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Multi-sublinear rough maximal operator on product Mor-
rey and product modified Morrey spaces

Sabir Q. Hasanov

Abstract. We will study the boundedness of multi-sublinear maximal operator Mg ,,, with rough
kernels Q € L*(S"7!), 1 < s < co on product Morrey and on product modified Morrey spaces.
We study the boundedness of the operators Mg ,, on product Morrey spaces LPYAY(R™) x ... %
LPmAm(R™) to Morrey spaces LP*(R™) and on product modified Morrey spaces LP12 (R™) x ... x
LPmAm(R™) to modified Morrey spaces LP*(R™).
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1. Introduction

The classical Morrey spaces, introduced by Morrey [10] in 1938, have been studied in-
tensively by various authors and together with weighted Lebesgue spaces play an important
role in the theory of partial differential equations. They appeared to be quite useful in the
study of local behavior of the solutions of elliptic differential equations and describe local
regularity more precisely than Lebesgue spaces. See, for example, [3, 4, 5] for details. The
boundedness of fractional integral operators on the classical Morrey spaces was studied by
Adams [1], Chiarenza and Frasca [2], see also [11, 12]. In [2], by establishing a pointwise
estimate of fractional integrals in terms of the Hardy-Littlewood maximal function, they
showed the boundedness of fractional integral operators on the Morrey spaces.

Let R™ be the n-dimensional Euclidean space, and let (R™)™ = R" x ... x R™ be the
m-fold product space (m € N). For x € R™ and r > 0, we denote by B(x,r) the open

ball centered at z of radius r, and by ‘B (z,7) denote its complement. Let |B(x,r)| be the
Lebesgue measure of the ball B(z,r). Also for 7 = (21,...,2m) € R™ and r > 0, we
denote by B(Z,r) the open ball centered at 2 of radius r, and B(Z,r) We denote by
the m-tuple (f1, f2, ..., fm)s ¥ = W1, ,ym) and dY = dys - -- dyn.
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Definition 1. Let 1 <p < o0, 0 < X <. We denote by L, \(R"™) the Morrey space, and
by WL, A(R™) the weak Morrey space, the set of locally integrable functions f(x), x € R",
with the finite norms

2
Iz, = s £l 2, (Br))s

A
/ = sup 7 *|fllwr,B
1 llwe,,, e I fllw L, (B

respectively.

Definition 2. Let 1 < p < o0, 0 < A < 7, [t]; = min{1,¢}. We denote by L, (R")
the modified Morrey space, and by WL, x\(R™) the weak modified Morrey space, the set of
locally integrable functions f(x), x € R™, with the finite norms

A

Ifllz, = Sup s P W f Il (Blar))

zeR™ r>0
A

7wz, = S0 1713 1wz, ey

respectively.

Note that _
Lpo(R™) = Lpo(R") = Ly(R"),

LpA(R") Co Ly A(R") N Ly(R™) and - max{|[fl[r, \: [[fllz, } < [Ifll7, |

and if A <0 or A > n, then L, \(R") = EP,A(R”) = O, where O is the set of all functions
equivalent to 0 on R".

Let 1 < s < 0o, 2 € L¥(S™ 1) be a homogeneous function of degree zero on R™".
The multi-sublinear maximal operator Mg ,,, with rough kernels €2 is defined by

m
Mam(F)w) =sww— [ 0@ [ 15— w7
r>0 T B(Y.r) =1
If m =1, then Mg = Mg is the maximal operator with rough kernel 2. When m =1

and ) =1, then M = M, ; is the classical Hardy-Littlewood maximal operator.

In this work, we prove the boundedness of the multi-sublinear maximal operator with
rough kernels Mg ,, from product Morrey space LPUAL(R™) x ... x LPmAm (R™) to LPA(R™),
ifp>s,1<p1,...,pm <o, 1/p=1/p1 +...+1/py, and from the space LP11(R") x
... X LPmAm(R™) to the weak space WLPANRM), if p=s',1<pi,...,pm < oo and 1/p =
1/p1+...4+ 1/pm and at least one exponent p;, 1 <i < m equals one. Also we prove the
boundedness of Mg, from product modified Morrey space LP1A1 (R™) x ... x LPmAm (R™)
to Ep”\(]R”), if p>s', 1 <p1,...,pm <00, 1/p=1/p1+ ...+ 1/py and from the space
LPYALYR™) x ... x LPmAm (R™) to the weak space W LPAR?), if p=5s', 1< py,...,pm < 00
and 1/p=1/p1 + ...+ 1/p,, and at least one exponent p;, 1 < i < m equals one.

Throughout this paper, we assume the letter C' always remains to denote a positive
constant that may vary at each occurrence but is independent of the essential variables.
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2. Boundedness of multi-sublinear maximal operator My, ,, on product
Morrey spaces

In this part, we investigate the boundedness of multi-sublinear maximal operator Mg ,,
on product Morrey spaces.

The boundedness of Hardy-Littlewood maximal operator on the classical Morrey spaces
was studied by Chiarenza and Frasca [2]. Their results can be summarized as follows.

Theorem 1. [2] Let1 < p < 0o and 0 < A < n. Then forp > 1, the operator M is bounded
on LPMR™) and for p = 1, the operator M is bounded from L**(R™) to W LY (R™).

If A = 0, then the statement of Theorem 1 reduces to the well known Hardy-Littlewood
theorem.

Lemma 1. Let 1 < s < 00, Q € L*(S™ 1) be a homogeneous function of degree zero on
R™ p be the harmonic mean of p1,...,pm > 1 and f € L (R") x ... x LL (R™). Then
there exists a constant C' > 0 such that for any x € R™

Mamf(z) ﬁ[

l
s'pi P

)(@)] 7 M

||Q|| mn—1
where Cy = —=E"17 )

Proof. Since 2 € L*(S™ 1) with s > 1, Holder’s inequality yields that

1 m
— Q T — Y d
o B(?m)\ (7)\j];[1|f( yi)ldy

< o ( L )ﬁ il - yi>|8’d?> o /. )m@)\w)i
) =1 ,r
- = < Jyy I~ yi>|s’d7> ([ [ e -taar)’

1

< Oy su / / (2 — )| dys . dym |
Or;ﬁ)rnm(l—— < R . Hlf yi)|* dyr . y)

P

<ol (s, k=0l )

r>0
lp
s'p,
a:)} I

<co]] (s g
j=1
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which implies a pointwise estimate

!
s'p; p

Mamf(z) < Cy ﬁ [M( £ )(33)] i
j=1

When m > 2 and Q € L¥(S™ 1), we find out Mg, also have the same properties by
providing the following multi-version of the Theorem 1.

Theorem 2. Let 1 < s < oo, € L*(S™ 1) be a homogeneous function of degree zero

on R™  p be the harmonic mean of p1,...,pm > 1 and
A =
E:ZP_J for 0< )\ <n. (2)
i

(i) Ifp > s, then the operator Mg, is bounded from product Morrey space LPVAL(R™) x
..o X LPmAm (R™) to LPAR™). Moreover, there exists a positive constant C such that
for all f€ LPLA(R™) x ... x LPmAm (RP)

m
[Mamfilzen < C T o5

j=1

(it) Ifp = s, then the operator Maq ., is bounded from product Morrey space LPYAL(R™) x
<o X LPmA(R™) to weak Morrey space W LPA(R™). Moreover, there exists a positive
constant C such that for all f&€ LPY M (R™) x ... x LPmAm(R™)

m
[Mamflw s < C T Il s -

j=1
Proof.

(i) If p > &', by (1) and the Holder inequality, we get

(ti)‘ /B(x,t) |MQ7mf(y)|pdy)% < Co (t%‘ /B(x,t) ‘]1211 [M(f;;)])(yﬂ S/Z)j pdy)%
m s'pj 2 %
<all ([, o] ).

Taking the p-th root of both sides and applying Theorem 1 with p/s’ > 1 and
s/pj

;7€ Lo (R™), we get

1

1 =
Mot = sw (G5 [ IMant)Pa)”

zeRn, 50
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m s/p]- 1
= Co H HM(fJ ’ ) L%’*a
j=1
m s,ﬁ 1 m
SCHHf]P Yo = C T s
j=1 j=1

which is the desired inequality.

(ii) f p=¢, forany 7 > 0, let ¢g = 7, &, = 1 and &1,€9,...,e;p—1 > 0 be arbitrary
which will be chosen later. From the pointwise estimate (1), we get

{y € B(x,1) : [Mamf(y)| > 7}

m Py /p i1
U {veBab: M7 w)|™ > 1.
j=1 t Pj £
Let us now take €1,¢9,...,6m_1 > 0 such that
s'/p;
N b i TP
i S L : j=1,2,..,m.

gi=t T fll e
Then, applying Theorem 1 with p/s’ =1 and the fact ffj € LYN (R™), we get
‘{y € B(z,t): ‘MQ,mf(y)‘ > T}‘

< sz: Hy € B(x,t) : M(f}")(y) > (W)MH

j—l

X/
< 02# ( ]Eﬂ)“uf;”juLl,Aj

- CZt)‘< = )’”nmm N

€j—

m

- 03[l )”
j=1 J
:Czt)\< H |f]HL1’] ])
j=1 j=1
:Ctk<%H||fjHij,Aj) .
7j=1

,_\

s
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Hence, we obtain the following inequality
1

1
|Mamfllwrer =supT  sup (—/\Hy € B(xz,t) : |Mo,amf(y)] > T}Dp
>0 zeR"t>0 t

m
< CTT Il
j=1

This is the conclusion (ii) of Theorem 2.

3. Boundedness of multi-sublinear maximal operator Mg, ,, on product
modified Morrey spaces

In this part, we investigate the boundedness of multi-sublinear maximal operator Mg ,,
on product modified Morrey spaces.

The boundedness of Hardy-Littlewood maximal operator on the modified Morrey
spaces was studied by Guliyev, Hasanov and Zeren [6], see also [7, 8, 9]. Their results
can be summarized as follows.

Theorem 3. [6] Let1 < p < oo and0 < A < n. Then forp > 1, the operator M is bounded
on LPMR™) and for p = 1, the operator M is bounded from L“»(R™) to W LLVNR™).

If A = 0, then the statement of Theorem 3 reduces to the well known Hardy-Littlewood
theorem.

The following lemmas was proved in [6], see also [7, 8, 9].
Lemma 2. Let 1 <p<oo,0 < A<n. Then
Zp,A(Rn) = Lpa(R") N Ly(R")

and

11z, , = max { £y, 1], } -
Lemma 3. Let 1 <p<oo, 0 < A<n. Then
WL, A(R™) = WL, \(R") N W L,(R™)

and

11wz, , = mex {1 s, 1w, } -

When m > 2 and Q € L¥(S™ 1), we find out Mg, also have the same properties by
providing the following multi-version of the Theorem 3.

Theorem 4. Let 1 < s < oo, Q € L*(S™ 1) be a homogeneous function of degree zero
on R™ p be the harmonic mean of p1,...,pm > 1 and satisfy (2).
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(i) If p > &', then the operator Mg, is bounded from product modified Morrey space
LPYM(R™) x ... x LPmAm(R™) to modified Morrey space LPA(R™). Moreover, there
exists a positive constant C such that the following inequality is wvalid for oll f €
LPUM(R™) x ... x LPmAm (R™)

m
HMQ,m-mZp,/\ < CH Hfj”zpjﬂj-
j=1

(it) If p = s, then the operator Mg, is bounded from product modified Morrey space
LPIA(RY) x ... x LPmAn(R™) to weak modified Morrey space W LPA(R™). Moreover,
there exists a positive constant C such that the following inequality is valid for all
fe LPPM(RY) x ... x LPmAm(R™)

m
‘|Mﬂ,mﬂ|wfp,A < CH Hfj”zpjﬂj-

j=1
Proof.

(i) If p > &', by (1) and the Holder inequality, we get

(7 o inntoPas) <co(cts [ (1T [ o] ™

j=1
m

<y H (
j=1

[, b

Taking the p-th root of both sides and applying Theorem 3 with p/s’ > 1 and
s/pj

;7€ Ly (R™), we get

1
Aj
1

1]

1

1 =
Motz = s (G [ (Manto)Pay)’
1 x?

zeR™ t>0
m Iy 1

— p s
=6l HM(fJ‘ 7z,

j=1

m s/pj 1 m

e 7
SC’HHij 7Y :CHHfJ'HZPMw
L5
j=1 j=1

which is the desired inequality.

(ii) If p= ¢, for any 7 > 0, let g = 7, &, = 1 and 1,€9,...,6;p—1 > 0 be arbitrary
which will be chosen later. From the pointwise estimate (1), we get

{y € B(x,1) : [Mamf(y)| > 7}
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m S/pj P Ei_1
<U {ve By : | MUTHW| ™ > <5}
j=1 t Pj £;
Let us now take €1,¢9,...,6m_1 > 0 such that
s'/p;
N e |
— s// - s ]:1,2,...,777/
€j=1 TP fill zos

Then, applying Theorem 3 with p/s’ =1 and the fact ffj € L' (R™), we get

{y € Ba,t) : [Mowmf(y)| > 7}

< czm:‘{y € B(z,t) : M(f)(y) > (W)m}‘

Jj=1 J
(>\ i)/ pj

<cz (715)1’ 17
_cz (f“ﬂ) 1£i11%, 5,

eS| (G

j=1 i-1
m 1 m s’
= CZ ; |fj||Lp] ]
7j=1 7j=1

i
= ot (%fj 1/l 25 a) '

Hence, we obtain the following inequality

B =

)

1
[Momtlyzon =supr sup ([{y € Bt [Moamt@)] >}
>0 zeRm >0 Vb

m
< CTT I zm50-

J=1

This is the conclusion (ii) of Theorem 4.
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