
Journal of Contemporary Applied Mathematics
V. 4, No 2, 2014, December
ISSN 2222-5498

Necessary and sufficient conditions for the boundedness

of B-Riesz potential in modified B-Morrey spaces

Javanshir J. Hasanov∗†, Xayyam A. Badalov, Ayna E. Fleydanli

Abstract. We consider the generalized shift operator, associated with the Laplace-Bessel differ-

ential operator ∆B =
k∑

i=1

γi

xi

∂
∂xi

+
n∑

j=1

∂2

∂x2

j

, γi > 0, i = 1, . . . , k, |γ| = γ1 + . . . + γk. The maximal

operator Mγ (B-maximal operator), fractional maximal operator Mα,γ (B-fractional maximal op-
erator) and the Riesz potential operator Iα,γ (B-Riesz potential operator), associated with the
generalized shift operator are investigated. We prove that the B-maximal operatorMγ is bounded

in the modified B-Morrey space L̃p,λ,γ for all 1 < p <∞ and 0 ≤ λ < n+|γ|. We study the B-Riesz
potential and their modified version in the modified B-Morrey space and B-BMO space. We prove
that the fractional maximal operator Mα,γ and the Riesz potential operator Iα,γ , 0 < α < n+ |γ|
are bounded from the modified Morrey space L̃1,λ,γ to the weak modified Morrey space WL̃q,λ,γ

if and only if, α/(n + |γ|) ≤ 1 − 1/q ≤ α/(n + |γ| − λ) and from L̃p,λ,γ to L̃q,λ,γ if and only if,
α/(n+ |γ|) ≤ 1/p− 1/q ≤ α/(n+ |γ| − λ).

Key Words and Phrases: B–fractional maximal operator, B–Riesz potential, B–Morrey space,
modified B-Morrey space, Sobolev -Morrey type estimate, B-BMO space.
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Introduction

For x ∈ R
n and t > 0, let B(x, t) denote the open ball centered at x of radius t and

{

B(x, t) = R
n \B(x, t).

One of the most important variants of the Hardy-Littlewood maximal function is the
so-called fractional maximal function defined by the formula

Mαf(x) = sup
t>0

|B(x, t)|−1+α/n

∫

B(x,t)
|f(y)|dy, 0 ≤ α < n,

where |B(x, t)| is the Lebesgue measure of the ball B(x, t).
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It coincides with the Hardy-Littlewood maximal functionMf ≡M0f and is intimately
related to the Riesz potential operator

Iαf(x) =

∫

Rn

f(y)dy

|x− y|n−α
, 0 < α < n

(see, for example, [2] and [34]).
The operators Mα and Iα play important role in real and harmonic analysis (see, for

example [41]).
In the theory of partial differential equations, together with weighted Lp,w(R

n) spaces,
Morrey spaces Lp,λ(R

n) play an important role. Morrey spaces were introduced by C. B.
Morrey in 1938 in connection with certain problems in elliptic partial differential equations
and calculus of variations (see [32]). Later, Morrey spaces found important applications
to Navier-Stokes ([42]) and Schrödinger ([35], [36], [37], [39]) equations, elliptic problems
with discontinuous coefficients ([6], [21]), and potential theory ([2], [3]). An exposition of
the Morrey spaces can be found in the book [26].

Definition 1. Let 1 ≤ p < ∞, 0 ≤ λ ≤ n, [t]1 = min{1, t}. We denote by Lp,λ(R
n)

Morrey space, and by L̃p,λ(R
n) the modified Morrey space, the set of locally integrable

functions f(x), x ∈ R
n, with the finite norms

‖f‖Lp,λ
= sup

x∈Rn, t>0

(
t−λ

∫

B(x,t)
|f(y)|pdy

)1/p

,

‖f‖
L̃p,λ

= sup
x∈Rn, t>0

(
[t]−λ

1

∫

B(x,t)
|f(y)|pdy

)1/p

respectively.

Note that
L̃p,0(R

n) = Lp,0(R
n) = Lp(R

n),

L̃p,λ(R
n) ⊂� Lp,λ(R

n) ∩ Lp(R
n) and max{‖f‖Lp,λ

, ‖f‖Lp} ≤ ‖f‖
L̃p,λ

and if λ < 0 or λ > n, then Lp,λ(R
n) = L̃p,λ(R

n) = Θ, where Θ is the set of all functions
equivalent to 0 on R

n.

Definition 2. [10, 11, 14] Let 1 ≤ p < ∞,0 ≤ λ ≤ n. We denote by WLp,λ(R
n) the

weak Morrey space and by WL̃p,λ(R
n) the modified weak Morrey space as the set of locally

integrable functions f(x), x ∈ R
n with finite norms

‖f‖WLp,λ
= sup

r>0
r sup
x∈Rn, t>0

(
t−λ |{y ∈ B(x, t) : |f(y)| > r}|

)1/p
,

‖f‖
WL̃p,λ

= sup
r>0

r sup
x∈Rn, t>0

(
[t]−λ

1 |{y ∈ B(x, t) : |f(y)| > r}|
)1/p

respectively.
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Note that

WLp(R
n) =WLp,0(R

n) =WL̃p,0(R
n),

Lp,λ(R
n) ⊂WLp,λ(R

n) and ‖f‖WLp,λ
≤ ‖f‖Lp,λ

,

L̃p,λ(R
n) ⊂WL̃p,λ(R

n) and ‖f‖WL̃p,λ
≤ ‖f‖L̃p,λ

.

The classical result by Hardy-Littlewood-Sobolev states that if 1 < p < q < ∞, then

Iα is bounded from Lp(R
n) to Lq(R

n) if and only if α = n
(
1
p − 1

q

)
and for p = 1 < q <∞,

Iα is bounded from L1(R
n) to WLq(R

n) if and only if α = n
(
1− 1

q

)
. D. R. Adams [2]

studied the boundedness of the Riesz potential in Morrey spaces and proved the follows
statement

Theorem A. Let 0 < α < n and 0 ≤ λ < n, 1 ≤ p < n−λ
α .

1) If 1 < p < n−λ
α , then condition 1

p − 1
q = α

n−λ is necessary and sufficient for the
boundedness Iα from Lp,λ(R

n) to Lq,λ(R
n).

2) If p = 1, then condition 1− 1
q = α

n−λ is necessary and sufficient for the boundedness
Iα from L1,λ(R

n) to WLq,λ(R
n).

If α = n
p−n

q , then λ = 0 and the statement of Theorem A reduces to the aforementioned
result by Hardy-Littlewood-Sobolev.

Recall that, for 0 < α < n,

Mαf(x) ≤ v
α
n
−1

n Iα(|f |)(x),

hence Theorem A also implies the boundedness of the fractional maximal operator Mα,
where vn is the volume of the unit ball in R

n. F. Chiarenza and M. Frasca [8] proved
that the maximal operator M is also bounded from Lp,λ to Lp,λ for all 1 < p < ∞ and
0 < λ < n.

In [16] the boundedness of the Riesz potential in modified Morrey spaces is studied
and the following statement is proved.

Theorem C. Let 0 < α < n and 0 ≤ λ < n, 1 ≤ p ≤ n
α .

1) If 1 < p < n−λ
α , then condition α

n ≤ 1
p − 1

q ≤ α
n−λ is necessary and sufficient for the

boundedness of Iα from L̃p,λ(R
n) to L̃q,λ(R

n).
2) If p = 1, then condition α

n ≤ 1 − 1
q ≤ α

n−λ is necessary and sufficient for the

boundedness of Iα from L̃1,λ(R
n) to WL̃q,λ(R

n).

3) If n−λ
α ≤ p ≤ n

α , then the operator Ĩα is bounded from L̃p,λ(R
n) to BMO(Rn).

Moreover, if the integral Iαf exists almost everywhere for f ∈ L̃p,λ(R
n), n−λ

α ≤ p ≤ n
α ,

then Iαf ∈ BMO(Rn) and the following inequality is valid

‖Iαf‖BMO ≤ C‖f‖
L̃p,λ

,

where C > 0 is independent of f .
If λ = 0, then α = n

p − n
q and the statement of Theorem C also reduces to the

aforementioned result by Hardy-Littlewood-Sobolev.
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The maximal operator, singular integral, potential and related topics associated with
the Laplace-Bessel differential operator

∆B =

k∑

i=1

γi
xi

∂

∂xi
+

n∑

j=1

∂2

∂x2j
, γi > 0, i = 1, . . . , k.

In this paper, we consider the generalized shift operator generated by the Laplace-
Bessel differential operator ∆B in terms of which the B-maximal operator and the B-Riesz
potential are investigated. We study the B-Riesz potential in the modified B-Morrey
space and B-BMO space. The inequality of Hardy-Littlewood-Sobolev -Morrey type is
established for the B-Riesz potentials.

We obtain necessary and sufficient conditions for the operator Iα,γ to be bounded from

the modified B-Morrey space L̃p,λ,γ to L̃q,λ,γ.
The structure of the paper is as follows. In Section 1 we present some definitions and

auxiliary results. In Section 2 we study some embeddings into the modified B-Morrey
spaces. In Section 3 the boundedness of the B-maximal operator on modified B-Morrey
space L̃p,λ,γ is proved. The main result of the paper is the inequality of Hardy-Littlewood-
Sobolev-Morrey type for the B-Riesz potential, established in Section 4.

1. Definitions, notation and preliminaries

Suppose that R
n is n-dimensional Euclidean space, x = (x1, . . . , xn) ∈ R

n, |x|2 =∑n
i=1 x

2
i , 1 ≤ k ≤ n, n ≥ 2, x′ = (x1, . . . , xk) ∈ R

k, x′′ = (xk+1, . . . , xn) ∈ R
n−k,

x = (x′, x′′) ∈ R
n, Rn

k,+ = {x = (x′, x′′) ∈ R
n;x1 > 0, . . . , xk > 0}, E(x, t) = {y ∈

R
n
k,+ ; |x− y| < t}, E(0, r) = Er, γ = (γ1, . . . , γk), γ1 > 0, . . . , γk > 0, |γ| = γ1 + . . .+ γk,

(x′)γ = xγ11 · . . . · xγkk .
For measurable E ⊂ R

n
k,+ suppose |E|γ =

∫
E(x

′)γdx, then |Er|γ = ω(n, k, γ)rQ, Q =
n+ |γ|, where

ω(n, k, γ) =

∫

E1

(x′)γdx = 2−kπ
n−k
2 Γ−1

(
(Q+ 2)/2

) k∏

i=1

Γ
(
(γi + 1)/2

)
.

Denote by T y the generalized shift operator (B–shift operator) acting according to the
law

T yf(x) = Cγ,k

∫ π

0
. . .

∫ π

0
f
(
(x′, y′)β, x

′′ − y′′
)
dν(β),

where (xi, yi)βi
= (x2i − 2xiyi cos βi + y2i )

1

2 , 1 ≤ i ≤ k, (x′, y′)β =

((x1, y1)β1
, . . . , (xk, yk)βk

), dν (β) =
k∏

i=1
sinγi−1 βi dβ1 . . . dβk, 1 ≤ k ≤ n and

Cγ,k = π−
k
2

k∏

i=1

Γ
(
γi+1
2

)

Γ
(γi
2

) .
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We remark that the generalized shift operator T y is closely connected with the Bessel
differential operator B.

Let Lp,γ(R
n
k,+) be the space of measurable functions on R

n
k,+ with finite norm

‖f‖Lp,γ = ‖f‖Lp,γ(Rn
k,+

) =

(∫

Rn
k,+

|f(x)|p(x′)γdx
)1/p

, 1 ≤ p <∞.

For p = ∞ the spaces L∞,γ(R
n
k,+) are defined by means of the usual modification

‖f‖L∞,γ = ‖f‖L∞ = esssup
x∈Rn

k,+

|f(x)|.

The translation operator T y generates the corresponding B-convolution

(f ⊗ g)(x) =

∫

Rn
k,+

f(y)T yg(x)(y′)γdy,

for which the Young inequality

‖f ⊗ g‖Lr,γ
≤ ‖f‖Lp,γ

‖g‖Lq,γ
, 1 ≤ p, q, r ≤ ∞,

1

p
+

1

q
=

1

r
+ 1

holds.

Lemma 1.∫

Rn
k,+

g(y)(y′)γdy = C−1
γ,k

∫

Rn×(0,∞)k
g

(√
z21 + z21, . . . ,

√
z2k + z2k, z

′′

)
dµ(z, z′),

where (z, z′) ∈ R
n × (0,∞)k, dµ(z, z′) = ( z′ )γ−1dzdz′, dz′ = dz1 · · · dzk, (z′ )γ−1 =

(z1)
γ1−1 · · · (zk)γk−1.

Lemma 2. For all x ∈ R
n
k,+ the following equality is valid

∫

E(x,t)
g(y)(y′)γdy = C−1

γ,k

∫

B((x,0),t)
g

(√
z21 + z21, . . . ,

√
z2k + z2k, z

′′

)
dµ(z, z′),

where B((x, 0), t) = {(z, z′) ∈ R
n × (0,∞)k : |(x1 −

√
z21 + z21, . . . , xk −

√
z2k + z2k, x

′′ −
z′′)| < t}, dµ(z, z′) = (z′)γ−1dzdz′, dz′ = dz1 · · · dzk, (z′)γ−1 = (z1)

γ1−1 · · · (zk)γk−1.

Lemma 3. For all x ∈ R
n
k,+ the following equality is valid

∫

Et

T yg(x)(y′)γdy =

∫

E((x,0),t)
g

(√
z21 + z21, . . . ,

√
z2k + z2k, z

′′

)
dµ(z, z′),

where E((x, 0), t) = {(z, z′) ∈ R
n × (0,∞)k :

∣∣(x− z, z′
)∣∣ < t}.

The proof of Lemmas 2, 3 is straightforward via the following substitutions

z′′ = x′′, zi = xi cosαi, zi = xi sinαi, 0 ≤ αi < π, i = 1, . . . , k,

x ∈ R
n
k,+, z

′ = (z1, . . . , zk), (z, z′) ∈ R
n × (0,∞)k, 1 ≤ k ≤ n.

Lemma 4. Let 0 < α < Q. Then for 2|x| ≤ |y| the following inequality is valid
∣∣T y|x|α−Q − |y|α−Q

∣∣ ≤ 2Q−α+1|y|α−Q−1|x|. (1)
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2. Some embeddings into the modified B-Morrey spaces

Definition 3. Let 1 ≤ p <∞. By WLp,γ(R
n
k,+) we denote the weak Lp,γ space defined as

the set of locally integrable functions f(x), x ∈ R
n
k,+ with the finite norms

‖f‖WLp,γ
= sup

r>0
r
∣∣{x ∈ R

n
k,+ : |f(x)| > r

}∣∣1/p
γ

.

Definition 4. [11] Let 1 ≤ p < ∞, 0 ≤ λ ≤ Q, [t]1 = min{1, t}. We denote by
L̃p,λ,γ(R

n
k,+) the modified Morrey space, (≡ modified B-Morrey space) associated with the

Laplace-Bessel differential operator as the set of locally integrable functions f(x), x ∈ R
n
k,+,

with the finite norms

‖f‖
L̃p,λ,γ

= sup
t>0, x∈Rn

k,+

(
[t]−λ

1

∫

Et

T y|f(x)|p(y′)γdy
)1/p

respectively.

Note that

L̃p,0,γ(R
n
k,+) = Lp,γ(R

n
k,+),

L̃p,λ,γ(R
n
k,+) ⊂� Lp,γ(R

n
k,+) and ‖f‖Lp,γ

≤ ‖f‖
L̃p,λ,γ

(2)

and if λ < 0 or λ > Q, then L̃p,λ,γ(R
n
k,+) = Θ.

Note that

L̃p,0,γ(R
n
k,+) = Lp,γ(R

n
k,+),

L̃p,λ,γ(R
n
k,+) ⊂� Lp,γ(R

n
k,+) and ‖f‖Lp,γ

≤ ‖f‖L̃p,λ,γ
, (3)

L̃p,λ,γ(R
n
k,+) ⊂� Lp,λ,γ(R

n
k,+) and ‖f‖Lp,λ,γ

≤ ‖f‖L̃p,λ,γ
(4)

and if λ < 0 or λ > Q, then L̃p,λ,γ(R
n
k,+) = Θ, where Θ is the set of all functions equivalent

to 0 on R
n
k,+.

Lemma 5. Let 1 ≤ p <∞, 0 ≤ λ ≤ Q. Then

L̃p,λ,γ(R
n
k,+) = Lp,λ,γ(R

n
k,+) ∩ Lp,γ(R

n
k,+)

and for f ∈ L̃p,λ,γ(R
n
k,+) ‖f‖Lp,λ,γ

= ‖f‖
L̃p,λ,γ

.

Proof. Let f ∈ L̃p,λ,γ(R
n
k,+). Then by (3) and (4) we have

L̃p,λ,γ(R
n
k,+) ⊂� Lp,λ,γ(R

n
k,+) ∩ Lp,γ(R

n
k,+).

Therefore, f ∈ Lp,λ,γ(R
n
k,+) ∩ Lp,γ(R

n
k,+) and the embedding L̃p,λ,γ(R

n
k,+) ⊂�

Lp,λ,γ(R
n
k,+) ∩ Lp,γ(R

n
k,+) is valid.
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Let f ∈ Lp,λ,γ(R
n
k,+) ∩ Lp,γ(R

n
k,+). Then

‖f‖
L̃p,λ,γ

= sup
x∈Rn

k,+
,t>0

(
[t]−λ

1

∫

Et

T y|f(x)|p(y′)γdy
)1/p

= max

{
sup

x∈Rn
k,+

,0<t≤1

(
t−λ

∫

Et

T y|f(x)|p(y′)γdy
)1/p

, sup
x∈Rn

k,+
,t>1

(∫

Et

T y|f(x)|p(y′)γdy
)1/p

}

≤ max
{
‖f‖Lp,λ,γ

, ‖f‖Lp,γ

}
.

Therefore, f ∈ L̃p,λ,γ(R
n
k,+) and the embedding Lp,λ,γ(R

n
k,+) ∩Lp,γ(R

n
k,+) ⊂� L̃p,λ,γ(R

n
k,+)

is valid.
Thus L̃p,λ,γ(R

n
k,+) = Lp,λ,γ(R

n
k,+) ∩ Lp,γ(R

n
k,+) ⊂� Lp,λ,γ(R

n
k,+).

Let now f ∈ L̃p,λ,γ(R
n
k,+). Then

‖f‖Lp,λ,γ
= sup

x∈Rn
k,+

,t>0

(
t−λ

∫

Et

T y|f(x)|p(y′)γdy
)1/p

= sup
x∈Rn

k,+
,t>0

(
t−1[t]1

)λ
p

(
[t]−λ

1

∫

Et

T y|f(x)|p(y′)γdy
)1/p

= sup
x∈Rn

k,+
,t>0

(
[t]−λ

1

∫

Et

T y|f(x)|p(y′)γdy
)1/p

= ‖f‖L̃p,λ,γ
.

It is known that for 1 ≤ p <∞

Lp,Q,γ(R
n
k,+) = L∞(Rn

k,+) and ‖f‖Lp,Q,γ
= ω(n, k, γ)1/p ‖f‖L∞

. (5)

From (5) and Lemma 5 for 1 ≤ p <∞ we have

L̃p,Q,γ(R
n
k,+) = L∞(Rn

k,+) ∩ Lp,γ(R
n
k,+). (6)

Lemma 6. Let 1 ≤ p <∞, 0 < α < Q, 0 ≤ λ < Q. Then for Q−λ
α ≤ p ≤ Q

α

L̃p,λ,γ(R
n
k,+) ⊂� L̃1,Q−α,γ(R

n
k,+)

and for f ∈ L̃p,λ,γ(R
n
k,+) the following inequality

‖f‖L̃1,Q−α,γ
≤ ω(n, k, γ)1/p

′ ‖f‖L̃p,λ,γ
.

is valid.

Proof. Let 0 < α < Q, 0 ≤ λ < Q, f ∈ L̃p,λ,γ(R
n
k,+) and Q−λ

α ≤ p ≤ Q
α . By the

Hölder’s inequality we have

‖f‖
L̃1,Q−α,γ

= sup
x∈Rn

k,+
, t>0

[t]α−n−γ
1

∫

Et

T y|f(x)|(y′)γdy
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≤ ω(n, k, γ)1/p
′

sup
x∈Rn

k,+
, t>0

(
[t]1 t

−1
)−n/p′

[t]
α−Q−λ

p

1

(
[t]−λ

1

∫

Et

T y|f(x)|p(y′)γdy
)1/p

= ω(n, k, γ)1/p
′

sup
x∈Rn

k,+
, t>0

(
[t]1 t

−1
)Q−α (

[t]1 t
−1
)−Q

p′ [t]
α−Q−λ

p

1

(
[t]−λ

1

∫

Et

T y|f(x)|p(y′)γdy
)1/p

≤ ω(n, k, γ)1/p
′ ‖f‖L̃p,λ,γ

sup
t>0

(
[t]1 t

−1
)Q

p
−α

[t]
α−Q−λ

p

1 .

Note that

sup
t>0

(
[t]1 t

−1
)Q

p
−α

[t]
α−Q−λ

p

1 = max{ sup
0<t≤1

t
α−Q−λ

p , sup
t>1

t
α−Q

p } <∞

⇐⇒ Q− λ

α
≤ p ≤ Q

α
.

Therefore f ∈ L̃1,Q−α,γ(R
n
k,+) and

‖f‖L̃1,Q−α,γ
≤ ω(n, k, γ)1/p

′ ‖f‖L̃p,λ,γ
.

Definition 5. [13] Let 1 ≤ p <∞,0 ≤ λ ≤ Q. We denote by WL̃p,λ,γ(R
n
k,+) the modified

weak B-Morrey space as the set of locally integrable functions f(x),x ∈ R
n
k,+ with finite

norms

‖f‖WL̃p,λ,γ
= sup

r>0
r sup
t>0, x∈Rn

k,+

(
[t]−λ

1

∫

{y∈Et: T y|f(x)|>r}
(y′)γdy

)1/p

respectively.

Note that

WLp,γ(R
n
k,+) =WL̃p,0,γ(R

n
k,+),

L̃p,λ,γ(R
n
k,+) ⊂WL̃p,λ,γ(R

n
k,+) and ‖f‖WL̃p,λ,γ

≤ ‖f‖L̃p,λ,γ
.

Definition 6. [10] We denote by BMOγ(R
n
k,+) B–BMO space the set of locally integrable

functions f(x), x ∈ R
n
k,+, with finite norms

‖f‖∗,γ = sup
t>0, x∈Rn

k,+

|Et|−1
γ

∫

Et

|T xf(y)− fEt(x)|(y′)γdy <∞,

where fEt(x) = |Et|−1
γ

∫
Et
[T xf(y) ](y′)γdy.
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3. L̃p,λ,γ-boundedness of the B-maximal operator

In this section we study the Lp,λ,γ-boundedness of the B-maximal operator (see [10])

Mγf(x) = sup
t>0

|Et|−1
γ

∫

Et

T y|f(x)|(y′)γdy.

Theorem 1. 1. If f ∈ L̃1,λ,γ

(
R
n
k,+

)
, 0 ≤ λ < Q, then Mγf ∈WL̃1,λ,γ

(
R
n
k,+

)
and

‖Mγf‖WL̃1,λ,γ
≤ C1,λ,γ‖f‖L̃1,λ,γ

,

where C1,λ,γ is independent of f .

2.If f ∈ L̃p,λ,γ

(
R
n
k,+

)
, 1 < p <∞,0 ≤ λ < Q, then Mγf ∈ L̃p,λ,γ

(
R
n
k,+

)
and

‖Mγf‖L̃p,λ,γ
≤ Cp,λ,γ‖f‖L̃p,λ,γ

,

where Cp,λ,γ depends only on p,λ,γ,k and n.

Proof. We need to introduce the maximal operator defined on a space of homogeneous
type (Y, d, ν). By this we mean a topological space Y = R

n × (0,∞)k equipped with a
continuous pseudometric d and a positive measure ν satisfying

ν(E((x, x′), 2t)) ≤ C1ν(E((x, x′), t)) (7)

with a constant C1 independent of (x, x′) and t > 0. Here E((x, x′), t) = {(y, y′) ∈
Y : d(((x, x′), (y, y′)) < t}, dν(y, y′) = (y′)γ−1dy dy′, (y′)γ−1 = (y1)

γ1−1 · · · (yk)γk−1,

d((x, x′), (y, y′)) = |(x, x′)− (y, y′)| ≡ (|x− y|2 + (x′ − y′)2)
1

2 .

Let (Y, d, ν) be a space of homogeneous type. Define

Mνf(x, x′) = sup
t>0

ν(E((x, x′), t))−1

∫

E((x,x′),t)

∣∣f(y, y′)
∣∣ dν(y),

where f(x, x′) = f
(√

x21 + x21, . . . ,
√
x2k + x2k, x

′′
)
.

It is well known that the maximal operator Mν is of weak type (1, 1) and is bounded
on Lp(Y, dν) for 1 < p < ∞ (see [7]). Here we are concerned with the maximal operator
defined by dν(y, y′) = (y′)γ−1dy dy′. It is clear that this measure satisfies the doubling
condition (7).

It can be proved that

Mγf

(√
z21 + z21, . . . ,

√
z2k + z2k, z

′′

)
=Mνf

(√
z21 + z21, . . . ,

√
z2k + z2k, z

′′, 0

)
, (8)

Mγf(x) =Mνf(x, 0). (9)
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Indeed, Lemma 3
∫

Et

T y

∣∣∣∣f
(√

z21 + z21, . . . ,
√
z2k + z2k, z

′′

)∣∣∣∣ (y
′)γ dy

=

∫

E
((√

z2
1
+z2

1
,...,

√
z2
k
+z2

k
,z′′,0

)
,t
)

∣∣f(y, y′)
∣∣ dν(y, y′)

and

|Et|γ = νE

((√
z21 + z21, . . . ,

√
z2k + z2k, z

′′, 0

)
, t

)

imply (8). Furthermore, taking zk = 0 in (8) we get (9).
Using Lemma 3 and equality (8) we have

∫

Et

T y(Mγf(x))
p(y′)γ dy

=

∫

E((x,0),t)

(
Mγf

(√
z21 + z21, . . . ,

√
z2k + z2k, z

′′

))p

dν(z, z′)

=

∫

E((x,0),t)

(
Mνf

(√
z21 + z21, . . . ,

√
z2k + z2k, z

′′, 0

))p

dν(z, z′).

In [19] it was proved that the analogue of the Fefferman-Stein theorem for the maximal
operator defined on a space of homogeneous type is valid, if condition (7) is satisfied.
Therefore ∫

E((x,x′),t)

(
Mνϕ(y, y′)

)p
ψ(y, y′)dν(y, y′)

≤ C2

∫

E((x,x′),t)
|ϕ(y, y′)|pMνψ(y, y′) dν(y, y′). (10)

Then taking ϕ(y, y′) = f
(√

y21 + y21, . . . ,
√
y2k + y2k, y

′′, 0
)
and ψ(y, y′) ≡ 1 we obtain

from inequality (10) and Lemma 3 that

∫

Et

T y(Mγf(x))
p(y′)γdy

=

∫

E((x,0),t)

(
Mνf

(√
y21 + y21, . . . ,

√
y2k + y2k, y

′′, 0

))p

dν(y, y′)

≤ C2

∫

E((x,0),t)

∣∣∣∣f
(√

y21 + y21, . . . ,
√
y2k + y2k, y

′′, 0

)∣∣∣∣
p

dν(y, y′)

= C2

∫

E((x,0),t)

∣∣∣∣f
(√

y21 + y21, . . . ,
√
y2k + y2k, y

′′

)∣∣∣∣
p

dν(y, y′)

= C2

∫

Et

T y|f(x)|p(y′)γdy ≤ C2 [t]λ1 ‖f‖p
L̃p,λ,γ

.
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Corollary 1. Let f ∈ Lloc
1,γ

(
R
n
k,+

)
, then

lim
t→0

|Et|−1
γ

∫

Et

T yf(x) (y′)γdy = f(x)

for almost x ∈ R
n
k,+.

Corollary 2. [12]

1.If f ∈ L1,γ

(
R
n
k,+

)
, then Mγf ∈WL1,γ(R

n
k,+) and

‖Mγf‖WL1,γ
≤ C1,γ‖f‖L1,γ

,

where C1,γ is independent of f .

2. If f ∈ Lp,γ(R
n
k,+), 1 < p ≤ ∞, then Mγf ∈ Lp,γ(R

n
k,+) and

‖Mγf‖Lp,γ ≤ Cp,γ‖f‖Lp,γ ,

where Cp,γ depends only on p, γ, k and n.

In Theorem 1 if we take λ = 0, we obtained Corollary 2.

4. Hardy-Littlewood-Sobolev-Morrey type inequality for B-Riesz

potential

We consider the fractional B-maximal operator

Mα,γf(x) = sup
r>0

|Er|
α
Q
−1

γ

∫

Er

T y|f(x)|(y′)γdy, 0 ≤ α < Q,

the B-Riesz potential

Iα,γf(x) =

∫

Rn
k,+

T y|x|α−Qf(y)(y′)γdy, 0 < α < Q,

and the modified B-Riesz potential

Ĩα,γf(x) =

∫

Rn
k,+

(
T y|x|α−Q − |y|α−QχE∗

1
(y)
)
f(y)(y′)γdy,

where E∗
1 = R

n
k,+\E1.

The examples show that the B-Riesz potential Iα,γ is not defined for all functions

f ∈ L̃p,λ,γ(R
n
k,+), 0 ≤ λ < Q, if p ≥ Q

α .

For the B-Riesz potential the following Hardy-Littlewood-Sobolev-Morrey type in-
equality is valid.
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Theorem 2. Let 0 < α < Q, 0 ≤ λ < Q and 1 ≤ p ≤ Q−λ
α .

1) If 1 < p < Q−λ
α , then condition α

Q ≤ 1
p − 1

q ≤ α
Q−λ is necessary and sufficient for

the boundedness of Iα,γ from L̃p,λ,γ(R
n
k,+) to L̃q,λ,γ(R

n
k,+).

2) If p = 1, then condition α
Q ≤ 1 − 1

q ≤ α
Q−λ is necessary and sufficient for the

boundedness of Iα,γ from L̃1,λ,γ(R
n
k,+) to WL̃q,λ,γ(R

n
k,+).

3) If Q−λ
α ≤ p ≤ Q

α , then the operator Ĩα,γ is bounded from L̃p,λ,γ

(
R
n
k,+

)
to

BMOγ

(
R
n
k,+

)
.

Moreover, for f ∈ L̃p,λ,γ

(
R
n
k,+

)
, Q−λ

α ≤ p ≤ Q
α the integral Iα,γf exists almost every-

where, then Iα,γf ∈ BMOγ

(
R
n
k,+

)
and the following inequality is valid

‖Iα,γf‖BMOγ ≤ C‖f‖
L̃p,λ,γ

,

where C > 0 is independent of f .

Proof. 1) Sufficiency. Let f ∈ L̃p,λ,γ

(
R
n
k,+

)
. Then

Iα,γf(x) =

(∫

Et

+

∫

Rn
k,+

\Et

)
T yf(x)|y|α−Q(y′)γdy

≡ A(x, t) + C(x, t). (11)

For A(x, t) we have

|A(x, t)| ≤
∫

Et

T y |f(x)| |y|α−Q(y′)γdy

≤
−1∑

j=−∞

(
2jt
)α−Q

∫

E
2j+1t

\E
2j t

T y|f(x)|(y′)γdy.

Hence

|A(x, t)| ≤ C3t
αMγf(x) with C3 =

ω(n, k, γ)2Q

2α − 1
. (12)

For C(x, t) by the Hölder’s inequality we have

|C(x, t)| ≤
(∫

Rn
k,+

\Et

|y|−βT y |f (x)|p (y′)γdy
)1/p

×
(∫

Rn
k,+

\Et

|y|
(

β
p
+α−Q

)
p′
(y′)γdy

)1/p′

= J1 · J2. (13)
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Let λ < β < Q− αp. For J1 we get

J1 =
( ∞∑

j=0

∫

E
2j+1t

\E
2j t

T y|f(x)|p|y|−β(y′)γdy
)1/p

≤ t−
β
p ‖f‖

L̃p,λ,γ

( ∞∑

j=0

2−βj[2j+1t]λ1

)1/p

= t
−β

p ‖f‖L̃p,λ,γ




(
2λ tλ

log2[
1

2t
]∑

j=0
2(λ−β)j +

∞∑

j=log2[
1

2t
]+1

2−βj
)1/p

, 0 < t < 1

( ∞∑
j=0

2−βj
)1/p

, t ≥ 1



.

= t−
β
p ‖f‖

L̃p,λ,γ

{
(C4t

λ + C5t
β)

1

p , 0 < t < 1,
C6, t ≥ 1,

= C7[t]
λ
p

1 t
−β

p ‖f‖L̃p,λ,γ
. (14)

For J2 we obtain

J2 =

(∫

S
n−1

k,+

(ξ′)γdξ

∫ ∞

t
r
Q−1+

(
β
p
+α−Q

)
p′
dr

) 1

p′

= C8t
β
p
+α−Q

p . (15)

From (15) and inequality (14) we have

|C (x, t)| ≤ C9[t]
λ
p

1 t
α−Q

p ‖f‖L̃p,λ,γ
. (16)

Thus, (12) and (16) implies

|Iα,γf(x)| ≤ C10(t
αMγf(x) + [t]

λ
p

1 t
α−Q

p ‖f‖L̃p,λ,γ
)

≤ C10 min{tαMγf(x) + t
α−Q−λ

p ‖f‖L̃p,λ,γ
, tαMγf(x) + t

α−Q
p ‖f‖L̃p,λ,γ

}.

Minimizing with respect to t, at t =
[
(Mγf(x))

−1 ‖f‖L̃p,λ,γ

]p/(Q−λ)
or t =

[
(Mγf(x))

−1 ‖f‖L̃p,λ,γ

]p/Q
we have

|Iα,γf(x)| ≤ C11 min





(
Mγf(x)

‖f‖L̃p,λ,γ

)1− pα
Q−λ

‖f‖
L̃p,λ,γ

,

(
Mγf(x)

‖f‖L̃p,λ,γ

)1− pα
Q

‖f‖
L̃p,λ,γ



 .



Necessary and sufficient conditions for the boundedness ... 31

Then
|Iα,γf(x)| ≤ C12 (Mγf(x))

p/q ‖f‖1−p/q

L̃p,λ,γ

.

Hence, by Theorem 1, we have

∫

Et

T y |Iα,γf(x)|q (y′)γdy

≤ C12 ‖f‖q−p

L̃p,λ,γ

∫

Et

T y (Mγf(y))
p (y′)γdy ≤ C13[t]

λ
1 ‖f‖qL̃p,λ,γ

,

which implies that Iα,γ is bounded from L̃p,λ,γ(R
n
k,+) to L̃q,λ,γ(R

n
k,+).

Necessity. Let 1 < p < Q−λ
α , f ∈ L̃p,λ,γ

(
R
n
k,+

)
and Iα,γ be bounded from L̃p,λ,γ(R

n
k,+)

to L̃q,λ,γ(R
n
k,+).

Define ft(x) =: f(tx). Then

‖ft‖L̃p,λ,γ
= sup

r>0, x∈Rn
k,+

(
[r]−λ

1

∫

Er

T y|ft(x)|p(y′)γdy
)1/p

= t−
Q
p sup

r>0, x∈Rn
k,+

(
[r]−λ

1

∫

Etr

T y|f(x)|p(y′)γdy
)1/p

= t−
Q
p sup

r>0

(
[tr]1
[r]1

)λ/p

sup
r>0, x∈Rn

k,+

(
[tr]−λ

1

∫

Etr

T y |f(x)|p (y′)γdy
)1/p

= t−
Q
p [t]

λ
p

1,+ ‖f‖
L̃p,λ,γ

,

where [t]1,+ = max{1, t} and

‖Iα,γft‖L̃q,λ,γ
= t−α sup

r>0, x∈Rn
k,+

(
[r]−λ

1

∫

Er

T ty |Iα,γf(tx)|q (y′)γdy
)1/q

= t−α−Q
q sup

r>0

(
[tr]1
[r]1

)λ/q

sup
r>0, x∈Rn

k,+

(
[tr]−λ

1

∫

Etr

T y |Iα,γf(x)|q (y′)γdy
)1/q

= t−α−Q
q [t]

λ
q

1,+ ‖Iα,γf‖L̃q,λ,γ
.

By the boundedness of Iα,γ from L̃p,λ,γ(R
n
k,+) to L̃q,λ,γ(R

n
k,+)

‖Iα,γf‖L̃q,λ,γ
≤ Cp,q,λ,γt

α+Q
q
−Q

p [t]
λ
p
−λ

q

1,+ ‖f‖L̃p,λ,γ
,

where Cp,q,λ,γ depends only on p,q,λ,γ,k and n.

If 1
p <

1
q +

α
Q , then in the case t→ 0 we have ‖Iα,γf‖L̃q,λ,γ

= 0 for all f ∈ L̃p,λ,γ(R
n
k,+).
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As well as if 1
p > 1

q + α
Q−λ , then as t → ∞ we obtain ‖Iα,γf‖L̃q,λ,γ

= 0 for all f ∈
L̃p,λ,γ(R

n
k,+).

Therefore α
Q ≤ 1

p − 1
q ≤ α

Q−λ .

2) Sufficiency. Let f ∈ L̃1,λ,γ(R
n
k,+). We have

|{y ∈ Et : T y |Iα,γf(x)| > 2β}|γ
≤ |{y ∈ Et : T y|A(x, t)| > β}|γ
+ |{y ∈ Et : T y|C(x, t)| > β}|γ .

Taking into account inequality (12) and Theorem 1, we have

|{y ∈ Et : T y|A(x, t)| > β}|γ

≤
∣∣∣∣
{
y ∈ Et : T y (Mγf(x)) >

β

C3tα

}∣∣∣∣
γ

≤ C14t
α

β
· [t]λ1 ‖f‖L̃1,λ,γ

and thus if C9[t]
λ
1 t

α−Q ‖f‖L̃1,λ,γ
= β, then |C(x, t)| ≤ β and consequently,

| {y ∈ Et : T y |C(x, t)| > β} |γ = 0.

Then

|{y ∈ Et : T y |Iα,γf(x)| > 2β}|γ ≤ C14[t]
λ
1t

α
‖f‖

L̃1,λ,γ

β

≤ C15[t]
λ
1 min





(‖f‖L̃1,λ,γ

β

) Q−λ
Q−λ−α

,

(‖f‖L̃1,λ,γ

β

) Q
Q−α



 .

Finally

|{y ∈ Et : T y |Iα,γf(x)| > 2β}|γ ≤ C15[t]
λ
1

(‖f‖L̃1,λ,γ

β

)q

.

Necessity. Let Iα,γ be bounded from L̃1,λ,γ(R
n
k,+) to WL̃q,λ,γ(R

n
k,+). We have

‖Iα,γft‖WL̃q,λ,γ
= sup

r>0
r sup
τ>0, x∈Rn

k,+

(
[τ ]−λ

1

∫

{y∈Eτ : T y|Iα,γft(x)|>r}
(y′)γdy

)1/q

= sup
r>0

r sup
τ>0, x∈Rn

k,+

(
[τ ]−λ

1

∫

{y∈Eτ : T ty|Iα,γf(tx)|>rtα}
(y′)γdy

)1/q
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= t
−α−Q

q sup
τ>0

(
[tτ ]1
[τ ]1

)λ/q

sup
r>0

rtα sup
τ>0, x∈Rn

k,+

(
[tτ ]−λ

1

∫

{y∈Etτ : T y|Iα,γf(x)|>rtα}
(y′)γdy

)1/q

= t
−α−Q

q [t]
λ
q

1,+ ‖Iα,γf‖WL̃q,λ,γ
.

By the boundedness of Iα,γ from L̃1,λ,γ(R
n
k,+) to WL̃q,λ,γ(R

n
k,+)

‖Iα,γf‖WL̃q,λ,γ
≤ C1,q,λ,γt

α+Q
q

−Q[t]
λ−λ

q

1,+ ‖f‖
L̃1,λ,γ

,

where C1,q,λ,γ depends only on q,λ,γ,k and n.

If 1 < 1
q +

α
Q , then in the case t→ 0 we have ‖Iα,γf‖WL̃q,λ,γ

= 0 for all f ∈ L̃1,λ,γ(R
n
k,+).

Similarly, if 1 > 1
q + α

Q−λ , then as t → ∞ we obtain ‖Iα,γf‖WL̃q,λ,γ
= 0 for all

f ∈ L̃1,λ,γ(R
n
k,+).

Therefore α
Q ≤ 1− 1

q ≤ α
Q−λ .

3) Let f ∈ L̃p,λ,γ

(
R
n
k,+

)
, Q−λ

α ≤ p ≤ Q
α . For given t > 0 we denote

f1(z) = f(z)χE2t
(z), f2(z) = f(z)− f1(z), (17)

where χE2t
is the characteristic function of the set E2t. Then

Ĩα,γf(z) = Ĩα,γf1(z) + Ĩα,γf2(z) = F1(z) + F2(z), (18)

where

F1(z) =

∫

E2t

(
T y|z|α−Q − |y|α−QχE∗

1
(y)
)
f(y)(y′)γdy,

F2(z) =

∫

Rn
k,+

\E2t

(
T y|z|α−Q − |y|α−QχE∗

1
(y)
)
f(y)(y′)γdy.

Note that the function f1 has compact (bounded) support and thus

a1 = −
∫

E2t\Emin{1,2t}

|y|α−Qf(y)(y′)γdy

is finite.

Note also that

F1(z)− a1 =

∫

E2t

T y|z|α−Q f(y)(y′)γdy

−
∫

E2t\Emin{1,2t}

|y|α−Qf(y)(y′)γdy

+

∫

E2t\Emin{1,2t}

|y|α−Qf(y)(y′)γdy
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=

∫

Rn
k,+

T y|z|α−Q f1(y)(y
′)γdy.

Therefore

|F1(z)− a1| ≤
∫

Rn
k,+

|y|α−Q T y|f1(z)| (y′)γdy

=

∫

{y∈Rn
k,+

:T y|z|<2t}
|y|α−Q T y|f(z)| (y′)γdy.

Further, for z ∈ Et, T
y|z| < 2t we have

|y| ≤ |z|+ |z − y| ≤ |z|+ T y|z| < 3t.

Consequently

|F1(z)− a1| ≤
∫

E3t

|y|α−Q T y|f(z)| (y′)γdy, (19)

if z ∈ Et.
Thus, from (19) and Lemma 6, we have

∫

Et

|T xF1(z) − a1| (z′)γdz ≤
∫

Et

T x|F1(z)− a1|(z′)γdz

=

∫

Et

(∫

E3t

|y|α−QT xT y|f(z)|(y′)γdy
)
(z′)γdz

=

∫

E3t

|y|α−Q T x

(∫

Et

T y|f(z)|(z′)γdz
)
(y′)γdy

≤ [t]Q−α
1 ‖f‖

L̃1,Q−α,γ

∫

E3t

|y|α−Q(y′)γdy

≤ [t]Q−α
1 ‖f‖L̃p,λ,γ

∫

E3t

|y|α−Q(y′)γdy. (20)

In inequality (20) we take into account that f ∈ L̃p,λ,γ

(
R
n
k,+

)
and

∫

E3t

|y|α−Q(y′)γdy ≤ C19t
α, (21)

respectively, where C19 =
3α

α ω(n, k, γ).
Therefore,

sup
t>0, x∈Rn

k,+

1

tQ

∫

Et

|T xF1(z)− a1| (z′)γdz

≤ C19 sup
t>0

(
[t]1
t

)Q−α

‖f‖
L̃p,λ,γ

≤ C19 ‖f‖L̃p,λ,γ
. (22)
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(22) and condition Q−λ
α ≤ p ≤ Q

α implies the following inequality

|Et|−1
∫

Et

|T xF1(z)− a1| (z′)γdz ≤ C16‖f‖L̃p,λ,γ
. (23)

Denote

a2 =

∫

Emax{1,2t}\E2t

|y|α−Qf(y)(y′)γdy.

Let’s estimate |F2 (z)− a2| for z ∈ Et.

|F2(z)− a2| ≤
∫

Rn
k,+

\E2t

|f(y)|
∣∣T y|z|α−Q − |y|α−Q

∣∣ (y′)γdy.

Applying Lemma 4 and Hölder’s inequality, we have

|F2(z)− a2| ≤ 2Q−α+1|z|
∫

Rn
k,+

\E2t

|f(y)||y|α−Q−1(y′)γdy

≤ 2Q−α+1|z|
∞∑

j=0

∫

E
2j+2t

\E
2j+1t

|f(y)||y|α−Q−1(y′)γdy

≤ 2Q−α+1|z|
∞∑

j=0

(2j+1t)α−Q−1

∫

E
2j+2t

|f(y)|(y′)γdy

≤ 2Q−α+1|z|
∞∑

j=0

(2j+1t)α−Q−1(2j+2t)
Q

p′

(∫

E
2j+2t

|f(y)|p(y′)γdy
)1/p

≤ 4Q−α+1|z|‖f‖
L̃p,λ,γ

∞∑

j=0

(2j+2t)α−
Q
p
−1[2j+2t]

λ
p

1

≤ 4Q−α+1tα−
Q
p ‖f‖

L̃p,λ,γ
×

×





t
λ
p

log2[
1

2t
]∑

j=0
2
(j+2)(α−Q

p
−1+λ

p
)
+

∞∑

j=log2[
1

2t
]+1

2
(j+2)(α−Q

p
−1)

, 0 < t < 1/2,

∞∑
j=0

2(j+2)(α−Q
p
−1), t ≥ 1/2

= 4Q−α+1C17[t]
λ
p

1 t
α−Q

p ‖f‖L̃p,λ,γ

= C18[t]
λ
p

1 t
α−Q

p ‖f‖L̃p,λ,γ
. (24)

(24) and condition Q−λ
α ≤ p ≤ Q

α implies the following inequality
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|T xF2(z)− a2| ≤ T x|F2(z)− a2| ≤ C18‖f‖L̃p,λ,γ
, for all x ∈ R

n
k,+, z ∈ Et. (25)

Finally, from (23) and (25) we have

sup
x,t

1

|Et|γ

∫

Et

∣∣∣T xĨα,γf(y)− af

∣∣∣ (y′)γdy ≤ (C16 + C18)‖f‖L̃p,λ,γ
.

Thus

∥∥∥Ĩα,γf
∥∥∥
BMOγ

≤ 2 sup
x,t

1

|Et|γ

∫

Et

∣∣∣T xĨα,γf(y)− af

∣∣∣ (y′)γdy ≤ C‖f‖
L̃p,λ,γ

.

Theorem 2 is proved.

Theorem 3. Let 0 < α < Q, 0 ≤ λ < Q and 1 ≤ p ≤ Q−λ
α .

1) If 1 < p < Q−λ
α , then condition α

Q ≤ 1
p − 1

q ≤ α
Q−λ is necessary and sufficient for

the boundedness of Mα,γ from L̃p,λ,γ(R
n
k,+) to L̃q,λ,γ(R

n
k,+).

2) If p = 1, then condition α
Q ≤ 1 − 1

q ≤ α
Q−λ is necessary and sufficient for the

boundedness of Mα,γ from L̃1,λ,γ(R
n
k,+) to WL̃q,λ,γ(R

n
k,+).

Proof. In view of the well known pointwise estimate Mα,γf(x) ≤ C(Iα,γ |f |)(x), it
suffices to treat only the case of the operator Iα,γ .

1) Necessity. Let 1 < p < Q−λ
α , f ∈ L̃p,λ,γ

(
R
n
k,+

)
and Mα,γ be bounded from

L̃p,λ,γ(R
n
k,+) to L̃q,λ,γ(R

n
k,+).

Define ft(x) =: f(tx). Then

‖ft‖L̃p,λ,γ
= sup

r>0, x∈Rn
k,+

(
[r]−λ

1

∫

Er

T y|ft(x)|p(y′)γdy
)1/p

= t
−Q

p sup
r>0, x∈Rn

k,+

(
[r]−λ

1

∫

Etr

T y|f(x)|p(y′)γdy
)1/p

= t−
Q
p sup

r>0

(
[tr]1
[r]1

)λ/p

sup
r>0, x∈Rn

k,+

(
[tr]−λ

1

∫

Etr

T y |f(x)|p (y′)γdy
)1/p

= t−
Q
p [t]

λ
p

1,+ ‖f‖
L̃p,λ,γ

,

where [t]1,+ = max{1, t} and

‖Mα,γft‖L̃q,λ,γ
= t−α sup

r>0, x∈Rn
k,+

(
[r]−λ

1

∫

Er

T ty |Mα,γf(tx)|q (y′)γdy
)1/q
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= t
−α−Q

q sup
r>0

(
[tr]1
[r]1

)λ/q

sup
r>0, x∈Rn

k,+

(
[tr]−λ

1

∫

Etr

T y |Mα,γf(x)|q (y′)γdy
)1/q

= t
−α−Q

q [t]
λ
q

1,+ ‖Mα,γf‖L̃q,λ,γ
.

By the boundedness of Iα,γ from L̃p,λ,γ(R
n
k,+) to L̃q,λ,γ(R

n
k,+)

‖Iα,γf‖L̃q,λ,γ
≤ Cp,q,λ,γt

α+Q
q
−Q

p [t]
λ
p
−λ

q

1,+ ‖f‖
L̃p,λ,γ

,

where Cp,q,λ,γ depends only on p,q,λ,γ,k and n.

If 1
p <

1
q +

α
Q , then in the case t→ 0 we have ‖Mα,γf‖L̃q,λ,γ

= 0 for all f ∈ L̃p,λ,γ(R
n
k,+).

As well as if 1
p > 1

q + α
Q−λ , then as t → ∞ we obtain ‖Mα,γf‖L̃q,λ,γ

= 0 for all

f ∈ L̃p,λ,γ(R
n
k,+).

Therefore α
Q ≤ 1

p − 1
q ≤ α

Q−λ .

2) Necessity. Let Mα,γ be bounded from L̃1,λ,γ(R
n
k,+) to WL̃q,λ,γ(R

n
k,+). We have

‖Mα,γft‖WL̃q,λ,γ
= sup

r>0
r sup
τ>0, x∈Rn

k,+

(
[τ ]−λ

1

∫

{y∈Eτ : T y|Mα,γft(x)|>r}
(y′)γdy

)1/q

= sup
r>0

r sup
τ>0, x∈Rn

k,+

(
[τ ]−λ

1

∫

{y∈Eτ : T ty |Mα,γf(tx)|>rtα}
(y′)γdy

)1/q

= t−α−Q
q sup

τ>0

(
[tτ ]1
[τ ]1

)λ/q

sup
r>0

rtα sup
τ>0, x∈Rn

k,+

(
[tτ ]−λ

1

∫

{y∈Etτ : T y |Mα,γf(x)|>rtα}
(y′)γdy

)1/q

= t−α−Q
q [t]

λ
q

1,+ ‖Mα,γf‖WL̃q,λ,γ
.

By the boundedness of Mα,γ from L̃1,λ,γ(R
n
k,+) to WL̃q,λ,γ(R

n
k,+)

‖Mα,γf‖WL̃q,λ,γ
≤ C1,q,λ,γt

α+Q
q

−Q[t]
λ−λ

q

1,+ ‖f‖
L̃1,λ,γ

,

where C1,q,λ,γ depends only on q,λ,γ,k and n.

If 1 < 1
q+

α
Q , then in the case t→ 0 we have ‖Mα,γf‖WL̃q,λ,γ

= 0 for all f ∈ L̃1,λ,γ(R
n
k,+).

Similarly, if 1 > 1
q + α

Q−λ , then as t → ∞ we obtain ‖Mα,γf‖WL̃q,λ,γ
= 0 for all

f ∈ L̃1,λ,γ(R
n
k,+).

Therefore α
Q ≤ 1− 1

q ≤ α
Q−λ .

Theorem 4. Let 0 < α < Q, 0 ≤ λ < Q and Q−λ
α ≤ p ≤ Q

α . Then the operator Mα,γ is

bounded from L̃p,λ,γ(R
n
k,+) to L∞(Rn

k,+).
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Proof. Let f ∈ L̃p,λ,γ(R
n
k,+). Then by Lemma 6, we have

sup
t>0

tα−Q

∫

Et

T y|f(x)|(y′)γdy ≤ sup
t>0

(
[t]1
t

)Q−α

‖f‖
L̃1,Q−α,γ

≤ ‖f‖
L̃1,Q−α,γ

≤ ω(n, k, γ)1/p
′ ‖f‖

L̃p,λ,γ
.

Theorem 4 is proved.

Corollary 3. [12] Let 0 < α < Q and 1 ≤ p ≤ Q
α .

1) If 1 < p < Q
α , then condition 1

p − 1
q = α

Q is necessary and sufficient for the bound-
edness of Iα,γ from Lp,γ(R

n
k,+) to Lq,γ(R

n
k,+).

2) If p = 1, then condition 1 − 1
q = α

Q is necessary and sufficient for the boundedness
of Iα,γ from L1,γ(R

n
k,+) to WLq,γ(R

n
k,+).

3) If 1 < p = Q
α , then the operator Ĩα,γ is bounded from Lp,γ

(
R
n
k,+

)
to BMOγ

(
R
n
k,+

)
.

Moreover, if for f ∈ Lp,γ

(
R
n
k,+

)
, 1 < p = Q

α the integral Iα,γf exists almost every-

where, then Iα,γf ∈ BMOγ

(
R
n
k,+

)
and the following inequality is valid

‖Iα,γf‖BMOγ ≤ C‖f‖Lp,γ ,

where C > 0 is independent of f .
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