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Multi-sublinear rough maximal operator on product Mor-

rey and product modified Morrey spaces

Sabir Q. Hasanov

Abstract. We will study the boundedness of multi-sublinear maximal operator MΩ,m with rough
kernels Ω ∈ Ls(Sn−1), 1 < s ≤ ∞ on product Morrey and on product modified Morrey spaces.
We study the boundedness of the operators MΩ,m on product Morrey spaces Lp1,λ1(Rn) × . . . ×

Lpm,λm(Rn) to Morrey spaces Lp,λ(Rn) and on product modified Morrey spaces L̃p1,λ1(Rn)× . . .×

L̃pm,λm(Rn) to modified Morrey spaces L̃p,λ(Rn).
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1. Introduction

The classical Morrey spaces, introduced by Morrey [10] in 1938, have been studied in-
tensively by various authors and together with weighted Lebesgue spaces play an important
role in the theory of partial differential equations. They appeared to be quite useful in the
study of local behavior of the solutions of elliptic differential equations and describe local
regularity more precisely than Lebesgue spaces. See, for example, [3, 4, 5] for details. The
boundedness of fractional integral operators on the classical Morrey spaces was studied by
Adams [1], Chiarenza and Frasca [2], see also [11, 12]. In [2], by establishing a pointwise
estimate of fractional integrals in terms of the Hardy-Littlewood maximal function, they
showed the boundedness of fractional integral operators on the Morrey spaces.

Let Rn be the n-dimensional Euclidean space, and let (Rn)m = R
n × . . . × R

n be the
m-fold product space (m ∈ N). For x ∈ R

n and r > 0, we denote by B(x, r) the open

ball centered at x of radius r, and by
{

B(x, r) denote its complement. Let |B(x, r)| be the
Lebesgue measure of the ball B(x, r). Also for −→x = (x1, . . . , xm) ∈ R

mn and r > 0, we

denote by B(−→x , r) the open ball centered at −→x of radius r, and B(−→x , r) We denote by
−→
f

the m-tuple (f1, f2, . . . , fm), −→y = (y1, . . . , ym) and d−→y = dy1 · · · dyn.
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Definition 1. Let 1 ≤ p < ∞, 0 ≤ λ ≤ γ. We denote by Lp,λ(R
n) the Morrey space, and

by WLp,λ(R
n) the weak Morrey space, the set of locally integrable functions f(x), x ∈ R

n,
with the finite norms

‖f‖Lp,λ
= sup

x∈Rn, r>0
r−

λ
p ‖f‖Lp(B(x,r)),

‖f‖WLp,λ
= sup

x∈Rn, r>0
r
−λ

p ‖f‖WLp(B(x,r))

respectively.

Definition 2. Let 1 ≤ p < ∞, 0 ≤ λ ≤ γ, [t]1 = min{1, t}. We denote by L̃p,λ(R
n)

the modified Morrey space, and by WL̃p,λ(R
n) the weak modified Morrey space, the set of

locally integrable functions f(x), x ∈ R
n, with the finite norms

‖f‖
L̃p,λ

= sup
x∈Rn, r>0

[r]
−λ

p

1 ‖f‖Lp(B(x,r)),

‖f‖
WL̃p,λ

= sup
x∈Rn, r>0

[r]
−λ

p

1 ‖f‖
WL̃p(B(x,r))

respectively.

Note that
L̃p,0(R

n) = Lp,0(R
n) = Lp(R

n),

L̃p,λ(R
n) ⊂� Lp,λ(R

n) ∩ Lp(R
n) and max{‖f‖Lp,λ

, ‖f‖Lp} ≤ ‖f‖L̃p,λ

and if λ < 0 or λ > n, then Lp,λ(R
n) = L̃p,λ(R

n) = Θ, where Θ is the set of all functions
equivalent to 0 on R

n.
Let 1 < s ≤ ∞, Ω ∈ Ls(Smn−1) be a homogeneous function of degree zero on R

mn.
The multi-sublinear maximal operator MΩ,m with rough kernels Ω is defined by

MΩ,m(
−→
f )(x) = sup

r>0

1

rnm

∫

B(−→y ,r)
|Ω(−→y )|

m∏

j=1

|fi(x− yi)|d
−→y .

If m = 1, then MΩ ≡ MΩ,1 is the maximal operator with rough kernel Ω. When m = 1
and Ω ≡ 1, then M ≡ M1,1 is the classical Hardy-Littlewood maximal operator.

In this work, we prove the boundedness of the multi-sublinear maximal operator with
rough kernels MΩ,m from product Morrey space Lp1,λ1(Rn)×. . .×Lpm,λm(Rn) to Lp,λ(Rn),
if p > s′, 1 < p1, . . . , pm < ∞, 1/p = 1/p1 + . . . + 1/pm and from the space Lp1,λ1(Rn) ×
. . .× Lpm,λm(Rn) to the weak space WLp,λ(Rn), if p = s′, 1 ≤ p1, . . . , pm < ∞ and 1/p =
1/p1 + . . .+ 1/pm and at least one exponent pi, 1 ≤ i ≤ m equals one. Also we prove the
boundedness of MΩ,m from product modified Morrey space L̃p1,λ1(Rn)× . . .× L̃pm,λm(Rn)

to L̃p,λ(Rn), if p > s′, 1 < p1, . . . , pm < ∞, 1/p = 1/p1 + . . . + 1/pm and from the space
L̃p1,λ1(Rn)× . . .× L̃pm,λm(Rn) to the weak space WL̃p,λ(Rn), if p = s′, 1 ≤ p1, . . . , pm < ∞
and 1/p = 1/p1 + . . .+ 1/pm and at least one exponent pi, 1 ≤ i ≤ m equals one.

Throughout this paper, we assume the letter C always remains to denote a positive
constant that may vary at each occurrence but is independent of the essential variables.
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2. Boundedness of multi-sublinear maximal operator MΩ,m on product

Morrey spaces

In this part, we investigate the boundedness of multi-sublinear maximal operatorMΩ,m

on product Morrey spaces.

The boundedness of Hardy-Littlewood maximal operator on the classical Morrey spaces
was studied by Chiarenza and Frasca [2]. Their results can be summarized as follows.

Theorem 1. [2] Let 1 ≤ p < ∞ and 0 ≤ λ < n. Then for p > 1, the operator M is bounded
on Lp,λ(Rn) and for p = 1, the operator M is bounded from L1,λ(Rn) to WL1,λ(Rn).

If λ = 0, then the statement of Theorem 1 reduces to the well known Hardy-Littlewood
theorem.

Lemma 1. Let 1 < s ≤ ∞, Ω ∈ Ls(Smn−1) be a homogeneous function of degree zero on
R
mn, p be the harmonic mean of p1, . . . , pm > 1 and f ∈ L1

loc(R
n)× . . .× L1

loc(R
n). Then

there exists a constant C > 0 such that for any x ∈ R
n

MΩ,mf(x) ≤ C0

m∏

j=1

[
M
(
f

s′pj

p

j

)
(x)
] p

s′pj , (1)

where C0 =
‖Ω‖

Ls(Smn−1)

(mn)
1
s

.

Proof. Since Ω ∈ Ls(Smn−1) with s > 1, Hölder’s inequality yields that

1

rnm

∫

B(−→y ,r)
|Ω(−→y )|

m∏

j=1

|fi(x− yi)|d
−→y

≤
1

rnm

(∫

B(−→y ,r)

m∏

j=1

|fi(x− yi)|
s′d−→y

) 1
s′ (∫

B(−→y ,r)
|Ω(−→y )|sd−→y

) 1
s

=
1

rnm

(∫

B(−→y ,r)

m∏

j=1

|fi(x− yi)|
s′d−→y

) 1
s(∫ r

0

∫

Smn−1

|Ω(ξ)|stmn−1dξdt
) 1

s

≤ C0 sup
r>0

1

rnm(1− 1
s
)

(∫

B(y,r)
· · ·

∫

B(y,r)

m∏

j=1

|fi(x− yi)|
s′dy1 . . . dym

) 1
s′

≤ C0

m∏

j=1

sup
r>0

( 1

rn

∫

B(y,r)
|fi(x− yi)|

s′pj

p dyi

) p

s′pj

≤ C0

m∏

j=1

[
M
(
f

s′pj

p

j

)
(x)
] p

s′pj ,



60 Sabir Q. Hasanov

which implies a pointwise estimate

MΩ,mf(x) ≤ C0

m∏

j=1

[
M
(
f

s′pj

p

j

)
(x)
] p

s′pj .

When m ≥ 2 and Ω ∈ Ls(Smn−1), we find out MΩ,m also have the same properties by
providing the following multi-version of the Theorem 1.

Theorem 2. Let 1 < s ≤ ∞, Ω ∈ Ls(Smn−1) be a homogeneous function of degree zero
on R

mn, p be the harmonic mean of p1, . . . , pm > 1 and

λ

p
=

m∑

j=1

λj

pj
for 0 ≤ λj < n. (2)

(i) If p > s′, then the operator MΩ,m is bounded from product Morrey space Lp1,λ1(Rn)×
. . .×Lpm,λm(Rn) to Lp,λ(Rn). Moreover, there exists a positive constant C such that
for all f ∈ Lp1,λ1(Rn)× . . .× Lpm,λm(Rn)

‖MΩ,mf‖Lp,λ ≤ C
m∏

j=1

‖fj‖Lpj ,λj .

(ii) If p = s′, then the operator MΩ,m is bounded from product Morrey space Lp1,λ1(Rn)×
. . .×Lpm,λm(Rn) to weak Morrey space WLp,λ(Rn). Moreover, there exists a positive
constant C such that for all f ∈ Lp1,λ1(Rn)× . . .× Lpm,λm(Rn)

‖MΩ,mf‖WLp,λ ≤ C

m∏

j=1

‖fj‖Lpj ,λj .

Proof.

(i) If p > s′, by (1) and the Hölder inequality, we get

( 1

tλ

∫

B(x,t)
|MΩ,mf(y)|pdy

) 1
p
≤ C0

( 1

tλ

∫

B(x,t)

∣∣∣
m∏

j=1

[
M(f

s′pj

p

j )(y)
] p

s′pj

∣∣∣
p
dy
) 1

p

≤ C0

m∏

j=1

( 1

tλj

∫

B(x,t)

[
M(f

s′pj

p

j )(y)
] p

s′

dy
) 1

pj .

Taking the p-th root of both sides and applying Theorem 1 with p/s′ > 1 and

f
s′pj

p

j ∈ L
p

s′
,λj(Rn), we get

‖MΩ,mf‖Lp,λ = sup
x∈Rn, t>0

( 1

tλ

∫

B(x,t)
|MΩ,mf(y)|pdy

) 1
p
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= C0

m∏

j=1

∥∥∥M
(
f

s′pj

p

j

)∥∥∥
1
s′

L
pj

s′
,λj

≤ C

m∏

j=1

∥∥∥f
s′pj

p

j

∥∥∥
1
s′

L
pj

s′
,λj

= C

m∏

j=1

‖fj‖Lpj ,λj ,

which is the desired inequality.

(ii) If p = s′, for any τ > 0, let ε0 = τ , εm = 1 and ε1, ε2, ..., εm−1 > 0 be arbitrary
which will be chosen later. From the pointwise estimate (1), we get

{y ∈ B(x, t) : |MΩ,mf(y)| > τ}

⊂

m⋃

j=1

{
y ∈ B(x, t) :

[
M(f

s′pj

p

j )(y)
] p

s′pj >
εj−1

t
λ−λj

pj εj

}
.

Let us now take ε1, ε2, ..., εm−1 > 0 such that

εj
εj=1

=

[∏m
j=1 ‖fj‖Lpj ,λj

]s′/pj

τ s
′/pj‖fj‖Lpj ,λj

, j = 1, 2, ...,m.

Then, applying Theorem 1 with p/s′ = 1 and the fact f
pj
j ∈ L1,λj (Rn), we get

∣∣∣
{
y ∈ B(x, t) :

∣∣MΩ,mf(y)
∣∣ > τ

}∣∣∣

≤ C
m∑

j=1

∣∣∣
{
y ∈ B(x, t) : M(f

pj
j )(y) >

( εj−1

t(λ−λj)/pjεj

)pj}∣∣∣

≤ C

m∑

j=1

tλj

( t(λ−λj)/pjεj
εj−1

)pj
‖f

pj
j ‖

L1,λj

= C

m∑

j=1

tλ
( εj
εj−1

)pj
‖fj‖

pj

Lpj ,λj

= C
m∑

j=1

tλ
[( εj

εj−1

)
‖fj‖Lpj ,λj

]pj

= C

m∑

j=1

tλ

(
1

τ

m∏

j=1

‖fj‖Lpj,λj

)s′

= Ctλ

(
1

τ

m∏

j=1

‖fj‖Lpj ,λj

)p

.
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Hence, we obtain the following inequality

‖MΩ,mf‖WLp,λ = sup
τ>0

τ sup
x∈Rn,t>0

( 1

tλ

∣∣∣
{
y ∈ B(x, t) : |MΩ,α,mf(y)| > τ

}∣∣∣
) 1

p

≤ C
m∏

j=1

‖fj‖Lpj ,λj .

This is the conclusion (ii) of Theorem 2.

3. Boundedness of multi-sublinear maximal operator MΩ,m on product

modified Morrey spaces

In this part, we investigate the boundedness of multi-sublinear maximal operatorMΩ,m

on product modified Morrey spaces.
The boundedness of Hardy-Littlewood maximal operator on the modified Morrey

spaces was studied by Guliyev, Hasanov and Zeren [6], see also [7, 8, 9]. Their results
can be summarized as follows.

Theorem 3. [6] Let 1 ≤ p < ∞ and 0 ≤ λ < n. Then for p > 1, the operator M is bounded
on L̃p,λ(Rn) and for p = 1, the operator M is bounded from L̃1,λ(Rn) to WL̃1,λ(Rn).

If λ = 0, then the statement of Theorem 3 reduces to the well known Hardy-Littlewood
theorem.

The following lemmas was proved in [6], see also [7, 8, 9].

Lemma 2. Let 1 ≤ p < ∞, 0 ≤ λ ≤ n. Then

L̃p,λ(R
n) = Lp,λ(R

n) ∩ Lp(R
n)

and
‖f‖L̃p,λ

= max
{
‖f‖Lp,λ

, ‖f‖Lp

}
.

Lemma 3. Let 1 ≤ p < ∞, 0 ≤ λ ≤ n. Then

WL̃p,λ(R
n) = WLp,λ(R

n) ∩WLp(R
n)

and
‖f‖WL̃p,λ

= max
{
‖f‖WMp,λ

, ‖f‖WLp

}
.

When m ≥ 2 and Ω ∈ Ls(Smn−1), we find out MΩ,m also have the same properties by
providing the following multi-version of the Theorem 3.

Theorem 4. Let 1 < s ≤ ∞, Ω ∈ Ls(Smn−1) be a homogeneous function of degree zero
on R

mn, p be the harmonic mean of p1, . . . , pm > 1 and satisfy (2).
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(i) If p > s′, then the operator MΩ,m is bounded from product modified Morrey space

L̃p1,λ1(Rn)× . . . × L̃pm,λm(Rn) to modified Morrey space L̃p,λ(Rn). Moreover, there
exists a positive constant C such that the following inequality is valid for all f ∈
L̃p1,λ1(Rn)× . . .× L̃pm,λm(Rn)

‖MΩ,mf‖
L̃p,λ ≤ C

m∏

j=1

‖fj‖L̃pj ,λj .

(ii) If p = s′, then the operator MΩ,m is bounded from product modified Morrey space

L̃p1,λ1(Rn)× . . .× L̃pm,λm(Rn) to weak modified Morrey space WL̃p,λ(Rn). Moreover,
there exists a positive constant C such that the following inequality is valid for all
f ∈ L̃p1,λ1(Rn)× . . .× L̃pm,λm(Rn)

‖MΩ,mf‖
WL̃p,λ ≤ C

m∏

j=1

‖fj‖L̃pj ,λj .

Proof.

(i) If p > s′, by (1) and the Hölder inequality, we get

( 1

[t]λ1

∫

B(x,t)
|MΩ,mf(y)|pdy

) 1
p
≤ C0

( 1

[t]λ1

∫

B(x,t)

∣∣∣
m∏

j=1

[
M(f

s′pj

p

j )(y)
] p

s′pj

∣∣∣
p
dy
) 1

p

≤ C0

m∏

j=1

( 1

[t]
λj

1

∫

B(x,t)

[
M(f

s′pj

p

j )(y)
] p

s′

dy
) 1

pj .

Taking the p-th root of both sides and applying Theorem 3 with p/s′ > 1 and

f

s′pj

p

j ∈ L̃
p

s′
,λj(Rn), we get

‖MΩ,mf‖L̃p,λ = sup
x∈Rn, t>0

( 1

[t]λ1

∫

B(x,t)
|MΩ,mf(y)|pdy

) 1
p

= C0

m∏

j=1

∥∥∥M
(
f

s′pj

p

j

)∥∥∥
1
s′

L̃
pj

s′
,λj

≤ C
m∏

j=1

∥∥∥f
s′pj

p

j

∥∥∥
1
s′

L̃
pj

s′
,λj

= C
m∏

j=1

‖fj‖L̃pj ,λj ,

which is the desired inequality.

(ii) If p = s′, for any τ > 0, let ε0 = τ , εm = 1 and ε1, ε2, ..., εm−1 > 0 be arbitrary
which will be chosen later. From the pointwise estimate (1), we get

{y ∈ B(x, t) : |MΩ,mf(y)| > τ}
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⊂
m⋃

j=1

{
y ∈ B(x, t) :

[
M(f

s′pj

p

j )(y)
] p

s′pj >
εj−1

t
λ−λj

pj εj

}
.

Let us now take ε1, ε2, ..., εm−1 > 0 such that

εj
εj=1

=

[∏m
j=1 ‖fj‖L̃pj ,λj

]s′/pj

τ s
′/pj‖fj‖L̃pj ,λj

, j = 1, 2, ...,m.

Then, applying Theorem 3 with p/s′ = 1 and the fact f
pj
j ∈ L̃1,λj (Rn), we get

∣∣∣
{
y ∈ B(x, t) :

∣∣MΩ,mf(y)
∣∣ > τ

}∣∣∣

≤ C
m∑

j=1

∣∣∣
{
y ∈ B(x, t) : M(f

pj
j )(y) >

( εj−1

[t]
(λ−λj)/pj
1 εj

)pj}∣∣∣

≤ C

m∑

j=1

[t]
λj

1

( [t](λ−λj)/pj
1 εj
εj−1

)pj
‖f

pj
j ‖

L̃1,λj

= C
m∑

j=1

[t]λ1

( εj
εj−1

)pj
‖fj‖

pj

L̃pj ,λj

= C

m∑

j=1

[t]λ1

[( εj
εj−1

)
‖fj‖L̃pj ,λj

]pj

= C

m∑

j=1

[t]λ1

(
1

τ

m∏

j=1

‖fj‖L̃pj ,λj

)s′

= Ctλ

(
1

τ

m∏

j=1

‖fj‖L̃pj ,λj

)p

.

Hence, we obtain the following inequality

‖MΩ,mf‖WL̃p,λ = sup
τ>0

τ sup
x∈Rn,t>0

( 1

tλ

∣∣∣
{
y ∈ B(x, t) : |MΩ,α,mf(y)| > τ

}∣∣∣
) 1

p

≤ C

m∏

j=1

‖fj‖L̃pj ,λj .

This is the conclusion (ii) of Theorem 4.
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