilz, . =sw0r s (@ [ () dy
DA >0  7>0,z€R} | {yeE; : TY|Ia~fi(z)|>r}

1/q
=supr sup [T]l_)\/ (y')dy
>0  7>0,z€RY | {yeE; : TW|Ia ~f(tz)|>rte}
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) v
— sup <—> sup 7t sup [tT]l_)\/ (y')7dy
>0 \ [7] r>0  r>0,z€Ry (WEELr : TV|Tanf(x)|>rte}

A
=1 ;[t]lqgr ||Ia,'yf||wiq,/\ﬁ

By the boundedness of I, from ELAW(RZJF) to WE%,\W(RZJF)

Manflhwz, . < Craast™*? L7 Ifllz,, .

where C 4 5, depends only on g,\,y,k and n.
If1< %—i—%, then in the case t — 0 we have HIwaHWz%M =0forall f € Ly, (R} ).
Similarly, if 1 > % + o5 then as t — oo we obtain ||Ia,«,f‘|wgq,M = 0 for all

feLin,Ry,).
Therefore 0‘ <1

- S
)LethLp)\,Y< ) gpg % For given t > 0 we denote

Q=

f1(2) = f(2)xE(2),  fol2) = f(2) = f1(2), (17)

where x g,, is the characteristic function of the set Es:. Then

Loy f(2) = Inn 1(2) + Tnp fo(2) = Fi(2) + Fa(2), (18)

where

Fi(z) = /E (T¥]21779 — [y () F () () dy,

Fy(z) = / o T2 ™ 0) S )W)y

Note that the function f; has compact (bounded) support and thus

a = — / WI*= 9 (0) (') dy
B2\ Emin{1,2t}

is finite.
Note also that

Fi(2) — ar = /E Y29 f(y) (4 dy

-/ BTy
E2t\Fnin{1,2t}

+ T2y
E2t\Fnin{1,2t}
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J

FE-al< [ TR W)y

k,+

YRR i) )y,
k,+

Therefore

/ I 2T () 'y
{yery , Tv|z|<2t}
Further, for z € By, TY|z| < 2t we have

lyl <zl + 1z =yl < 2]+ TY[2| < 3t.
Consequently

R -al < [

y|* T ()] (v/)dy,
Est

if z € Fy.

Thus, from (19) and Lemma 6, we have

/ T F1(2) — a1] (2')7dz < / T F(2) — a1](2')7dz
Ey

t

-/ (/ ) BT T )
- [ e (f | TN ) () dy

<7z, [ IOy

Esy

<[l [ "W .

3t

In inequality (20) we take into account that f € Ep, Ay (RZ +) and

/ Q) dy < Crot®,
B3y

respectively, where Cg = % (n, k,7).
Therefore,

1
sup —Q/ IT*Fi(2) — a1] (') dz
1>0,zeRy 1% J B,

< Crosu (I 1 <l
> U119 t>g t L;D,A,“/ >~ 19 L;D,A,“/ .

(21)

(22)
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(22) and condition % < p < € implies the following inequality

[e%
Bl [ TR - al (s < Cul I,
Ey h

Denote

as = / 1%~ 2 (y) (/) dy.
max{1 2t}\E2i

Let’s estimate |F (z) — ao| for z € Ey.

Fo(z) — aa < / @[T ~ 1yl ) dy.
2t

R4\

Applying Lemma 4 and Hélder’s inequality, we have

() —aof <2970 [l )y

< 99~ a“mZ / F @)yl @) dy

23+2t\ 21+1t

<20t S [ )y

§=0 Egj+2,

—Q = 1 a—— j Q/ l/p
<20 ST @ ([ )P )
27+2¢

=0
Q-atl (o420 L1142,
<487 IZHIszpMZ(QJ 6" P 22T
§=0
< 497t prHLpM
1Og2[2t] o0 . Q
S A G S D SR Ch (G e A P o)
x J=0 j=logs[5;]+1
o .
3 gli+2)(a=F=1), t>1/2

J=0

A
= 497y [Pt 3 v |Ifllz

XY

C
(24) and condition Q=2 << % implies the following inequality

[0

35
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T Fy(2) — as| < T*|Fy(z) — az| < ClngHszW, forallx e Ry ., z € E. (25)

Finally, from (23) and (25) we have

sup

1
|Et| TgCIa'yf( _af‘ 7dy<(016+018)”f”L Ay

Thus

T Loy f(y) — as| (' )'dy < C| fl;

oot g, <250

BMOW \Et\ Py

Theorem 2 is proved.

Theorem 3. Let 0 < a < Q,0< A< @ andlgpg%
1)Ifl<p< %, then condition % < % — % < ﬁ is necessary and sufficient for

the boundedness of M~ from EPJ\,’Y(RZ,—F) to Loa~(RE ).

2) If p = 1, then condition % <1- % < ﬁ is necessary and sufficient for the

boundedness of M, from EL,\W(RZ’Jr) to qu,)\ﬂf(RZ,Jr)'

Proof. In view of the well known pointwise estimate My ~f(x) < C(Iony|f])(2), it
suffices to treat only the case of the operator I, .

1) Necessity. Let 1 < p < QA ¢ e Lp, Ay (]Rk +> and M, , be bounded from

o
Lp«\n(Rk,Jr) to Lq,A,v(Rk,Jr)-
Define f;(z) =: f(tx). Then

1/p
15, = s (10 [ Ts@reray)

r>0, 16R2,+ E,

—F s (0 T )

7">0,x€RZ’+

— % sup <@>A/p sup <[m1A /Ew TV | (2)|” (y’)”dy> 1/p

r>0,$ERZ,+

A

_e 2
=t Iz,

where [t]; = max{1,t} and

1/q
Manfill,, =0 sup (100 [ T ) )y

r>0, R} 4 E,
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oS () (e [ oo o)

r>0 7">0,x€RZ!+

— —a—< % M
=t I Mas £z,

By the boundedness of I, from EPM\W(]RZ’_F) to ZQ,AW(RZmL)

Manflz < Crannt™t =217 711112
YL, v, = TPaAY L+ L

b
DAY

where Cj, 4 5 4 depends only on p,q,A,,k and n.
If %D < %—I—%, then in the case t — 0 we have HMOWfHE%M =0 forall f € Ly (R ,).
As well as if Il] > % + g%, then as t — oo we obtain ||]\401;yf||]j%M = 0 for all

f E Lp’)‘v’Y(RTkL,-F)

a 1 1
Therefore o} < i <
2) Necessity. Let My, b

>\
bounded from Ly (R} ,) to WLy, (RE ). We have

@@

1/q
-
HM ,WftHWL Ay =Ssupr sup ([7]1 / (y/)’ydy>
r>0  7>0,z€R} | {y€E+ : TY|Maq,~ fr(z)|>r}
1/q
=supr sup ([T]l_)\/ (y/)vdy)
>0  7>0,z€Ry | {y€E; : TW|Mq, f(tz)|>rt>}

7]\ " v
= t_a_? sup <—> sup vt  sup [tT]l)\/ (y')'dy
>0 \ [7] r>0  7>0,2€R) (y€Ewr : TY|Ma~f(z)|>rte}

A
—a-2

=t a4 [t]lq,-i- HMa,'nyV[/Zq’AW -

By the boundedness of M,  from Zl,%'y(RZ&) to qu,)\ﬁ(RZﬂL)

+Q _
1M flhyz, , . < Cranat™ % U IAl7, , -

where C1 4 ) 4 depends only on ¢,A,v,k and n.
If1 < %—F%, then in the case t — 0 we have HMav’YfHWEq,M =0forall f € Ly ,(R} ).

Simﬂarly, if 1 > % + g5, then as t — oo we obtain HMaﬁfHWZq,M = 0 for all
f €L, R L)
a 1
Therefore o} <1- E Q—
Theorem 4. Let 0 < a < Q,0 <A< Q and 9=2 < p < % Then the operator M, ~ 1s

bounded from Lp,)\7'y(R7]3’+) to Loo(RZ,Jr)'
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Proof. Let f € Ep,)\7,Y(RZ’+). Then by Lemma 6, we have

Q—«a
o t
supt-@ [ T%f(m)\(y'wy<sup(—”1) T
Et >0 t 1,Q—a,y

t>0

/
<Wflz,, . <wb)" Iflz

Theorem 4 is proved.

Corollary 3. [12] Let0 < a < Q and 1 <p < <.

o
Ifl<p< Q then condition * 5= l = & is necessary and sufficient for the bound-
edness of I ~ fmm va(Rk 4) to Lq,y Z ).
S

2) If p = 1, then condition 1 — 5 = % is necessary and sufficient for the boundedness
of I~ from Llﬁ(R ’Jr) to WLqﬁ(]Rk’Jr)

3)Ifl<p= %, then the operator faﬁ is bounded from Ly -, (RZ#) to BMO, <R2’+).

QIL

Moreover, if for f € Ly, (RZ,—F)f 1<p= % the integral 1, f exists almost every-
where, then I~ f € BMO, <R2,+) and the following inequality is valid

HIOf,’nyBMO»Y S C||f||Lp,'y7

where C' > 0 is independent of f.
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