

Necessary and sufficient conditions for the boundedness of B -Riesz potential in modified B -Morrey spaces

Javanshir J. Hasanov^{*†}, Xayyam A. Badalov, Ayna E. Fleydanli

Abstract. We consider the generalized shift operator, associated with the Laplace-Bessel differential operator $\Delta_B = \sum_{i=1}^k \frac{\gamma_i}{x_i} \frac{\partial}{\partial x_i} + \sum_{j=1}^n \frac{\partial^2}{\partial x_j^2}$, $\gamma_i > 0$, $i = 1, \dots, k$, $|\gamma| = \gamma_1 + \dots + \gamma_k$. The maximal operator M_γ (B -maximal operator), fractional maximal operator $M_{\alpha,\gamma}$ (B -fractional maximal operator) and the Riesz potential operator $I_{\alpha,\gamma}$ (B -Riesz potential operator), associated with the generalized shift operator are investigated. We prove that the B -maximal operator M_γ is bounded in the modified B -Morrey space $\tilde{L}_{p,\lambda,\gamma}$ for all $1 < p < \infty$ and $0 \leq \lambda < n + |\gamma|$. We study the B -Riesz potential and their modified version in the modified B -Morrey space and B -BMO space. We prove that the fractional maximal operator $M_{\alpha,\gamma}$ and the Riesz potential operator $I_{\alpha,\gamma}$, $0 < \alpha < n + |\gamma|$ are bounded from the modified Morrey space $\tilde{L}_{1,\lambda,\gamma}$ to the weak modified Morrey space $W\tilde{L}_{q,\lambda,\gamma}$ if and only if, $\alpha/(n + |\gamma|) \leq 1 - 1/q \leq \alpha/(n + |\gamma| - \lambda)$ and from $\tilde{L}_{p,\lambda,\gamma}$ to $\tilde{L}_{q,\lambda,\gamma}$ if and only if, $\alpha/(n + |\gamma|) \leq 1/p - 1/q \leq \alpha/(n + |\gamma| - \lambda)$.

Key Words and Phrases: B -fractional maximal operator, B -Riesz potential, B -Morrey space, modified B -Morrey space, Sobolev -Morrey type estimate, B -BMO space.

2000 Mathematics Subject Classifications: 42B20, 42B25, 42B35

Introduction

For $x \in \mathbb{R}^n$ and $t > 0$, let $B(x, t)$ denote the open ball centered at x of radius t and ${}^c B(x, t) = \mathbb{R}^n \setminus B(x, t)$.

One of the most important variants of the Hardy-Littlewood maximal function is the so-called fractional maximal function defined by the formula

$$M_\alpha f(x) = \sup_{t>0} |B(x, t)|^{-1+\alpha/n} \int_{B(x, t)} |f(y)| dy, \quad 0 \leq \alpha < n,$$

where $|B(x, t)|$ is the Lebesgue measure of the ball $B(x, t)$.

^{*}Corresponding author.

[†]J. J. Hasanov was partially supported by the grant of Science Development Foundation under the President of the Republic of Azerbaijan, project EIF-2013-9(15)-FT.

It coincides with the Hardy-Littlewood maximal function $Mf \equiv M_0 f$ and is intimately related to the Riesz potential operator

$$I_\alpha f(x) = \int_{\mathbb{R}^n} \frac{f(y)dy}{|x-y|^{n-\alpha}}, \quad 0 < \alpha < n$$

(see, for example, [2] and [34]).

The operators M_α and I_α play important role in real and harmonic analysis (see, for example [41]).

In the theory of partial differential equations, together with weighted $L_{p,w}(\mathbb{R}^n)$ spaces, Morrey spaces $L_{p,\lambda}(\mathbb{R}^n)$ play an important role. Morrey spaces were introduced by C. B. Morrey in 1938 in connection with certain problems in elliptic partial differential equations and calculus of variations (see [32]). Later, Morrey spaces found important applications to Navier-Stokes ([42]) and Schrödinger ([35], [36], [37], [39]) equations, elliptic problems with discontinuous coefficients ([6], [21]), and potential theory ([2], [3]). An exposition of the Morrey spaces can be found in the book [26].

Definition 1. Let $1 \leq p < \infty$, $0 \leq \lambda \leq n$, $[t]_1 = \min\{1, t\}$. We denote by $L_{p,\lambda}(\mathbb{R}^n)$ Morrey space, and by $\tilde{L}_{p,\lambda}(\mathbb{R}^n)$ the modified Morrey space, the set of locally integrable functions $f(x)$, $x \in \mathbb{R}^n$, with the finite norms

$$\|f\|_{L_{p,\lambda}} = \sup_{x \in \mathbb{R}^n, t > 0} \left(t^{-\lambda} \int_{B(x,t)} |f(y)|^p dy \right)^{1/p},$$

$$\|f\|_{\tilde{L}_{p,\lambda}} = \sup_{x \in \mathbb{R}^n, t > 0} \left([t]_1^{-\lambda} \int_{B(x,t)} |f(y)|^p dy \right)^{1/p}$$

respectively.

Note that

$$\tilde{L}_{p,0}(\mathbb{R}^n) = L_{p,0}(\mathbb{R}^n) = L_p(\mathbb{R}^n),$$

$$\tilde{L}_{p,\lambda}(\mathbb{R}^n) \subset_{\succ} L_{p,\lambda}(\mathbb{R}^n) \cap L_p(\mathbb{R}^n) \quad \text{and} \quad \max\{\|f\|_{L_{p,\lambda}}, \|f\|_{L_p}\} \leq \|f\|_{\tilde{L}_{p,\lambda}}$$

and if $\lambda < 0$ or $\lambda > n$, then $L_{p,\lambda}(\mathbb{R}^n) = \tilde{L}_{p,\lambda}(\mathbb{R}^n) = \Theta$, where Θ is the set of all functions equivalent to 0 on \mathbb{R}^n .

Definition 2. [10, 11, 14] Let $1 \leq p < \infty$, $0 \leq \lambda \leq n$. We denote by $WL_{p,\lambda}(\mathbb{R}^n)$ the weak Morrey space and by $W\tilde{L}_{p,\lambda}(\mathbb{R}^n)$ the modified weak Morrey space as the set of locally integrable functions $f(x)$, $x \in \mathbb{R}^n$ with finite norms

$$\|f\|_{WL_{p,\lambda}} = \sup_{r>0} r \sup_{x \in \mathbb{R}^n, t>0} \left(t^{-\lambda} |\{y \in B(x,t) : |f(y)| > r\}| \right)^{1/p},$$

$$\|f\|_{W\tilde{L}_{p,\lambda}} = \sup_{r>0} r \sup_{x \in \mathbb{R}^n, t>0} \left([t]_1^{-\lambda} |\{y \in B(x,t) : |f(y)| > r\}| \right)^{1/p}$$

respectively.

Note that

$$\begin{aligned} WL_p(\mathbb{R}^n) &= WL_{p,0}(\mathbb{R}^n) = W\tilde{L}_{p,0}(\mathbb{R}^n), \\ L_{p,\lambda}(\mathbb{R}^n) &\subset WL_{p,\lambda}(\mathbb{R}^n) \text{ and } \|f\|_{WL_{p,\lambda}} \leq \|f\|_{L_{p,\lambda}}, \\ \tilde{L}_{p,\lambda}(\mathbb{R}^n) &\subset W\tilde{L}_{p,\lambda}(\mathbb{R}^n) \text{ and } \|f\|_{W\tilde{L}_{p,\lambda}} \leq \|f\|_{\tilde{L}_{p,\lambda}}. \end{aligned}$$

The classical result by Hardy-Littlewood-Sobolev states that if $1 < p < q < \infty$, then I_α is bounded from $L_p(\mathbb{R}^n)$ to $L_q(\mathbb{R}^n)$ if and only if $\alpha = n\left(\frac{1}{p} - \frac{1}{q}\right)$ and for $p = 1 < q < \infty$, I_α is bounded from $L_1(\mathbb{R}^n)$ to $WL_q(\mathbb{R}^n)$ if and only if $\alpha = n\left(1 - \frac{1}{q}\right)$. D. R. Adams [2] studied the boundedness of the Riesz potential in Morrey spaces and proved the follows statement

Theorem A. *Let $0 < \alpha < n$ and $0 \leq \lambda < n$, $1 \leq p < \frac{n-\lambda}{\alpha}$.*

- 1) *If $1 < p < \frac{n-\lambda}{\alpha}$, then condition $\frac{1}{p} - \frac{1}{q} = \frac{\alpha}{n-\lambda}$ is necessary and sufficient for the boundedness I_α from $L_{p,\lambda}(\mathbb{R}^n)$ to $L_{q,\lambda}(\mathbb{R}^n)$.*
- 2) *If $p = 1$, then condition $1 - \frac{1}{q} = \frac{\alpha}{n-\lambda}$ is necessary and sufficient for the boundedness I_α from $L_{1,\lambda}(\mathbb{R}^n)$ to $WL_{q,\lambda}(\mathbb{R}^n)$.*

If $\alpha = \frac{n}{p} - \frac{n}{q}$, then $\lambda = 0$ and the statement of Theorem A reduces to the aforementioned result by Hardy-Littlewood-Sobolev.

Recall that, for $0 < \alpha < n$,

$$M_\alpha f(x) \leq v_n^{\frac{\alpha}{n}-1} I_\alpha(|f|)(x),$$

hence Theorem A also implies the boundedness of the fractional maximal operator M_α , where v_n is the volume of the unit ball in \mathbb{R}^n . F. Chiarenza and M. Frasca [8] proved that the maximal operator M is also bounded from $L_{p,\lambda}$ to $L_{p,\lambda}$ for all $1 < p < \infty$ and $0 < \lambda < n$.

In [16] the boundedness of the Riesz potential in modified Morrey spaces is studied and the following statement is proved.

Theorem C. *Let $0 < \alpha < n$ and $0 \leq \lambda < n$, $1 \leq p \leq \frac{n}{\alpha}$.*

- 1) *If $1 < p < \frac{n-\lambda}{\alpha}$, then condition $\frac{\alpha}{n} \leq \frac{1}{p} - \frac{1}{q} \leq \frac{\alpha}{n-\lambda}$ is necessary and sufficient for the boundedness of I^α from $\tilde{L}_{p,\lambda}(\mathbb{R}^n)$ to $\tilde{L}_{q,\lambda}(\mathbb{R}^n)$.*
- 2) *If $p = 1$, then condition $\frac{\alpha}{n} \leq 1 - \frac{1}{q} \leq \frac{\alpha}{n-\lambda}$ is necessary and sufficient for the boundedness of I^α from $\tilde{L}_{1,\lambda}(\mathbb{R}^n)$ to $W\tilde{L}_{q,\lambda}(\mathbb{R}^n)$.*
- 3) *If $\frac{n-\lambda}{\alpha} \leq p \leq \frac{n}{\alpha}$, then the operator \tilde{I}^α is bounded from $\tilde{L}_{p,\lambda}(\mathbb{R}^n)$ to $BMO(\mathbb{R}^n)$.*

Moreover, if the integral $I^\alpha f$ exists almost everywhere for $f \in \tilde{L}_{p,\lambda}(\mathbb{R}^n)$, $\frac{n-\lambda}{\alpha} \leq p \leq \frac{n}{\alpha}$, then $I^\alpha f \in BMO(\mathbb{R}^n)$ and the following inequality is valid

$$\|I^\alpha f\|_{BMO} \leq C \|f\|_{\tilde{L}_{p,\lambda}},$$

where $C > 0$ is independent of f .

If $\lambda = 0$, then $\alpha = \frac{n}{p} - \frac{n}{q}$ and the statement of Theorem C also reduces to the aforementioned result by Hardy-Littlewood-Sobolev.

The maximal operator, singular integral, potential and related topics associated with the Laplace-Bessel differential operator

$$\Delta_B = \sum_{i=1}^k \frac{\gamma_i}{x_i} \frac{\partial}{\partial x_i} + \sum_{j=1}^n \frac{\partial^2}{\partial x_j^2}, \quad \gamma_i > 0, \quad i = 1, \dots, k.$$

In this paper, we consider the generalized shift operator generated by the Laplace-Bessel differential operator Δ_B in terms of which the B -maximal operator and the B -Riesz potential are investigated. We study the B -Riesz potential in the modified B -Morrey space and B -BMO space. The inequality of Hardy-Littlewood-Sobolev -Morrey type is established for the B -Riesz potentials.

We obtain necessary and sufficient conditions for the operator $I_{\alpha,\gamma}$ to be bounded from the modified B -Morrey space $\tilde{L}_{p,\lambda,\gamma}$ to $\tilde{L}_{q,\lambda,\gamma}$.

The structure of the paper is as follows. In Section 1 we present some definitions and auxiliary results. In Section 2 we study some embeddings into the modified B -Morrey spaces. In Section 3 the boundedness of the B -maximal operator on modified B -Morrey space $\tilde{L}_{p,\lambda,\gamma}$ is proved. The main result of the paper is the inequality of Hardy-Littlewood-Sobolev-Morrey type for the B -Riesz potential, established in Section 4.

1. Definitions, notation and preliminaries

Suppose that \mathbb{R}^n is n -dimensional Euclidean space, $x = (x_1, \dots, x_n) \in \mathbb{R}^n$, $|x|^2 = \sum_{i=1}^n x_i^2$, $1 \leq k \leq n$, $n \geq 2$, $x' = (x_1, \dots, x_k) \in \mathbb{R}^k$, $x'' = (x_{k+1}, \dots, x_n) \in \mathbb{R}^{n-k}$, $x = (x', x'') \in \mathbb{R}^n$, $\mathbb{R}_{k,+}^n = \{x = (x', x'') \in \mathbb{R}^n; x_1 > 0, \dots, x_k > 0\}$, $E(x, t) = \{y \in \mathbb{R}_{k,+}^n; |x - y| < t\}$, $E(0, r) = E_r$, $\gamma = (\gamma_1, \dots, \gamma_k)$, $\gamma_1 > 0, \dots, \gamma_k > 0$, $|\gamma| = \gamma_1 + \dots + \gamma_k$, $(x')^\gamma = x_1^{\gamma_1} \dots x_k^{\gamma_k}$.

For measurable $E \subset \mathbb{R}_{k,+}^n$ suppose $|E|_\gamma = \int_E (x')^\gamma dx$, then $|E_r|_\gamma = \omega(n, k, \gamma) r^Q$, $Q = n + |\gamma|$, where

$$\omega(n, k, \gamma) = \int_{E_1} (x')^\gamma dx = 2^{-k} \pi^{\frac{n-k}{2}} \Gamma^{-1}((Q+2)/2) \prod_{i=1}^k \Gamma((\gamma_i + 1)/2).$$

Denote by T^y the generalized shift operator (B -shift operator) acting according to the law

$$T^y f(x) = C_{\gamma, k} \int_0^\pi \dots \int_0^\pi f((x', y')_\beta, x'' - y'') d\nu(\beta),$$

where $(x_i, y_i)_{\beta_i} = (x_i^2 - 2x_i y_i \cos \beta_i + y_i^2)^{\frac{1}{2}}$, $1 \leq i \leq k$, $(x', y')_\beta = ((x_1, y_1)_{\beta_1}, \dots, (x_k, y_k)_{\beta_k})$, $d\nu(\beta) = \prod_{i=1}^k \sin^{\gamma_i-1} \beta_i d\beta_1 \dots d\beta_k$, $1 \leq k \leq n$ and

$$C_{\gamma, k} = \pi^{-\frac{k}{2}} \prod_{i=1}^k \frac{\Gamma\left(\frac{\gamma_i+1}{2}\right)}{\Gamma\left(\frac{\gamma_i}{2}\right)}.$$

We remark that the generalized shift operator T^y is closely connected with the Bessel differential operator B .

Let $L_{p,\gamma}(\mathbb{R}_{k,+}^n)$ be the space of measurable functions on $\mathbb{R}_{k,+}^n$ with finite norm

$$\|f\|_{L_{p,\gamma}} = \|f\|_{L_{p,\gamma}(\mathbb{R}_{k,+}^n)} = \left(\int_{\mathbb{R}_{k,+}^n} |f(x)|^p (x')^\gamma dx \right)^{1/p}, \quad 1 \leq p < \infty.$$

For $p = \infty$ the spaces $L_{\infty,\gamma}(\mathbb{R}_{k,+}^n)$ are defined by means of the usual modification

$$\|f\|_{L_{\infty,\gamma}} = \|f\|_{L_\infty} = \operatorname{esssup}_{x \in \mathbb{R}_{k,+}^n} |f(x)|.$$

The translation operator T^y generates the corresponding B -convolution

$$(f \otimes g)(x) = \int_{\mathbb{R}_{k,+}^n} f(y) T^y g(x) (y')^\gamma dy,$$

for which the Young inequality

$$\|f \otimes g\|_{L_{r,\gamma}} \leq \|f\|_{L_{p,\gamma}} \|g\|_{L_{q,\gamma}}, \quad 1 \leq p, q, r \leq \infty, \quad \frac{1}{p} + \frac{1}{q} = \frac{1}{r} + 1$$

holds.

Lemma 1.

$$\int_{\mathbb{R}_{k,+}^n} g(y)(y')^\gamma dy = C_{\gamma,k}^{-1} \int_{\mathbb{R}^n \times (0,\infty)^k} g \left(\sqrt{z_1^2 + \bar{z}_1^2}, \dots, \sqrt{z_k^2 + \bar{z}_k^2}, z'' \right) d\mu(z, \bar{z}'),$$

where $(z, \bar{z}') \in \mathbb{R}^n \times (0, \infty)^k$, $d\mu(z, \bar{z}') = (\bar{z}')^{\gamma-1} dz d\bar{z}'$, $d\bar{z}' = d\bar{z}_1 \cdots d\bar{z}_k$, $(\bar{z}')^{\gamma-1} = (\bar{z}_1)^{\gamma_1-1} \cdots (\bar{z}_k)^{\gamma_k-1}$.

Lemma 2. For all $x \in \mathbb{R}_{k,+}^n$ the following equality is valid

$$\int_{E(x,t)} g(y)(y')^\gamma dy = C_{\gamma,k}^{-1} \int_{B((x,0),t)} g \left(\sqrt{z_1^2 + \bar{z}_1^2}, \dots, \sqrt{z_k^2 + \bar{z}_k^2}, z'' \right) d\mu(z, \bar{z}'),$$

where $B((x,0),t) = \{(z, \bar{z}') \in \mathbb{R}^n \times (0, \infty)^k : |(x_1 - \sqrt{z_1^2 + \bar{z}_1^2}, \dots, x_k - \sqrt{z_k^2 + \bar{z}_k^2}, x'' - z'')| < t\}$, $d\mu(z, \bar{z}') = (\bar{z}')^{\gamma-1} dz d\bar{z}'$, $d\bar{z}' = d\bar{z}_1 \cdots d\bar{z}_k$, $(\bar{z}')^{\gamma-1} = (\bar{z}_1)^{\gamma_1-1} \cdots (\bar{z}_k)^{\gamma_k-1}$.

Lemma 3. For all $x \in \mathbb{R}_{k,+}^n$ the following equality is valid

$$\int_{E_t} T^y g(x)(y')^\gamma dy = \int_{E((x,0),t)} g \left(\sqrt{z_1^2 + \bar{z}_1^2}, \dots, \sqrt{z_k^2 + \bar{z}_k^2}, z'' \right) d\mu(z, \bar{z}'),$$

where $E((x,0),t) = \{(z, \bar{z}') \in \mathbb{R}^n \times (0, \infty)^k : |(x - z, \bar{z}')| < t\}$.

The proof of Lemmas 2, 3 is straightforward via the following substitutions

$$\begin{aligned} z'' &= x'', z_i = x_i \cos \alpha_i, \quad \bar{z}_i = x_i \sin \alpha_i, \quad 0 \leq \alpha_i < \pi, \quad i = 1, \dots, k, \\ x &\in \mathbb{R}_{k,+}^n, \quad \bar{z}' = (\bar{z}_1, \dots, \bar{z}_k), \quad (z, \bar{z}') \in \mathbb{R}^n \times (0, \infty)^k, \quad 1 \leq k \leq n. \end{aligned}$$

Lemma 4. Let $0 < \alpha < Q$. Then for $2|x| \leq |y|$ the following inequality is valid

$$|T^y|x|^{\alpha-Q} - |y|^{\alpha-Q}| \leq 2^{Q-\alpha+1} |y|^{\alpha-Q-1} |x|. \quad (1)$$

2. Some embeddings into the modified B-Morrey spaces

Definition 3. Let $1 \leq p < \infty$. By $WL_{p,\gamma}(\mathbb{R}_{k,+}^n)$ we denote the weak $L_{p,\gamma}$ space defined as the set of locally integrable functions $f(x)$, $x \in \mathbb{R}_{k,+}^n$ with the finite norms

$$\|f\|_{WL_{p,\gamma}} = \sup_{r>0} r \left| \left\{ x \in \mathbb{R}_{k,+}^n : |f(x)| > r \right\} \right|_\gamma^{1/p}.$$

Definition 4. [11] Let $1 \leq p < \infty$, $0 \leq \lambda \leq Q$, $[t]_1 = \min\{1, t\}$. We denote by $\tilde{L}_{p,\lambda,\gamma}(\mathbb{R}_{k,+}^n)$ the modified Morrey space, (\equiv modified B-Morrey space) associated with the Laplace-Bessel differential operator as the set of locally integrable functions $f(x)$, $x \in \mathbb{R}_{k,+}^n$, with the finite norms

$$\|f\|_{\tilde{L}_{p,\lambda,\gamma}} = \sup_{t>0, x \in \mathbb{R}_{k,+}^n} \left([t]_1^{-\lambda} \int_{E_t} T^y |f(x)|^p (y')^\gamma dy \right)^{1/p}$$

respectively.

Note that

$$\begin{aligned} \tilde{L}_{p,0,\gamma}(\mathbb{R}_{k,+}^n) &= L_{p,\gamma}(\mathbb{R}_{k,+}^n), \\ \tilde{L}_{p,\lambda,\gamma}(\mathbb{R}_{k,+}^n) &\subset \succ L_{p,\gamma}(\mathbb{R}_{k,+}^n) \quad \text{and} \quad \|f\|_{L_{p,\gamma}} \leq \|f\|_{\tilde{L}_{p,\lambda,\gamma}} \end{aligned} \quad (2)$$

and if $\lambda < 0$ or $\lambda > Q$, then $\tilde{L}_{p,\lambda,\gamma}(\mathbb{R}_{k,+}^n) = \Theta$.

Note that

$$\begin{aligned} \tilde{L}_{p,0,\gamma}(\mathbb{R}_{k,+}^n) &= L_{p,\gamma}(\mathbb{R}_{k,+}^n), \\ \tilde{L}_{p,\lambda,\gamma}(\mathbb{R}_{k,+}^n) &\subset \succ L_{p,\lambda,\gamma}(\mathbb{R}_{k,+}^n) \quad \text{and} \quad \|f\|_{L_{p,\gamma}} \leq \|f\|_{\tilde{L}_{p,\lambda,\gamma}}, \end{aligned} \quad (3)$$

$$\tilde{L}_{p,\lambda,\gamma}(\mathbb{R}_{k,+}^n) \subset \succ L_{p,\lambda,\gamma}(\mathbb{R}_{k,+}^n) \quad \text{and} \quad \|f\|_{L_{p,\lambda,\gamma}} \leq \|f\|_{\tilde{L}_{p,\lambda,\gamma}} \quad (4)$$

and if $\lambda < 0$ or $\lambda > Q$, then $\tilde{L}_{p,\lambda,\gamma}(\mathbb{R}_{k,+}^n) = \Theta$, where Θ is the set of all functions equivalent to 0 on $\mathbb{R}_{k,+}^n$.

Lemma 5. Let $1 \leq p < \infty$, $0 \leq \lambda \leq Q$. Then

$$\tilde{L}_{p,\lambda,\gamma}(\mathbb{R}_{k,+}^n) = L_{p,\lambda,\gamma}(\mathbb{R}_{k,+}^n) \cap L_{p,\gamma}(\mathbb{R}_{k,+}^n)$$

and for $f \in \tilde{L}_{p,\lambda,\gamma}(\mathbb{R}_{k,+}^n)$ $\|f\|_{L_{p,\lambda,\gamma}} = \|f\|_{\tilde{L}_{p,\lambda,\gamma}}$.

Proof. Let $f \in \tilde{L}_{p,\lambda,\gamma}(\mathbb{R}_{k,+}^n)$. Then by (3) and (4) we have

$$\tilde{L}_{p,\lambda,\gamma}(\mathbb{R}_{k,+}^n) \subset \succ L_{p,\lambda,\gamma}(\mathbb{R}_{k,+}^n) \cap L_{p,\gamma}(\mathbb{R}_{k,+}^n).$$

Therefore, $f \in L_{p,\lambda,\gamma}(\mathbb{R}_{k,+}^n) \cap L_{p,\gamma}(\mathbb{R}_{k,+}^n)$ and the embedding $\tilde{L}_{p,\lambda,\gamma}(\mathbb{R}_{k,+}^n) \subset \succ L_{p,\lambda,\gamma}(\mathbb{R}_{k,+}^n) \cap L_{p,\gamma}(\mathbb{R}_{k,+}^n)$ is valid.

Let $f \in L_{p,\lambda,\gamma}(\mathbb{R}_{k,+}^n) \cap L_{p,\gamma}(\mathbb{R}_{k,+}^n)$. Then

$$\begin{aligned} \|f\|_{\tilde{L}_{p,\lambda,\gamma}} &= \sup_{x \in \mathbb{R}_{k,+}^n, t > 0} \left([t]_1^{-\lambda} \int_{E_t} T^y |f(x)|^p (y')^\gamma dy \right)^{1/p} \\ &= \max \left\{ \sup_{x \in \mathbb{R}_{k,+}^n, 0 < t \leq 1} \left(t^{-\lambda} \int_{E_t} T^y |f(x)|^p (y')^\gamma dy \right)^{1/p}, \sup_{x \in \mathbb{R}_{k,+}^n, t > 1} \left(\int_{E_t} T^y |f(x)|^p (y')^\gamma dy \right)^{1/p} \right\} \\ &\leq \max \left\{ \|f\|_{L_{p,\lambda,\gamma}}, \|f\|_{L_{p,\gamma}} \right\}. \end{aligned}$$

Therefore, $f \in \tilde{L}_{p,\lambda,\gamma}(\mathbb{R}_{k,+}^n)$ and the embedding $L_{p,\lambda,\gamma}(\mathbb{R}_{k,+}^n) \cap L_{p,\gamma}(\mathbb{R}_{k,+}^n) \subset \tilde{L}_{p,\lambda,\gamma}(\mathbb{R}_{k,+}^n)$ is valid.

Thus $\tilde{L}_{p,\lambda,\gamma}(\mathbb{R}_{k,+}^n) = L_{p,\lambda,\gamma}(\mathbb{R}_{k,+}^n) \cap L_{p,\gamma}(\mathbb{R}_{k,+}^n) \subset \tilde{L}_{p,\lambda,\gamma}(\mathbb{R}_{k,+}^n)$.

Let now $f \in \tilde{L}_{p,\lambda,\gamma}(\mathbb{R}_{k,+}^n)$. Then

$$\begin{aligned} \|f\|_{L_{p,\lambda,\gamma}} &= \sup_{x \in \mathbb{R}_{k,+}^n, t > 0} \left(t^{-\lambda} \int_{E_t} T^y |f(x)|^p (y')^\gamma dy \right)^{1/p} \\ &= \sup_{x \in \mathbb{R}_{k,+}^n, t > 0} (t^{-1} [t]_1)^{\frac{\lambda}{p}} \left([t]_1^{-\lambda} \int_{E_t} T^y |f(x)|^p (y')^\gamma dy \right)^{1/p} \\ &= \sup_{x \in \mathbb{R}_{k,+}^n, t > 0} \left([t]_1^{-\lambda} \int_{E_t} T^y |f(x)|^p (y')^\gamma dy \right)^{1/p} = \|f\|_{\tilde{L}_{p,\lambda,\gamma}}. \end{aligned}$$

It is known that for $1 \leq p < \infty$

$$L_{p,Q,\gamma}(\mathbb{R}_{k,+}^n) = L_\infty(\mathbb{R}_{k,+}^n) \quad \text{and} \quad \|f\|_{L_{p,Q,\gamma}} = \omega(n, k, \gamma)^{1/p} \|f\|_{L_\infty}. \quad (5)$$

From (5) and Lemma 5 for $1 \leq p < \infty$ we have

$$\tilde{L}_{p,Q,\gamma}(\mathbb{R}_{k,+}^n) = L_\infty(\mathbb{R}_{k,+}^n) \cap L_{p,\gamma}(\mathbb{R}_{k,+}^n). \quad (6)$$

Lemma 6. Let $1 \leq p < \infty$, $0 < \alpha < Q$, $0 \leq \lambda < Q$. Then for $\frac{Q-\lambda}{\alpha} \leq p \leq \frac{Q}{\alpha}$

$$\tilde{L}_{p,\lambda,\gamma}(\mathbb{R}_{k,+}^n) \subset \tilde{L}_{1,Q-\alpha,\gamma}(\mathbb{R}_{k,+}^n)$$

and for $f \in \tilde{L}_{p,\lambda,\gamma}(\mathbb{R}_{k,+}^n)$ the following inequality

$$\|f\|_{\tilde{L}_{1,Q-\alpha,\gamma}} \leq \omega(n, k, \gamma)^{1/p'} \|f\|_{\tilde{L}_{p,\lambda,\gamma}}.$$

is valid.

Proof. Let $0 < \alpha < Q$, $0 \leq \lambda < Q$, $f \in \tilde{L}_{p,\lambda,\gamma}(\mathbb{R}_{k,+}^n)$ and $\frac{Q-\lambda}{\alpha} \leq p \leq \frac{Q}{\alpha}$. By the Hölder's inequality we have

$$\|f\|_{\tilde{L}_{1,Q-\alpha,\gamma}} = \sup_{x \in \mathbb{R}_{k,+}^n, t > 0} [t]_1^{\alpha-n-\gamma} \int_{E_t} T^y |f(x)| (y')^\gamma dy$$

$$\begin{aligned}
&\leq \omega(n, k, \gamma)^{1/p'} \sup_{x \in \mathbb{R}_{k,+}^n, t > 0} ([t]_1 t^{-1})^{-n/p'} [t]_1^{\alpha - \frac{Q-\lambda}{p}} \left([t]_1^{-\lambda} \int_{E_t} T^y |f(x)|^p (y')^\gamma dy \right)^{1/p} \\
&= \omega(n, k, \gamma)^{1/p'} \sup_{x \in \mathbb{R}_{k,+}^n, t > 0} ([t]_1 t^{-1})^{Q-\alpha} ([t]_1 t^{-1})^{-\frac{Q}{p'}} [t]_1^{\alpha - \frac{Q-\lambda}{p}} \left([t]_1^{-\lambda} \int_{E_t} T^y |f(x)|^p (y')^\gamma dy \right)^{1/p} \\
&\leq \omega(n, k, \gamma)^{1/p'} \|f\|_{\tilde{L}_{p,\lambda,\gamma}} \sup_{t > 0} ([t]_1 t^{-1})^{\frac{Q}{p} - \alpha} [t]_1^{\alpha - \frac{Q-\lambda}{p}}.
\end{aligned}$$

Note that

$$\begin{aligned}
\sup_{t > 0} ([t]_1 t^{-1})^{\frac{Q}{p} - \alpha} [t]_1^{\alpha - \frac{Q-\lambda}{p}} &= \max \left\{ \sup_{0 < t \leq 1} t^{\alpha - \frac{Q-\lambda}{p}}, \sup_{t > 1} t^{\alpha - \frac{Q}{p}} \right\} < \infty \\
\iff \frac{Q - \lambda}{\alpha} \leq p &\leq \frac{Q}{\alpha}.
\end{aligned}$$

Therefore $f \in \tilde{L}_{1,Q-\alpha,\gamma}(\mathbb{R}_{k,+}^n)$ and

$$\|f\|_{\tilde{L}_{1,Q-\alpha,\gamma}} \leq \omega(n, k, \gamma)^{1/p'} \|f\|_{\tilde{L}_{p,\lambda,\gamma}}.$$

Definition 5. [13] Let $1 \leq p < \infty, 0 \leq \lambda \leq Q$. We denote by $W\tilde{L}_{p,\lambda,\gamma}(\mathbb{R}_{k,+}^n)$ the modified weak B -Morrey space as the set of locally integrable functions $f(x), x \in \mathbb{R}_{k,+}^n$ with finite norms

$$\|f\|_{W\tilde{L}_{p,\lambda,\gamma}} = \sup_{r > 0} r \sup_{t > 0, x \in \mathbb{R}_{k,+}^n} \left([t]_1^{-\lambda} \int_{\{y \in E_t : T^y |f(x)| > r\}} (y')^\gamma dy \right)^{1/p}$$

respectively.

Note that

$$\begin{aligned}
WL_{p,\gamma}(\mathbb{R}_{k,+}^n) &= W\tilde{L}_{p,0,\gamma}(\mathbb{R}_{k,+}^n), \\
\tilde{L}_{p,\lambda,\gamma}(\mathbb{R}_{k,+}^n) &\subset W\tilde{L}_{p,\lambda,\gamma}(\mathbb{R}_{k,+}^n) \text{ and } \|f\|_{W\tilde{L}_{p,\lambda,\gamma}} \leq \|f\|_{\tilde{L}_{p,\lambda,\gamma}}.
\end{aligned}$$

Definition 6. [10] We denote by $BMO_\gamma(\mathbb{R}_{k,+}^n)$ B - BMO space the set of locally integrable functions $f(x), x \in \mathbb{R}_{k,+}^n$, with finite norms

$$\|f\|_{*,\gamma} = \sup_{t > 0, x \in \mathbb{R}_{k,+}^n} |E_t|_\gamma^{-1} \int_{E_t} |T^x f(y) - f_{E_t}(x)| (y')^\gamma dy < \infty,$$

where $f_{E_t}(x) = |E_t|_\gamma^{-1} \int_{E_t} [T^x f(y)] (y')^\gamma dy$.

3. $\tilde{L}_{p,\lambda,\gamma}$ -boundedness of the B -maximal operator

In this section we study the $L_{p,\lambda,\gamma}$ -boundedness of the B -maximal operator (see [10])

$$M_\gamma f(x) = \sup_{t>0} |E_t|_\gamma^{-1} \int_{E_t} T^y |f(x)|(y')^\gamma dy.$$

Theorem 1. 1. If $f \in \tilde{L}_{1,\lambda,\gamma}(\mathbb{R}_{k,+}^n)$, $0 \leq \lambda < Q$, then $M_\gamma f \in W\tilde{L}_{1,\lambda,\gamma}(\mathbb{R}_{k,+}^n)$ and

$$\|M_\gamma f\|_{W\tilde{L}_{1,\lambda,\gamma}} \leq C_{1,\lambda,\gamma} \|f\|_{\tilde{L}_{1,\lambda,\gamma}},$$

where $C_{1,\lambda,\gamma}$ is independent of f .

2. If $f \in \tilde{L}_{p,\lambda,\gamma}(\mathbb{R}_{k,+}^n)$, $1 < p < \infty$, $0 \leq \lambda < Q$, then $M_\gamma f \in \tilde{L}_{p,\lambda,\gamma}(\mathbb{R}_{k,+}^n)$ and

$$\|M_\gamma f\|_{\tilde{L}_{p,\lambda,\gamma}} \leq C_{p,\lambda,\gamma} \|f\|_{\tilde{L}_{p,\lambda,\gamma}},$$

where $C_{p,\lambda,\gamma}$ depends only on p, λ, γ, k and n .

Proof. We need to introduce the maximal operator defined on a space of homogeneous type (Y, d, ν) . By this we mean a topological space $Y = \mathbb{R}^n \times (0, \infty)^k$ equipped with a continuous pseudometric d and a positive measure ν satisfying

$$\nu(E((x, \bar{x}'), 2t)) \leq C_1 \nu(E((x, \bar{x}'), t)) \quad (7)$$

with a constant C_1 independent of (x, \bar{x}') and $t > 0$. Here $E((x, \bar{x}'), t) = \{(y, \bar{y}') \in Y : d(((x, \bar{x}'), (y, \bar{y}')) < t\}$, $d\nu(y, \bar{y}') = (\bar{y}')^{\gamma-1} dy d\bar{y}'$, $(\bar{y}')^{\gamma-1} = (\bar{y}_1)^{\gamma_1-1} \cdots (\bar{y}_k)^{\gamma_k-1}$, $d((x, \bar{x}'), (y, \bar{y}')) = |(x, \bar{x}') - (y, \bar{y}')| \equiv (|x - y|^2 + (\bar{x}' - \bar{y}')^2)^{\frac{1}{2}}$.

Let (Y, d, ν) be a space of homogeneous type. Define

$$M_\nu \bar{f}(x, \bar{x}') = \sup_{t>0} \nu(E((x, \bar{x}'), t))^{-1} \int_{E((x, \bar{x}'), t)} |\bar{f}(y, \bar{y}')| d\nu(y),$$

where $\bar{f}(x, \bar{x}') = f(\sqrt{x_1^2 + \bar{x}_1^2}, \dots, \sqrt{x_k^2 + \bar{x}_k^2}, x'')$.

It is well known that the maximal operator M_ν is of weak type $(1, 1)$ and is bounded on $L_p(Y, d\nu)$ for $1 < p < \infty$ (see [7]). Here we are concerned with the maximal operator defined by $d\nu(y, \bar{y}') = (\bar{y}')^{\gamma-1} dy d\bar{y}'$. It is clear that this measure satisfies the doubling condition (7).

It can be proved that

$$M_\gamma f \left(\sqrt{z_1^2 + \bar{z}_1^2}, \dots, \sqrt{z_k^2 + \bar{z}_k^2}, z'' \right) = M_\nu \bar{f} \left(\sqrt{z_1^2 + \bar{z}_1^2}, \dots, \sqrt{z_k^2 + \bar{z}_k^2}, z'', 0 \right), \quad (8)$$

$$M_\gamma f(x) = M_\nu \bar{f}(x, 0). \quad (9)$$

Indeed, Lemma 3

$$\begin{aligned} & \int_{E_t} T^y \left| f \left(\sqrt{z_1^2 + \bar{z}_1^2}, \dots, \sqrt{z_k^2 + \bar{z}_k^2}, z'' \right) \right| (y')^\gamma dy \\ &= \int_{E\left(\left(\sqrt{z_1^2 + \bar{z}_1^2}, \dots, \sqrt{z_k^2 + \bar{z}_k^2}, z'', 0\right), t\right)} |\bar{f}(y, \bar{y}')| d\nu(y, \bar{y}') \end{aligned}$$

and

$$|E_t|_\gamma = \nu E \left(\left(\sqrt{z_1^2 + \bar{z}_1^2}, \dots, \sqrt{z_k^2 + \bar{z}_k^2}, z'', 0 \right), t \right)$$

imply (8). Furthermore, taking $\bar{z}_k = 0$ in (8) we get (9).

Using Lemma 3 and equality (8) we have

$$\begin{aligned} & \int_{E_t} T^y (M_\gamma f(x))^p (y')^\gamma dy \\ &= \int_{E((x, 0), t)} \left(M_\gamma f \left(\sqrt{z_1^2 + \bar{z}_1^2}, \dots, \sqrt{z_k^2 + \bar{z}_k^2}, z'' \right) \right)^p d\nu(z, \bar{z}') \\ &= \int_{E((x, 0), t)} \left(M_\nu \bar{f} \left(\sqrt{z_1^2 + \bar{z}_1^2}, \dots, \sqrt{z_k^2 + \bar{z}_k^2}, z'', 0 \right) \right)^p d\nu(z, \bar{z}'). \end{aligned}$$

In [19] it was proved that the analogue of the Fefferman-Stein theorem for the maximal operator defined on a space of homogeneous type is valid, if condition (7) is satisfied. Therefore

$$\begin{aligned} & \int_{E((x, \bar{x}'), t)} (M_\nu \varphi(y, \bar{y}'))^p \psi(y, \bar{y}') d\nu(y, \bar{y}') \\ &\leq C_2 \int_{E((x, \bar{x}'), t)} |\varphi(y, \bar{y}')|^p M_\nu \psi(y, \bar{y}') d\nu(y, \bar{y}'). \end{aligned} \quad (10)$$

Then taking $\varphi(y, \bar{y}') = \bar{f} \left(\sqrt{y_1^2 + \bar{y}_1^2}, \dots, \sqrt{y_k^2 + \bar{y}_k^2}, y'', 0 \right)$ and $\psi(y, \bar{y}') \equiv 1$ we obtain from inequality (10) and Lemma 3 that

$$\begin{aligned} & \int_{E_t} T^y (M_\gamma f(x))^p (y')^\gamma dy \\ &= \int_{E((x, 0), t)} \left(M_\nu \bar{f} \left(\sqrt{y_1^2 + \bar{y}_1^2}, \dots, \sqrt{y_k^2 + \bar{y}_k^2}, y'', 0 \right) \right)^p d\nu(y, \bar{y}') \\ &\leq C_2 \int_{E((x, 0), t)} \left| \bar{f} \left(\sqrt{y_1^2 + \bar{y}_1^2}, \dots, \sqrt{y_k^2 + \bar{y}_k^2}, y'', 0 \right) \right|^p d\nu(y, \bar{y}') \\ &= C_2 \int_{E((x, 0), t)} \left| f \left(\sqrt{y_1^2 + \bar{y}_1^2}, \dots, \sqrt{y_k^2 + \bar{y}_k^2}, y'' \right) \right|^p d\nu(y, \bar{y}') \\ &= C_2 \int_{E_t} T^y |f(x)|^p (y')^\gamma dy \leq C_2 [t]_1^\lambda \|f\|_{\tilde{L}_{p, \lambda, \gamma}}^p. \end{aligned}$$

Corollary 1. Let $f \in L_{1,\gamma}^{\text{loc}}(\mathbb{R}_{k,+}^n)$, then

$$\lim_{t \rightarrow 0} |E_t|_{\gamma}^{-1} \int_{E_t} T^y f(x) (y')^{\gamma} dy = f(x)$$

for almost $x \in \mathbb{R}_{k,+}^n$.

Corollary 2. [12]

1. If $f \in L_{1,\gamma}(\mathbb{R}_{k,+}^n)$, then $M_{\gamma}f \in WL_{1,\gamma}(\mathbb{R}_{k,+}^n)$ and

$$\|M_{\gamma}f\|_{WL_{1,\gamma}} \leq C_{1,\gamma} \|f\|_{L_{1,\gamma}},$$

where $C_{1,\gamma}$ is independent of f .

2. If $f \in L_{p,\gamma}(\mathbb{R}_{k,+}^n)$, $1 < p \leq \infty$, then $M_{\gamma}f \in L_{p,\gamma}(\mathbb{R}_{k,+}^n)$ and

$$\|M_{\gamma}f\|_{L_{p,\gamma}} \leq C_{p,\gamma} \|f\|_{L_{p,\gamma}},$$

where $C_{p,\gamma}$ depends only on p, γ, k and n .

In Theorem 1 if we take $\lambda = 0$, we obtained Corollary 2.

4. Hardy-Littlewood-Sobolev-Morrey type inequality for B -Riesz potential

We consider the fractional B -maximal operator

$$M_{\alpha,\gamma}f(x) = \sup_{r>0} |E_r|^{\frac{\alpha}{Q}-1} \int_{E_r} T^y |f(x)|(y')^{\gamma} dy, \quad 0 \leq \alpha < Q,$$

the B -Riesz potential

$$I_{\alpha,\gamma}f(x) = \int_{\mathbb{R}_{k,+}^n} T^y |x|^{\alpha-Q} f(y) (y')^{\gamma} dy, \quad 0 < \alpha < Q,$$

and the modified B -Riesz potential

$$\tilde{I}_{\alpha,\gamma}f(x) = \int_{\mathbb{R}_{k,+}^n} (T^y |x|^{\alpha-Q} - |y|^{\alpha-Q} \chi_{E_1^*}(y)) f(y) (y')^{\gamma} dy,$$

where $E_1^* = \mathbb{R}_{k,+}^n \setminus E_1$.

The examples show that the B -Riesz potential $I_{\alpha,\gamma}$ is not defined for all functions $f \in \tilde{L}_{p,\lambda,\gamma}(\mathbb{R}_{k,+}^n)$, $0 \leq \lambda < Q$, if $p \geq \frac{Q}{\alpha}$.

For the B -Riesz potential the following Hardy-Littlewood-Sobolev-Morrey type inequality is valid.

Theorem 2. Let $0 < \alpha < Q$, $0 \leq \lambda < Q$ and $1 \leq p \leq \frac{Q-\lambda}{\alpha}$.

1) If $1 < p < \frac{Q-\lambda}{\alpha}$, then condition $\frac{\alpha}{Q} \leq \frac{1}{p} - \frac{1}{q} \leq \frac{\alpha}{Q-\lambda}$ is necessary and sufficient for the boundedness of $I_{\alpha,\gamma}$ from $\tilde{L}_{p,\lambda,\gamma}(\mathbb{R}_{k,+}^n)$ to $\tilde{L}_{q,\lambda,\gamma}(\mathbb{R}_{k,+}^n)$.

2) If $p = 1$, then condition $\frac{\alpha}{Q} \leq 1 - \frac{1}{q} \leq \frac{\alpha}{Q-\lambda}$ is necessary and sufficient for the boundedness of $I_{\alpha,\gamma}$ from $\tilde{L}_{1,\lambda,\gamma}(\mathbb{R}_{k,+}^n)$ to $W\tilde{L}_{q,\lambda,\gamma}(\mathbb{R}_{k,+}^n)$.

3) If $\frac{Q-\lambda}{\alpha} \leq p \leq \frac{Q}{\alpha}$, then the operator $\tilde{I}_{\alpha,\gamma}$ is bounded from $\tilde{L}_{p,\lambda,\gamma}(\mathbb{R}_{k,+}^n)$ to $BMO_{\gamma}(\mathbb{R}_{k,+}^n)$.

Moreover, for $f \in \tilde{L}_{p,\lambda,\gamma}(\mathbb{R}_{k,+}^n)$, $\frac{Q-\lambda}{\alpha} \leq p \leq \frac{Q}{\alpha}$ the integral $I_{\alpha,\gamma}f$ exists almost everywhere, then $I_{\alpha,\gamma}f \in BMO_{\gamma}(\mathbb{R}_{k,+}^n)$ and the following inequality is valid

$$\|I_{\alpha,\gamma}f\|_{BMO_{\gamma}} \leq C\|f\|_{\tilde{L}_{p,\lambda,\gamma}},$$

where $C > 0$ is independent of f .

Proof. 1) *Sufficiency.* Let $f \in \tilde{L}_{p,\lambda,\gamma}(\mathbb{R}_{k,+}^n)$. Then

$$\begin{aligned} I_{\alpha,\gamma}f(x) &= \left(\int_{E_t} + \int_{\mathbb{R}_{k,+}^n \setminus E_t} \right) T^y f(x) |y|^{\alpha-Q} (y')^\gamma dy \\ &\equiv A(x, t) + C(x, t). \end{aligned} \quad (11)$$

For $A(x, t)$ we have

$$\begin{aligned} |A(x, t)| &\leq \int_{E_t} T^y |f(x)| |y|^{\alpha-Q} (y')^\gamma dy \\ &\leq \sum_{j=-\infty}^{-1} (2^j t)^{\alpha-Q} \int_{E_{2^{j+1}t} \setminus E_{2^j t}} T^y |f(x)| (y')^\gamma dy. \end{aligned}$$

Hence

$$|A(x, t)| \leq C_3 t^\alpha M_\gamma f(x) \quad \text{with} \quad C_3 = \frac{\omega(n, k, \gamma) 2^Q}{2^\alpha - 1}. \quad (12)$$

For $C(x, t)$ by the Hölder's inequality we have

$$\begin{aligned} |C(x, t)| &\leq \left(\int_{\mathbb{R}_{k,+}^n \setminus E_t} |y|^{-\beta} T^y |f(x)|^p (y')^\gamma dy \right)^{1/p} \\ &\times \left(\int_{\mathbb{R}_{k,+}^n \setminus E_t} |y|^{(\frac{\beta}{p} + \alpha - Q)p'} (y')^\gamma dy \right)^{1/p'} = J_1 \cdot J_2. \end{aligned} \quad (13)$$

Let $\lambda < \beta < Q - \alpha p$. For J_1 we get

$$\begin{aligned}
J_1 &= \left(\sum_{j=0}^{\infty} \int_{E_{2^{j+1}t} \setminus E_{2^j t}} T^y |f(x)|^p |y|^{-\beta} (y')^\gamma dy \right)^{1/p} \\
&\leq t^{-\frac{\beta}{p}} \|f\|_{\tilde{L}_{p,\lambda,\gamma}} \left(\sum_{j=0}^{\infty} 2^{-\beta j} [2^{j+1}t]_1^\lambda \right)^{1/p} \\
&= t^{-\frac{\beta}{p}} \|f\|_{\tilde{L}_{p,\lambda,\gamma}} \left(\begin{array}{ll} \left(2^\lambda t^\lambda \sum_{j=0}^{\log_2[\frac{1}{2t}]} 2^{(\lambda-\beta)j} + \sum_{j=\log_2[\frac{1}{2t}]+1}^{\infty} 2^{-\beta j} \right)^{1/p}, & 0 < t < 1 \\ \left(\sum_{j=0}^{\infty} 2^{-\beta j} \right)^{1/p}, & t \geq 1 \end{array} \right) \\
&= t^{-\frac{\beta}{p}} \|f\|_{\tilde{L}_{p,\lambda,\gamma}} \begin{cases} (C_4 t^\lambda + C_5 t^\beta)^{\frac{1}{p}}, & 0 < t < 1, \\ C_6, & t \geq 1, \end{cases} \\
&= C_7 [t]_1^{\frac{\lambda}{p}} t^{-\frac{\beta}{p}} \|f\|_{\tilde{L}_{p,\lambda,\gamma}}. \tag{14}
\end{aligned}$$

For J_2 we obtain

$$J_2 = \left(\int_{\mathbb{S}_{k,+}^{n-1}} (\xi')^\gamma d\xi \int_t^\infty r^{Q-1+(\frac{\beta}{p}+\alpha-Q)p'} dr \right)^{\frac{1}{p'}} = C_8 t^{\frac{\beta}{p}+\alpha-\frac{Q}{p}}. \tag{15}$$

From (15) and inequality (14) we have

$$|C(x, t)| \leq C_9 [t]_1^{\frac{\lambda}{p}} t^{\alpha-\frac{Q}{p}} \|f\|_{\tilde{L}_{p,\lambda,\gamma}}. \tag{16}$$

Thus, (12) and (16) implies

$$\begin{aligned}
|I_{\alpha,\gamma} f(x)| &\leq C_{10} (t^\alpha M_\gamma f(x) + [t]_1^{\frac{\lambda}{p}} t^{\alpha-\frac{Q}{p}} \|f\|_{\tilde{L}_{p,\lambda,\gamma}}) \\
&\leq C_{10} \min\{t^\alpha M_\gamma f(x) + t^{\alpha-\frac{Q-\lambda}{p}} \|f\|_{\tilde{L}_{p,\lambda,\gamma}}, t^\alpha M_\gamma f(x) + t^{\alpha-\frac{Q}{p}} \|f\|_{\tilde{L}_{p,\lambda,\gamma}}\}.
\end{aligned}$$

Minimizing with respect to t , at $t = \left[(M_\gamma f(x))^{-1} \|f\|_{\tilde{L}_{p,\lambda,\gamma}} \right]^{p/(Q-\lambda)}$ or $t = \left[(M_\gamma f(x))^{-1} \|f\|_{\tilde{L}_{p,\lambda,\gamma}} \right]^{p/Q}$ we have

$$|I_{\alpha,\gamma} f(x)| \leq C_{11} \min \left\{ \left(\frac{M_\gamma f(x)}{\|f\|_{\tilde{L}_{p,\lambda,\gamma}}} \right)^{1-\frac{p\alpha}{Q-\lambda}} \|f\|_{\tilde{L}_{p,\lambda,\gamma}}, \left(\frac{M_\gamma f(x)}{\|f\|_{\tilde{L}_{p,\lambda,\gamma}}} \right)^{1-\frac{p\alpha}{Q}} \|f\|_{\tilde{L}_{p,\lambda,\gamma}} \right\}.$$

Then

$$|I_{\alpha,\gamma}f(x)| \leq C_{12} (M_\gamma f(x))^{p/q} \|f\|_{\tilde{L}_{p,\lambda,\gamma}}^{1-p/q}.$$

Hence, by Theorem 1, we have

$$\begin{aligned} & \int_{E_t} T^y |I_{\alpha,\gamma}f(x)|^q (y')^\gamma dy \\ & \leq C_{12} \|f\|_{\tilde{L}_{p,\lambda,\gamma}}^{q-p} \int_{E_t} T^y (M_\gamma f(y))^p (y')^\gamma dy \leq C_{13} [t]_1^\lambda \|f\|_{\tilde{L}_{p,\lambda,\gamma}}^q, \end{aligned}$$

which implies that $I_{\alpha,\gamma}$ is bounded from $\tilde{L}_{p,\lambda,\gamma}(\mathbb{R}_{k,+}^n)$ to $\tilde{L}_{q,\lambda,\gamma}(\mathbb{R}_{k,+}^n)$.

Necessity. Let $1 < p < \frac{Q-\lambda}{\alpha}$, $f \in \tilde{L}_{p,\lambda,\gamma}(\mathbb{R}_{k,+}^n)$ and $I_{\alpha,\gamma}$ be bounded from $\tilde{L}_{p,\lambda,\gamma}(\mathbb{R}_{k,+}^n)$ to $\tilde{L}_{q,\lambda,\gamma}(\mathbb{R}_{k,+}^n)$.

Define $f_t(x) =: f(tx)$. Then

$$\begin{aligned} \|f_t\|_{\tilde{L}_{p,\lambda,\gamma}} &= \sup_{r>0, x \in \mathbb{R}_{k,+}^n} \left([r]_1^{-\lambda} \int_{E_r} T^y |f_t(x)|^p (y')^\gamma dy \right)^{1/p} \\ &= t^{-\frac{Q}{p}} \sup_{r>0, x \in \mathbb{R}_{k,+}^n} \left([r]_1^{-\lambda} \int_{E_{tr}} T^y |f(x)|^p (y')^\gamma dy \right)^{1/p} \\ &= t^{-\frac{Q}{p}} \sup_{r>0} \left(\frac{[tr]_1}{[r]_1} \right)^{\lambda/p} \sup_{r>0, x \in \mathbb{R}_{k,+}^n} \left([tr]_1^{-\lambda} \int_{E_{tr}} T^y |f(x)|^p (y')^\gamma dy \right)^{1/p} \\ &= t^{-\frac{Q}{p}} [t]_{1,+}^{\frac{\lambda}{p}} \|f\|_{\tilde{L}_{p,\lambda,\gamma}}, \end{aligned}$$

where $[t]_{1,+} = \max\{1, t\}$ and

$$\begin{aligned} \|I_{\alpha,\gamma}f_t\|_{\tilde{L}_{q,\lambda,\gamma}} &= t^{-\alpha} \sup_{r>0, x \in \mathbb{R}_{k,+}^n} \left([r]_1^{-\lambda} \int_{E_r} T^{ty} |I_{\alpha,\gamma}f(tx)|^q (y')^\gamma dy \right)^{1/q} \\ &= t^{-\alpha - \frac{Q}{q}} \sup_{r>0} \left(\frac{[tr]_1}{[r]_1} \right)^{\lambda/q} \sup_{r>0, x \in \mathbb{R}_{k,+}^n} \left([tr]_1^{-\lambda} \int_{E_{tr}} T^y |I_{\alpha,\gamma}f(x)|^q (y')^\gamma dy \right)^{1/q} \\ &= t^{-\alpha - \frac{Q}{q}} [t]_{1,+}^{\frac{\lambda}{q}} \|I_{\alpha,\gamma}f\|_{\tilde{L}_{q,\lambda,\gamma}}. \end{aligned}$$

By the boundedness of $I_{\alpha,\gamma}$ from $\tilde{L}_{p,\lambda,\gamma}(\mathbb{R}_{k,+}^n)$ to $\tilde{L}_{q,\lambda,\gamma}(\mathbb{R}_{k,+}^n)$

$$\|I_{\alpha,\gamma}f\|_{\tilde{L}_{q,\lambda,\gamma}} \leq C_{p,q,\lambda,\gamma} t^{\alpha + \frac{Q}{q} - \frac{Q}{p}} [t]_{1,+}^{\frac{\lambda}{q} - \frac{\lambda}{p}} \|f\|_{\tilde{L}_{p,\lambda,\gamma}},$$

where $C_{p,q,\lambda,\gamma}$ depends only on p, q, λ, γ, k and n .

If $\frac{1}{p} < \frac{1}{q} + \frac{\alpha}{Q}$, then in the case $t \rightarrow 0$ we have $\|I_{\alpha,\gamma}f\|_{\tilde{L}_{q,\lambda,\gamma}} = 0$ for all $f \in \tilde{L}_{p,\lambda,\gamma}(\mathbb{R}_{k,+}^n)$.

As well as if $\frac{1}{p} > \frac{1}{q} + \frac{\alpha}{Q-\lambda}$, then as $t \rightarrow \infty$ we obtain $\|I_{\alpha,\gamma}f\|_{\tilde{L}_{q,\lambda,\gamma}} = 0$ for all $f \in \tilde{L}_{p,\lambda,\gamma}(\mathbb{R}_{k,+}^n)$.

Therefore $\frac{\alpha}{Q} \leq \frac{1}{p} - \frac{1}{q} \leq \frac{\alpha}{Q-\lambda}$.

2) *Sufficiency.* Let $f \in \tilde{L}_{1,\lambda,\gamma}(\mathbb{R}_{k,+}^n)$. We have

$$\begin{aligned} & |\{y \in E_t : T^y |I_{\alpha,\gamma}f(x)| > 2\beta\}|_\gamma \\ & \leq |\{y \in E_t : T^y |A(x,t)| > \beta\}|_\gamma \\ & + |\{y \in E_t : T^y |C(x,t)| > \beta\}|_\gamma. \end{aligned}$$

Taking into account inequality (12) and Theorem 1, we have

$$\begin{aligned} & |\{y \in E_t : T^y |A(x,t)| > \beta\}|_\gamma \\ & \leq \left| \left\{ y \in E_t : T^y (M_\gamma f(x)) > \frac{\beta}{C_3 t^\alpha} \right\} \right|_\gamma \\ & \leq \frac{C_{14} t^\alpha}{\beta} \cdot [t]_1^\lambda \|f\|_{\tilde{L}_{1,\lambda,\gamma}} \end{aligned}$$

and thus if $C_9 [t]_1^\lambda t^{\alpha-Q} \|f\|_{\tilde{L}_{1,\lambda,\gamma}} = \beta$, then $|C(x,t)| \leq \beta$ and consequently, $|\{y \in E_t : T^y |C(x,t)| > \beta\}|_\gamma = 0$.

Then

$$\begin{aligned} & |\{y \in E_t : T^y |I_{\alpha,\gamma}f(x)| > 2\beta\}|_\gamma \leq C_{14} [t]_1^\lambda t^\alpha \frac{\|f\|_{\tilde{L}_{1,\lambda,\gamma}}}{\beta} \\ & \leq C_{15} [t]_1^\lambda \min \left\{ \left(\frac{\|f\|_{\tilde{L}_{1,\lambda,\gamma}}}{\beta} \right)^{\frac{Q-\lambda}{Q-\lambda-\alpha}}, \left(\frac{\|f\|_{\tilde{L}_{1,\lambda,\gamma}}}{\beta} \right)^{\frac{Q}{Q-\alpha}} \right\}. \end{aligned}$$

Finally

$$|\{y \in E_t : T^y |I_{\alpha,\gamma}f(x)| > 2\beta\}|_\gamma \leq C_{15} [t]_1^\lambda \left(\frac{\|f\|_{\tilde{L}_{1,\lambda,\gamma}}}{\beta} \right)^q.$$

Necessity. Let $I_{\alpha,\gamma}$ be bounded from $\tilde{L}_{1,\lambda,\gamma}(\mathbb{R}_{k,+}^n)$ to $W\tilde{L}_{q,\lambda,\gamma}(\mathbb{R}_{k,+}^n)$. We have

$$\begin{aligned} \|I_{\alpha,\gamma}f_t\|_{W\tilde{L}_{q,\lambda,\gamma}} &= \sup_{r>0} r \sup_{\tau>0, x \in \mathbb{R}_{k,+}^n} \left([\tau]_1^{-\lambda} \int_{\{y \in E_\tau : T^y |I_{\alpha,\gamma}f_t(x)| > r\}} (y')^\gamma dy \right)^{1/q} \\ &= \sup_{r>0} r \sup_{\tau>0, x \in \mathbb{R}_{k,+}^n} \left([\tau]_1^{-\lambda} \int_{\{y \in E_\tau : T^{ty} |I_{\alpha,\gamma}f(tx)| > rt^\alpha\}} (y')^\gamma dy \right)^{1/q} \end{aligned}$$

$$\begin{aligned}
&= t^{-\alpha - \frac{Q}{q}} \sup_{\tau > 0} \left(\frac{[t\tau]_1}{[\tau]_1} \right)^{\lambda/q} \sup_{r > 0} r t^\alpha \sup_{\tau > 0, x \in \mathbb{R}_{k,+}^n} \left([t\tau]_1^{-\lambda} \int_{\{y \in E_{t\tau} : T^y |I_{\alpha,\gamma} f(x)| > r t^\alpha\}} (y')^\gamma dy \right)^{1/q} \\
&= t^{-\alpha - \frac{Q}{q}} [t]_{1,+}^{\frac{\lambda}{q}} \|I_{\alpha,\gamma} f\|_{W\tilde{L}_{q,\lambda,\gamma}}.
\end{aligned}$$

By the boundedness of $I_{\alpha,\gamma}$ from $\tilde{L}_{1,\lambda,\gamma}(\mathbb{R}_{k,+}^n)$ to $W\tilde{L}_{q,\lambda,\gamma}(\mathbb{R}_{k,+}^n)$

$$\|I_{\alpha,\gamma} f\|_{W\tilde{L}_{q,\lambda,\gamma}} \leq C_{1,q,\lambda,\gamma} t^{\alpha + \frac{Q}{q} - Q} [t]_{1,+}^{\lambda - \frac{\lambda}{q}} \|f\|_{\tilde{L}_{1,\lambda,\gamma}},$$

where $C_{1,q,\lambda,\gamma}$ depends only on q, λ, γ, k and n .

If $1 < \frac{1}{q} + \frac{\alpha}{Q}$, then in the case $t \rightarrow 0$ we have $\|I_{\alpha,\gamma} f\|_{W\tilde{L}_{q,\lambda,\gamma}} = 0$ for all $f \in \tilde{L}_{1,\lambda,\gamma}(\mathbb{R}_{k,+}^n)$.

Similarly, if $1 > \frac{1}{q} + \frac{\alpha}{Q-\lambda}$, then as $t \rightarrow \infty$ we obtain $\|I_{\alpha,\gamma} f\|_{W\tilde{L}_{q,\lambda,\gamma}} = 0$ for all $f \in \tilde{L}_{1,\lambda,\gamma}(\mathbb{R}_{k,+}^n)$.

Therefore $\frac{\alpha}{Q} \leq 1 - \frac{1}{q} \leq \frac{\alpha}{Q-\lambda}$.

3) Let $f \in \tilde{L}_{p,\lambda,\gamma}(\mathbb{R}_{k,+}^n)$, $\frac{Q-\lambda}{\alpha} \leq p \leq \frac{Q}{\alpha}$. For given $t > 0$ we denote

$$f_1(z) = f(z)\chi_{E_{2t}}(z), \quad f_2(z) = f(z) - f_1(z), \quad (17)$$

where $\chi_{E_{2t}}$ is the characteristic function of the set E_{2t} . Then

$$\tilde{I}_{\alpha,\gamma} f(z) = \tilde{I}_{\alpha,\gamma} f_1(z) + \tilde{I}_{\alpha,\gamma} f_2(z) = F_1(z) + F_2(z), \quad (18)$$

where

$$\begin{aligned}
F_1(z) &= \int_{E_{2t}} (T^y |z|^{\alpha-Q} - |y|^{\alpha-Q} \chi_{E_1^*}(y)) f(y) (y')^\gamma dy, \\
F_2(z) &= \int_{\mathbb{R}_{k,+}^n \setminus E_{2t}} (T^y |z|^{\alpha-Q} - |y|^{\alpha-Q} \chi_{E_1^*}(y)) f(y) (y')^\gamma dy.
\end{aligned}$$

Note that the function f_1 has compact (bounded) support and thus

$$a_1 = - \int_{E_{2t} \setminus E_{\min\{1,2t\}}} |y|^{\alpha-Q} f(y) (y')^\gamma dy$$

is finite.

Note also that

$$\begin{aligned}
F_1(z) - a_1 &= \int_{E_{2t}} T^y |z|^{\alpha-Q} f(y) (y')^\gamma dy \\
&\quad - \int_{E_{2t} \setminus E_{\min\{1,2t\}}} |y|^{\alpha-Q} f(y) (y')^\gamma dy \\
&\quad + \int_{E_{2t} \setminus E_{\min\{1,2t\}}} |y|^{\alpha-Q} f(y) (y')^\gamma dy
\end{aligned}$$

$$= \int_{\mathbb{R}_{k,+}^n} T^y |z|^{\alpha-Q} f_1(y) (y')^\gamma dy.$$

Therefore

$$\begin{aligned} |F_1(z) - a_1| &\leq \int_{\mathbb{R}_{k,+}^n} |y|^{\alpha-Q} T^y |f_1(z)| (y')^\gamma dy \\ &= \int_{\{y \in \mathbb{R}_{k,+}^n : T^y |z| < 2t\}} |y|^{\alpha-Q} T^y |f(z)| (y')^\gamma dy. \end{aligned}$$

Further, for $z \in E_t$, $T^y |z| < 2t$ we have

$$|y| \leq |z| + |z - y| \leq |z| + T^y |z| < 3t.$$

Consequently

$$|F_1(z) - a_1| \leq \int_{E_{3t}} |y|^{\alpha-Q} T^y |f(z)| (y')^\gamma dy, \quad (19)$$

if $z \in E_t$.

Thus, from (19) and Lemma 6, we have

$$\begin{aligned} \int_{E_t} |T^x F_1(z) - a_1| (z')^\gamma dz &\leq \int_{E_t} T^x |F_1(z) - a_1| (z')^\gamma dz \\ &= \int_{E_t} \left(\int_{E_{3t}} |y|^{\alpha-Q} T^x T^y |f(z)| (y')^\gamma dy \right) (z')^\gamma dz \\ &= \int_{E_{3t}} |y|^{\alpha-Q} T^x \left(\int_{E_t} T^y |f(z)| (z')^\gamma dz \right) (y')^\gamma dy \\ &\leq [t]_1^{Q-\alpha} \|f\|_{\tilde{L}_{1,Q-\alpha,\gamma}} \int_{E_{3t}} |y|^{\alpha-Q} (y')^\gamma dy \\ &\leq [t]_1^{Q-\alpha} \|f\|_{\tilde{L}_{p,\lambda,\gamma}} \int_{E_{3t}} |y|^{\alpha-Q} (y')^\gamma dy. \end{aligned} \quad (20)$$

In inequality (20) we take into account that $f \in \tilde{L}_{p,\lambda,\gamma}(\mathbb{R}_{k,+}^n)$ and

$$\int_{E_{3t}} |y|^{\alpha-Q} (y')^\gamma dy \leq C_{19} t^\alpha, \quad (21)$$

respectively, where $C_{19} = \frac{3^\alpha}{\alpha} \omega(n, k, \gamma)$.

Therefore,

$$\begin{aligned} &\sup_{t>0, x \in \mathbb{R}_{k,+}^n} \frac{1}{t^Q} \int_{E_t} |T^x F_1(z) - a_1| (z')^\gamma dz \\ &\leq C_{19} \sup_{t>0} \left(\frac{[t]_1}{t} \right)^{Q-\alpha} \|f\|_{\tilde{L}_{p,\lambda,\gamma}} \leq C_{19} \|f\|_{\tilde{L}_{p,\lambda,\gamma}}. \end{aligned} \quad (22)$$

(22) and condition $\frac{Q-\lambda}{\alpha} \leq p \leq \frac{Q}{\alpha}$ implies the following inequality

$$|E_t|^{-1} \int_{E_t} |T^x F_1(z) - a_1| (z')^\gamma dz \leq C_{16} \|f\|_{\tilde{L}_{p,\lambda,\gamma}}. \quad (23)$$

Denote

$$a_2 = \int_{E_{\max\{1,2t\}} \setminus E_{2t}} |y|^{\alpha-Q} f(y) (y')^\gamma dy.$$

Let's estimate $|F_2(z) - a_2|$ for $z \in E_t$.

$$|F_2(z) - a_2| \leq \int_{\mathbb{R}_{k,+}^n \setminus E_{2t}} |f(y)| |T^y| |z|^{\alpha-Q} - |y|^{\alpha-Q} |(y')^\gamma dy.$$

Applying Lemma 4 and Hölder's inequality, we have

$$\begin{aligned} |F_2(z) - a_2| &\leq 2^{Q-\alpha+1} |z| \int_{\mathbb{R}_{k,+}^n \setminus E_{2t}} |f(y)| |y|^{\alpha-Q-1} (y')^\gamma dy \\ &\leq 2^{Q-\alpha+1} |z| \sum_{j=0}^{\infty} \int_{E_{2^{j+2}t} \setminus E_{2^{j+1}t}} |f(y)| |y|^{\alpha-Q-1} (y')^\gamma dy \\ &\leq 2^{Q-\alpha+1} |z| \sum_{j=0}^{\infty} (2^{j+1}t)^{\alpha-Q-1} \int_{E_{2^{j+2}t}} |f(y)| (y')^\gamma dy \\ &\leq 2^{Q-\alpha+1} |z| \sum_{j=0}^{\infty} (2^{j+1}t)^{\alpha-Q-1} (2^{j+2}t)^{\frac{Q}{p'}} \left(\int_{E_{2^{j+2}t}} |f(y)|^p (y')^\gamma dy \right)^{1/p} \\ &\leq 4^{Q-\alpha+1} |z| \|f\|_{\tilde{L}_{p,\lambda,\gamma}} \sum_{j=0}^{\infty} (2^{j+2}t)^{\alpha-\frac{Q}{p}-1} [2^{j+2}t]_1^{\frac{\lambda}{p}} \\ &\leq 4^{Q-\alpha+1} t^{\alpha-\frac{Q}{p}} \|f\|_{\tilde{L}_{p,\lambda,\gamma}} \times \\ &\times \begin{cases} t^{\frac{\lambda}{p}} \sum_{j=0}^{\log_2[\frac{1}{2t}]} 2^{(j+2)(\alpha-\frac{Q}{p}-1+\frac{\lambda}{p})} + \sum_{j=\log_2[\frac{1}{2t}]+1}^{\infty} 2^{(j+2)(\alpha-\frac{Q}{p}-1)}, & 0 < t < 1/2, \\ \sum_{j=0}^{\infty} 2^{(j+2)(\alpha-\frac{Q}{p}-1)}, & t \geq 1/2 \end{cases} \\ &= 4^{Q-\alpha+1} C_{17} [t]_1^{\frac{\lambda}{p}} t^{\alpha-\frac{Q}{p}} \|f\|_{\tilde{L}_{p,\lambda,\gamma}} \\ &= C_{18} [t]_1^{\frac{\lambda}{p}} t^{\alpha-\frac{Q}{p}} \|f\|_{\tilde{L}_{p,\lambda,\gamma}}. \end{aligned} \quad (24)$$

(24) and condition $\frac{Q-\lambda}{\alpha} \leq p \leq \frac{Q}{\alpha}$ implies the following inequality

$$|T^x F_2(z) - a_2| \leq T^x |F_2(z) - a_2| \leq C_{18} \|f\|_{\tilde{L}_{p,\lambda,\gamma}}, \text{ for all } x \in \mathbb{R}_{k,+}^n, z \in E_t. \quad (25)$$

Finally, from (23) and (25) we have

$$\sup_{x,t} \frac{1}{|E_t|_\gamma} \int_{E_t} \left| T^x \tilde{I}_{\alpha,\gamma} f(y) - a_f \right| (y')^\gamma dy \leq (C_{16} + C_{18}) \|f\|_{\tilde{L}_{p,\lambda,\gamma}}.$$

Thus

$$\left\| \tilde{I}_{\alpha,\gamma} f \right\|_{BMO_\gamma} \leq 2 \sup_{x,t} \frac{1}{|E_t|_\gamma} \int_{E_t} \left| T^x \tilde{I}_{\alpha,\gamma} f(y) - a_f \right| (y')^\gamma dy \leq C \|f\|_{\tilde{L}_{p,\lambda,\gamma}}.$$

Theorem 2 is proved.

Theorem 3. Let $0 < \alpha < Q$, $0 \leq \lambda < Q$ and $1 \leq p \leq \frac{Q-\lambda}{\alpha}$.

1) If $1 < p < \frac{Q-\lambda}{\alpha}$, then condition $\frac{\alpha}{Q} \leq \frac{1}{p} - \frac{1}{q} \leq \frac{\alpha}{Q-\lambda}$ is necessary and sufficient for the boundedness of $M_{\alpha,\gamma}$ from $\tilde{L}_{p,\lambda,\gamma}(\mathbb{R}_{k,+}^n)$ to $\tilde{L}_{q,\lambda,\gamma}(\mathbb{R}_{k,+}^n)$.

2) If $p = 1$, then condition $\frac{\alpha}{Q} \leq 1 - \frac{1}{q} \leq \frac{\alpha}{Q-\lambda}$ is necessary and sufficient for the boundedness of $M_{\alpha,\gamma}$ from $\tilde{L}_{1,\lambda,\gamma}(\mathbb{R}_{k,+}^n)$ to $W\tilde{L}_{q,\lambda,\gamma}(\mathbb{R}_{k,+}^n)$.

Proof. In view of the well known pointwise estimate $M_{\alpha,\gamma} f(x) \leq C(I_{\alpha,\gamma}|f|)(x)$, it suffices to treat only the case of the operator $I_{\alpha,\gamma}$.

1) *Necessity.* Let $1 < p < \frac{Q-\lambda}{\alpha}$, $f \in \tilde{L}_{p,\lambda,\gamma}(\mathbb{R}_{k,+}^n)$ and $M_{\alpha,\gamma}$ be bounded from $\tilde{L}_{p,\lambda,\gamma}(\mathbb{R}_{k,+}^n)$ to $\tilde{L}_{q,\lambda,\gamma}(\mathbb{R}_{k,+}^n)$.
Define $f_t(x) := f(tx)$. Then

$$\begin{aligned} \|f_t\|_{\tilde{L}_{p,\lambda,\gamma}} &= \sup_{r>0, x \in \mathbb{R}_{k,+}^n} \left([r]_1^{-\lambda} \int_{E_r} T^y |f_t(x)|^p (y')^\gamma dy \right)^{1/p} \\ &= t^{-\frac{Q}{p}} \sup_{r>0, x \in \mathbb{R}_{k,+}^n} \left([r]_1^{-\lambda} \int_{E_{tr}} T^y |f(x)|^p (y')^\gamma dy \right)^{1/p} \\ &= t^{-\frac{Q}{p}} \sup_{r>0} \left(\frac{[tr]_1}{[r]_1} \right)^{\lambda/p} \sup_{r>0, x \in \mathbb{R}_{k,+}^n} \left([tr]_1^{-\lambda} \int_{E_{tr}} T^y |f(x)|^p (y')^\gamma dy \right)^{1/p} \\ &= t^{-\frac{Q}{p}} [t]_1^{\frac{\lambda}{p}} \|f\|_{\tilde{L}_{p,\lambda,\gamma}}, \end{aligned}$$

where $[t]_{1,+} = \max\{1, t\}$ and

$$\|M_{\alpha,\gamma} f_t\|_{\tilde{L}_{q,\lambda,\gamma}} = t^{-\alpha} \sup_{r>0, x \in \mathbb{R}_{k,+}^n} \left([r]_1^{-\lambda} \int_{E_r} T^y |M_{\alpha,\gamma} f(tx)|^q (y')^\gamma dy \right)^{1/q}$$

$$\begin{aligned}
&= t^{-\alpha - \frac{Q}{q}} \sup_{r>0} \left(\frac{[tr]_1}{[r]_1} \right)^{\lambda/q} \sup_{r>0, x \in \mathbb{R}_{k,+}^n} \left([tr]_1^{-\lambda} \int_{E_{tr}} T^y |M_{\alpha,\gamma} f(x)|^q (y')^\gamma dy \right)^{1/q} \\
&= t^{-\alpha - \frac{Q}{q}} [t]_{1,+}^{\frac{\lambda}{q}} \|M_{\alpha,\gamma} f\|_{\tilde{L}_{q,\lambda,\gamma}}.
\end{aligned}$$

By the boundedness of $I_{\alpha,\gamma}$ from $\tilde{L}_{p,\lambda,\gamma}(\mathbb{R}_{k,+}^n)$ to $\tilde{L}_{q,\lambda,\gamma}(\mathbb{R}_{k,+}^n)$

$$\|I_{\alpha,\gamma} f\|_{\tilde{L}_{q,\lambda,\gamma}} \leq C_{p,q,\lambda,\gamma} t^{\alpha + \frac{Q}{q} - \frac{Q}{p}} [t]_{1,+}^{\frac{\lambda}{p} - \frac{\lambda}{q}} \|f\|_{\tilde{L}_{p,\lambda,\gamma}},$$

where $C_{p,q,\lambda,\gamma}$ depends only on p, q, λ, γ, k and n .

If $\frac{1}{p} < \frac{1}{q} + \frac{\alpha}{Q}$, then in the case $t \rightarrow 0$ we have $\|M_{\alpha,\gamma} f\|_{\tilde{L}_{q,\lambda,\gamma}} = 0$ for all $f \in \tilde{L}_{p,\lambda,\gamma}(\mathbb{R}_{k,+}^n)$.

As well as if $\frac{1}{p} > \frac{1}{q} + \frac{\alpha}{Q-\lambda}$, then as $t \rightarrow \infty$ we obtain $\|M_{\alpha,\gamma} f\|_{\tilde{L}_{q,\lambda,\gamma}} = 0$ for all $f \in \tilde{L}_{p,\lambda,\gamma}(\mathbb{R}_{k,+}^n)$.

Therefore $\frac{\alpha}{Q} \leq \frac{1}{p} - \frac{1}{q} \leq \frac{\alpha}{Q-\lambda}$.

2) *Necessity.* Let $M_{\alpha,\gamma}$ be bounded from $\tilde{L}_{1,\lambda,\gamma}(\mathbb{R}_{k,+}^n)$ to $W\tilde{L}_{q,\lambda,\gamma}(\mathbb{R}_{k,+}^n)$. We have

$$\begin{aligned}
\|M_{\alpha,\gamma} f_t\|_{W\tilde{L}_{q,\lambda,\gamma}} &= \sup_{r>0} r \sup_{\tau>0, x \in \mathbb{R}_{k,+}^n} \left([\tau]_1^{-\lambda} \int_{\{y \in E_\tau : T^y |M_{\alpha,\gamma} f_t(x)| > r\}} (y')^\gamma dy \right)^{1/q} \\
&= \sup_{r>0} r \sup_{\tau>0, x \in \mathbb{R}_{k,+}^n} \left([\tau]_1^{-\lambda} \int_{\{y \in E_\tau : T^{ty} |M_{\alpha,\gamma} f_t(tx)| > rt^\alpha\}} (y')^\gamma dy \right)^{1/q} \\
&= t^{-\alpha - \frac{Q}{q}} \sup_{\tau>0} \left(\frac{[\tau]_1}{[\tau]_1} \right)^{\lambda/q} \sup_{r>0} rt^\alpha \sup_{\tau>0, x \in \mathbb{R}_{k,+}^n} \left([t\tau]_1^{-\lambda} \int_{\{y \in E_{t\tau} : T^y |M_{\alpha,\gamma} f(x)| > rt^\alpha\}} (y')^\gamma dy \right)^{1/q} \\
&= t^{-\alpha - \frac{Q}{q}} [t]_{1,+}^{\frac{\lambda}{q}} \|M_{\alpha,\gamma} f\|_{W\tilde{L}_{q,\lambda,\gamma}}.
\end{aligned}$$

By the boundedness of $M_{\alpha,\gamma}$ from $\tilde{L}_{1,\lambda,\gamma}(\mathbb{R}_{k,+}^n)$ to $W\tilde{L}_{q,\lambda,\gamma}(\mathbb{R}_{k,+}^n)$

$$\|M_{\alpha,\gamma} f\|_{W\tilde{L}_{q,\lambda,\gamma}} \leq C_{1,q,\lambda,\gamma} t^{\alpha + \frac{Q}{q} - Q} [t]_{1,+}^{\frac{\lambda}{q} - \frac{\lambda}{q}} \|f\|_{\tilde{L}_{1,\lambda,\gamma}},$$

where $C_{1,q,\lambda,\gamma}$ depends only on q, λ, γ, k and n .

If $1 < \frac{1}{q} + \frac{\alpha}{Q}$, then in the case $t \rightarrow 0$ we have $\|M_{\alpha,\gamma} f\|_{W\tilde{L}_{q,\lambda,\gamma}} = 0$ for all $f \in \tilde{L}_{1,\lambda,\gamma}(\mathbb{R}_{k,+}^n)$.

Similarly, if $1 > \frac{1}{q} + \frac{\alpha}{Q-\lambda}$, then as $t \rightarrow \infty$ we obtain $\|M_{\alpha,\gamma} f\|_{W\tilde{L}_{q,\lambda,\gamma}} = 0$ for all $f \in \tilde{L}_{1,\lambda,\gamma}(\mathbb{R}_{k,+}^n)$.

Therefore $\frac{\alpha}{Q} \leq 1 - \frac{1}{q} \leq \frac{\alpha}{Q-\lambda}$.

Theorem 4. Let $0 < \alpha < Q$, $0 \leq \lambda < Q$ and $\frac{Q-\lambda}{\alpha} \leq p \leq \frac{Q}{\alpha}$. Then the operator $M_{\alpha,\gamma}$ is bounded from $\tilde{L}_{p,\lambda,\gamma}(\mathbb{R}_{k,+}^n)$ to $L_\infty(\mathbb{R}_{k,+}^n)$.

Proof. Let $f \in \tilde{L}_{p,\lambda,\gamma}(\mathbb{R}_{k,+}^n)$. Then by Lemma 6, we have

$$\begin{aligned} \sup_{t>0} t^{\alpha-Q} \int_{E_t} T^y |f(x)|(y')^\gamma dy &\leq \sup_{t>0} \left(\frac{[t]_1}{t} \right)^{Q-\alpha} \|f\|_{\tilde{L}_{1,Q-\alpha,\gamma}} \\ &\leq \|f\|_{\tilde{L}_{1,Q-\alpha,\gamma}} \leq \omega(n, k, \gamma)^{1/p'} \|f\|_{\tilde{L}_{p,\lambda,\gamma}}. \end{aligned}$$

Theorem 4 is proved.

Corollary 3. [12] Let $0 < \alpha < Q$ and $1 \leq p \leq \frac{Q}{\alpha}$.

1) If $1 < p < \frac{Q}{\alpha}$, then condition $\frac{1}{p} - \frac{1}{q} = \frac{\alpha}{Q}$ is necessary and sufficient for the boundedness of $I_{\alpha,\gamma}$ from $L_{p,\gamma}(\mathbb{R}_{k,+}^n)$ to $L_{q,\gamma}(\mathbb{R}_{k,+}^n)$.

2) If $p = 1$, then condition $1 - \frac{1}{q} = \frac{\alpha}{Q}$ is necessary and sufficient for the boundedness of $I_{\alpha,\gamma}$ from $L_{1,\gamma}(\mathbb{R}_{k,+}^n)$ to $WL_{q,\gamma}(\mathbb{R}_{k,+}^n)$.

3) If $1 < p = \frac{Q}{\alpha}$, then the operator $\tilde{I}_{\alpha,\gamma}$ is bounded from $L_{p,\gamma}(\mathbb{R}_{k,+}^n)$ to $BMO_\gamma(\mathbb{R}_{k,+}^n)$.

Moreover, if for $f \in L_{p,\gamma}(\mathbb{R}_{k,+}^n)$, $1 < p = \frac{Q}{\alpha}$ the integral $I_{\alpha,\gamma}f$ exists almost everywhere, then $I_{\alpha,\gamma}f \in BMO_\gamma(\mathbb{R}_{k,+}^n)$ and the following inequality is valid

$$\|I_{\alpha,\gamma}f\|_{BMO_\gamma} \leq C \|f\|_{L_{p,\gamma}},$$

where $C > 0$ is independent of f .

References

- [1] S.K. Abdullaev, B.K. Agarzaev, *Sobolev theorem for Riesz potentials with generalized shift and almost monotonic kernel*. News of Baku State University, 2(2013), 5-14.
- [2] D.R. Adams, *A note on Riesz potentials*. Duke Math., 42 (1975), 765-778.
- [3] D.R. Adams, *Choquet integrals in potential theory*, Publ. Mat. 42 (1998), 3-66.
- [4] W. Arendt and A. F. M. ter Elst, *Gaussian estimates for second order elliptic operators with boundary conditions*, J. Operator Theory, 38 (1997), 87–130.
- [5] P. Auscher and P. Tchamitchian, *Square root problem for divergence operators and related topics*, Astérisque, 249, Soc. Math. France, 1998.
- [6] L. Caffarelli, *Elliptic second order equations*, Rend. Sem. Mat. Fis. Milano 58 (1990), 253-284.
- [7] R.R. Coifman and G. Weiss, *Analyse harmonique non commutative sur certains espaces homogènes*. Lecture Notes in Math., 242, Springer-Verlag. Berlin, 1971.
- [8] F. Chiarenza, M. Frasca, *Morrey spaces and Hardy-Littlewood maximal function*. Rend. Math. 7 (1987), 273-279.

- [9] A.D. Gadjiev and I.A. Aliev, *On classes of operators of potential types, generated by a generalized shift.* Reports of enlarged Session of the Seminars of I.N.Vekua Inst. of Applied Mathematics, Tbilisi. (1988) **3**, 2, 21-24 (Russian).
- [10] V.S. Guliev, *Sobolev theorems for the Riesz B-potentials.* Dokl. RAN, (1998) **358**, 4, 450-451. (Russian)
- [11] V.S. Guliev, *Sobolev theorems for anisotropic Riesz-Bessel potentials on Morrey-Bessel spaces.* Doklady Academy Nauk Russia, (1999) **367**, 2, 155-156.
- [12] V.S. Gulyiyev, *On maximal function and fractional integral, associated with the Bessel differential operator.* Mathematical Inequalities and Applications, (2003) **6**, 2, 317-330.
- [13] V.S. Gulyiyev and J.J. Hasanov, *The Sobolev-Morrey type inequality for Riesz potentials, associated with the Laplace-Bessel differential operator.* Fractional Calculus and Applied Analysis. **9** (2006), 1, 17-32.
- [14] V. S. Gulyiyev and J.J. Hasanov, *Necessary and sufficient conditions for the boundedness of B-Riesz potential in the B-Morrey spaces.* J. Math. Anal. Appl. **347** (2008), 113-122.
- [15] V.S.Gulyiyev, J.J.Hasanov, Yusuf Zeren, On limiting case for boundedness of the B-Riesz potential in the B-Morrey spaces. Analysis Mathematica, 35(2009), 87-97.
- [16] V.S. Gulyiyev, J. Hasanov, Yusuf Zeren, *Necessary and sufficient conditions for the boundedness of the Riesz potential in modified Morrey spaces.* Journal of Mathematical Inequalities, 5 (4) 2011, 491-506.
- [17] Y.Y. Guliev, J.J. Hasanov, *Necessary and sufficient conditions for the boundedness of B-Riesz potential in modified B-Morrey spaces.* Trans. of Nat. Acad. Sci. of Azerb., 2009, v. XXIX, No 4. p. 89-100.
- [18] Y.Y. Guliev, J.J. Hasanov, Ismail Ekincioglu, *On limiting case of the Sobolev theorem for B-Riesz potential in modified B-Morrey spaces.* Complex Variables and Elliptic Equations Vol. 55, No. 8-10, August-October 2010, 865-873
- [19] D. Danielli, *A Fefferman-Phong type inequality and applications to quasilinear subelliptic equations.* Potential Analysis, **11** (1999), 387-413.
- [20] X. T. Duong and L. X. Yan, On commutators of fractional integrals, *Proc. Amer. Math. Soc.*, 132 (2004), 12, 3549-3557.
- [21] G. Di Fazio, D.K. Palagachev and M.A. Ragusa, *Global Morrey regularity of strong solutions to the Dirichlet problem for elliptic equations with discontinuous coefficients,* J. Funct. Anal. 166 (1999), 179-196.
- [22] C. Fefferman, *The uncertainty principle,* Bull. Amer. Math. Soc. 9 (1983), 129-206.

- [23] I. Ekincioglu and A. Serbetci, *On Boundedness of Riesz potential generated by generalized shift operator on Ba spaces*, Czech. Math. J., **54** (2004), 3, 579-589.
- [24] J.J. Hasanov, *A note on anisotropic potentials, associated with the Laplace-Bessel differential operator*. Operators and Matrices, **2**(2008), 4, 465-481.
- [25] J.J. Hasanov, Zeren Yusuf, *On limiting case of the Sobolev theorem for B-Riesz potential in B-Morrey spaces*. Arab J. Math. Sci. **13** (2007), 27-38.
- [26] A. Kufner, O. John and S. Fucik, *Function Spaces*, Noordhoff, Leyden, and Academia, Prague, 1977.
- [27] K. Kurata, S. Sugano, *A remark on estimates for uniformly elliptic operators on weighted L_p spaces and Morrey spaces*, Math. Nachr. 209 (2000), 137-150.
- [28] H.Q. Li, *Estimations L_p des operateurs de Schrödinger sur les groupes nilpotents*, J. Funct. Anal. 161 (1999), 152-218.
- [29] G.Z. Lu, *A Fefferman-Phong type inequality for degenerate vector fields and applications*, Panamer. Math. J. 6 (1996), 37-57.
- [30] Yu Liu, *The weighted estimates for the operators $V^\alpha(-\Delta_G + V)^{-\beta}$ and $V^\alpha \nabla_G (-\Delta_G + V)^{-\beta}$ on the stratified Lie group \mathbb{G}* , J. Math. Anal. Appl. 349 (2009), 235-244.
- [31] B.M. Levitan, *Expansion in Fourier series and integrals with Bessel functions*, (Russian) Uspehi Matem. Nauk (N.S.) 6 (1951), 2 (42), 102-143.
- [32] C.B. Morrey, *On the solutions of quasi-linear elliptic partial differential equations*. Trans. Amer. Math. Soc. 43 (1938), 126-166.
- [33] B. Muckenhoupt and E.M. Stein, *Classical expansions and their relation to conjugate harmonic functions*. Trans. Amer. Math. Soc., 118 (1965), 17-92.
- [34] B. Muckenhoupt and R. Wheeden, *Weighted norm inequalities for fractional integrals*, Trans. Amer. Math. Soc. 192 (1974), 261-274.
- [35] C. Perez, *Two weighted norm inequalities for Riesz potentials and uniform L_p -weighted Sobolev inequalities*, Indiana Univ. Math. J. 39 (1990), 31-44.
- [36] A. Ruiz and L. Vega, *Unique continuation for Schrödinger operators with potential in Morrey spaces*, Publ. Mat. 35 (1991), 291-298.
- [37] A. Ruiz and L. Vega, *On local regularity of Schrödinger equations*, Int. Math. Res. Notices 1993:1 (1993), 13-27.
- [38] Z.W. Shen, *L_p estimates for Schrödinger operators with certain potentials*, Ann. Inst. Fourier (Grenoble) 45 (1995) 513-546.

- [39] Z. Shen, *The periodic Schrödinger operators with potentials in the Morrey class*, J. Funct. Anal. 193 (2002), 314-345.
- [40] S.G. Samko, A.A. Kilbas and O.I. Marichev, *Fractional Integrals and Derivative. Theory and Applications*. Gordon and Breach Sci. Publishers, 1993.
- [41] E.M. Stein, *Singular integrals and differentiability properties of functions*, Princeton Univ. Press, Princeton, NJ, 1970.
- [42] M.E. Taylor, *Analysis on Morrey spaces and applications to Navier-Stokes and other evolution equations*, Comm. Partial Differential Equations 17 (1992), 1407-1456.

Javanshir J. Hasanova

Institute of Mathematics and Mechanics, Baku, AZ1141, Azerbaijan

Azerbaijan State Pedagogical University, Baku, AZ1000, Azerbaijan

E-mail: hasanovajavanshir@yahoo.com.tr

Xayyam A. Badalov

Agjabady branch of Azerbaijan Teachers Institute, AZ0400, Azerbaijan

Ayna E. Fleydanli

Institute of Mathematics and Mechanics, Baku, AZ1141, Azerbaijan

Received 01 November 2014

Accepted 28 November 2014