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product Morrey spaces
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Abstract. We will study the boundedness of multi-sublinear fractional maximal operatorMΩ,α,m

with rough kernels Ω ∈ Ls(Sn−1), 1 < s ≤ ∞ on product Morrey spaces. We find for the operator
MΩ,α,m necessary and sufficient conditions on the parameters of the boundedness on product
Morrey spaces Lp1,λ1(Rn)× . . .× Lpm,λm(Rn) to Morrey spaces Lq,λ(Rn).
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1. Introduction

The classical Morrey spaces, introduced by Morrey [17] in 1938, have been studied
intensively by various authors and together with weighted Lebesgue spaces play an im-
portant role in the theory of partial differential equations. They appeared to be quite
useful in the study of local behavior of the solutions of elliptic differential equations and
describe local regularity more precisely than Lebesgue spaces. See [4, 5, 6] for details. The
boundedness of fractional integral operators on the classical Morrey spaces was studied by
Adams [1], Chiarenza and Frasca et al. [3]. In [3], by establishing a pointwise estimate of
fractional integrals in terms of the Hardy-Littlewood maximal function, they showed the
boundedness of fractional integral operators on the Morrey spaces.

Let Rn be the n-dimensional Euclidean space, and let (Rn)m = R
n × . . . × R

n be the
m-fold product space (m ∈ N). For x ∈ Rn and r > 0, we denote by B(x, r) the open

ball centered at x of radius r, and by
{

B(x, r) denote its complement. Let |B(x, r)| be
the Lebesgue measure of the ball B(x, r). Also for −→x = (x1, . . . , xm) ∈ R

mn and r > 0,
we denote by B(−→x , r) the open ball centered at −→x ∈ R

mn of radius r, and B(−→x , r) We

denote by
−→
f the m-tuple (f1, f2, . . . , fm), −→y = (y1, . . . , ym) and d−→y = dy1 · · · dyn.

Definition 1. Let 1 ≤ p < ∞, 0 ≤ λ ≤ γ, [t]1 = min{1, t}. We denote by Lp,λ(R
n)

the Morrey space, and by WLp,λ(R
n) the weak Morrey space, the set of locally integrable

functions f(x), x ∈ R
n, with the finite norms

‖f‖Lp,λ
= sup

x∈Rn, t>0
r−

λ
p ‖f‖Lp(B(x,r)),
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‖f‖WLp,λ
= sup

x∈Rn, t>0
r−

λ
p ‖f‖WLp(B(x,r))

respectively.

The multilinear theory has been well developed in the past twenty years. In 1992,
Grafakos [9] first study the following multilinear integrals, defined by

Imα (
−→
f )(x) =

∫

Rn

1

|y|n−α
f1 (x− θ1y) . . . fm (x− θmy) dy,

where θi(i = 1, . . . ,m) are fixed distinct and nonzero real numbers and 0 < β < n. When
m = 1 and Ω ≡ 1, if let θ1 = 1, IΩ,α,m will be the Riesz potential operator Iα [19] given by

Iαf(x) =

∫

Rn

f(x− y)

|y|n−α
dy.

Grafakos proved that the operator Imα is bounded from Lp1(R
n)× . . .×Lpm(R

n) to Lq(R
n)

with 0 < 1/q = 1/p1 + . . . + 1/pm − β/n < 1, which can be regarded as an extension
result for the classical fractional integral on Lebesgue spaces. In [11, 12, 13] was proved
a certain O’Neil type inequality for dilated multi-linear convolution operators, including
permutations of functions. This inequality was used to extend Grafakoss result [9] to more
general multi-linear operators of potential type and the relevant maximal operators.

In 1999, Kenig and Stein [16] studied the following multilinear fractional integral,

Iα,m(
−→
f )(x) =

∫

(Rn)m

f1(y1) . . . fm(ym)

|(x− y1, . . . , x− ym)|nm−α
dy1dy2 . . . dym,

and showed that Iα,m is bounded from product Lp1(R
n) × Lp2(R

n) × . . . × Lpm(R
n) to

Lq(R
n) with 1/q = 1/p1 + . . . + 1/pm − β/n > 0 for each pi > 1(i = 1, . . . ,m). If some

pi = 1, then Iα,m is bounded Lp1(R
n)×Lp2(R

n)× . . .×Lpm(R
n) to Lq,∞(Rn). Obviously,

the multilinear fractional integral Iα,m is a natural generalization of the classical fractional
integral Iα ≡ Iα,1.

Let 1 < s ≤ ∞, Ω ∈ Ls(Smn−1) be a homogeneous function of degree zero on R
mn.

The multi-sublinear fractional maximal operator Mα,m with rough kernels Ω is defined by

Mα,m(
−→
f )(x) = sup

r>0

1

rnm−α

∫

B(−→y ,r)
|Ω(−→y )|

m
∏

j=1

|fi(x− yi)|d
−→y , 0 ≤ α < nm.

If m = 1, then MΩ,α ≡ MΩ,α,1 is the fractional maximal operator with rough kernel Ω.
When m = 1 and Ω ≡ 1, then Mα ≡ M1,α,1 is the classical fractional maximal operator.

In this work, we prove the boundedness of the multi-sublinear fractional maximal oper-
ator with rough kernels MΩ,α,m from product Morrey space Lp1,λ1(Rn)× . . .×Lpm,λm(Rn)
to Lq,λ(Rn), if p > s′, 1 < p1, . . . , pm < ∞, 1/q = 1/p1 + . . . + 1/pm − α/(mn − λ) and
from the space Lp1,λ1(Rn) × . . . × Lpm,λm(Rn) to the weak space WLq,λ(Rn), if p = s′,
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1 ≤ p1, . . . , pm < ∞ and 1/q = 1/p1 + . . . + 1/pm − α/(n − λ) and at least one exponent
pi, 1 ≤ i ≤ m equals one.

Throughout this paper, we assume the letter C always remains to denote a positive
constant that may vary at each occurrence but is independent of the essential variables.

2. Boundedness of multi-sublinear fractional maximal operator MΩ,α,m

on product Morrey spaces

In this part, we investigate the boundedness of multi-sublinear fractional maximal
operator MΩ,α,m on product Morrey spaces.

Spanne and Adams obtained two remarkable results on Morrey spaces (see Definition
1.1 of the Morrey spaces in Section 1) for Iα. Their results can be summarized as follows.

Theorem 1. [14, 18] (Spanne, but published by Peetre) Let 0 < α < n, 0 ≤ λ < n − αp,
1/q = 1/p − α/n and µ/q = λ/p. Then for p > 1, the operators Mα and Iα are bounded
from Lp,λ(Rn) to Lq,µ(Rn) and for p = 1, Iα is bounded from L1,λ(Rn) to WLq,µ(Rn).

Theorem 2. [1, 10] Let 0 < α < n, 1 ≤ p < n/α, 0 ≤ λ < n/αp.

(i) If p > 1, then condition 1/p − 1/q = α/(n − λ) is necessary and sufficient for the
boundedness of the operator Mα from Lp,λ(Rn) to Lq,λ(Rn).

(ii) If p = 1, then condition 1 − 1/q = α/(n − λ) s necessary and sufficient for the
boundedness of the operator Mα from L1,λ(Rn) to WLq,λ(Rn).

(iii) If p = n−λ
α , then the operator Mα is bounded from Lp,λ(Rn) to L∞(Rn).

If λ = 0, then the statement of Theorems 1 and 2 reduces to the well known Hardy-
Littlewood-Sobolev inequality.

When m ≥ 2 and Ω ∈ Ls(Smn−1), in [15] was find out MΩ,m also have the same
properties by providing the following multi-version result of the Chiarenza and Frasca [3].

Theorem 3. [15] Let 1 < s ≤ ∞, Ω ∈ Ls(Smn−1) be a homogeneous function of degree
zero on R

mn, p be the harmonic mean of p1, . . . , pm > 1 and

λ

p
=

m
∑

j=1

λj

pj
for 0 ≤ λj < n. (1)

(i) If p > s′, then the operator MΩ,m is bounded from product Morrey space Lp1,λ1(Rn)×
. . .×Lpm,λm(Rn) to Lp,λ(Rn). Moreover, there exists a positive constant C such that
for all f ∈ Lp1,λ1(Rn)× . . .× Lpm,λm(Rn)

‖MΩ,mf‖Lp,λ ≤ C

m
∏

j=1

‖fj‖Lpj ,λj .
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(ii) If p = s′, then the operator MΩ,m is bounded from product Morrey space Lp1,λ1(Rn)×
. . .×Lpm,λm(Rn) to weak Morrey space WLp,λ(Rn). Moreover, there exists a positive
constant C such that for all f ∈ Lp1,λ1(Rn)× . . .× Lpm,λm(Rn)

‖MΩ,mf‖WLp,λ ≤ C
m
∏

j=1

‖fj‖Lpj ,λj .

Lemma 1. Let 0 < α < mn, 1 ≤ s′ < mn/α, Ω ∈ Ls(Smn−1) be a homogeneous
function of degree zero on R

mn, p be the harmonic mean of p1, . . . , pm > 1 and f ∈
L1
loc(R

n)× . . .× L1
loc(R

n). Then for any x ∈ R
n

MΩ,α,mf(x) ≤ C0

m
∏

j=1

[

Mαs′

m

(f s′

j )(x)
]

1
s′
≤ C0

m
∏

j=1

[

Mαs′pj
mp

(f

s′pj
p

j )(x)
]

p
s′pj , (2)

where C0 =
‖Ω‖Ls(Smn−1)

(mn)
1
s

.

Proof. Since Ω ∈ Ls(Smn−1) with s > 1, Hölder’s inequality yields that

1

rnm−α

∫

B(−→y ,r)
|Ω(−→y )|

m
∏

j=1

|fi(x− yi)|d
−→y

≤
1

rnm−α

(

∫

B(−→y ,r)

m
∏

j=1

|fi(x− yi)|
s′d−→y

)
1
s′ ( ∫

B(−→y ,r)
|Ω(−→y )|sd−→y

)
1
s

=
1

rnm−α

(

∫

B(−→y ,r)

m
∏

j=1

|fi(x− yi)|
s′d−→y

)
1
s′ ( ∫ r

0

∫

Smn−1

|Ω(ξ)|stmn−1dξdt
)

1
s

= C0 sup
r>0

(

1

rnm−αs′

∫

B(y,r)
· · ·

∫

B(y,r)

m
∏

j=1

|fi(x− yi)|
s′dy1 . . . dym

)
1
s′

≤ C0

m
∏

j=1

sup
r>0

( 1

rn−αs′/m

∫

B(y,r)
|fi(x− yi)|

s′pj
p dyi

)
p

s′pj

≤ C0

m
∏

j=1

[

Mαs′

m

(f
s′pj
p

j )(x)
]

p
s′pj ,

which implies a pointwise estimate

MΩ,α,mf(x) ≤ C0

m
∏

j=1

[

Mαs′pj
mp

(f

s′pj
p

j )(x)
]

p
s′pj .
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The lemma is proved.
When m ≥ 2 and Ω ∈ Ls(Smn−1), we find out MΩ,α,m also have the same properties

by providing the following multi-version of the Theorem 2.

Theorem 4. Let 0 < α < mn, 1 ≤ s′ < mn
α and Ω ∈ Ls(Smn−1). Suppose

∑m
j=1

λj

pj
= λ

p ,

1
pj

− 1
qj

= α
n−λj

and 0 ≤ λj < n− αp′

m .

(i) If p > s′ and
∑m

j=1
n−λj

pj
= mn−λ

p , then the condition mn−λ
p − n−λ

q = α is necessary

and sufficient for the boundedness of the operator MΩ,α,m from product Morrey space
Lp1,λ1(Rn)× . . .×Lpm,λm(Rn) to Lq,λ(Rn). Moreover, there exists a positive constant
C such that for all f ∈ Lp1,λ1(Rn)× . . .× Lpm,λm(Rn)

‖MΩ,α,mf‖Lq,λ ≤ C
m
∏

j=1

‖fj‖Lpj ,λj .

(ii) If p = s′ and
∑m

j=1
n−λj

pj
= mn−λ

s′ , then the condition mn−λ
s′ − n−λ

q = α is necessary

and sufficient for the boundedness of the operator MΩ,α,m from product Morrey space
Lp1,λ1(Rn)× . . .×Lpm,λm(Rn) to the weak Morrey space WLq,λ(Rn). Moreover, there
exists a positive constant C such that for all f ∈ Lp1,λ1(Rn)× . . .× Lpm,λm(Rn)

‖MΩ,α,mf‖WLq,λ ≤ C

m
∏

j=1

‖fj‖Lpj ,λj .

(iii) If p = mn−λ
α ≥ s′, then the operator MΩ,α,m is bounded from Lp1,λ1(Rn) × . . . ×

Lpm,λm(Rn) to L∞(Rn).

Proof.

(i) Sufficiency. If p > s′, by (2) and the Hölder inequality, we get

1

tλ

∫

B(x,t)
|MΩ,α,mf(y)|qdy ≤ C0

1

tλ

∫

B(x,t)

m
∏

j=1

[

Mαs′

m

(f s′

j )(y)
]

q
s′
dy

≤ C0

m
∏

j=1

( 1

tλj

∫

B(x,t)

[

Mαs′

m

(f s′
j )(y)

]

qj
s′

dy
)

q
qj

for all x ∈ Rn and t > 0. Taking the q-th root of both sides, applying Theorem 2
with p/s′ > 1, the fact 1

pj
− 1

qj
= α

n−λj
and f s′

j ∈ Lp/s′,λj , we get

‖MΩ,α,mf‖Lq,λ = sup
x∈Rn,t>0

( 1

tλ

∫

B(x,t)
|MΩ,α,mf(y)|qdy

)1/q

≤ C
m
∏

j=1

sup
x∈Rn,t>0

( 1

tλj

∫

B(x,t)

[

Mαs′

m

(f s′

j )(y)
]

qj
s′
dy
)

1
qj
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= C

m
∏

j=1

∥

∥

∥
Mαs′

m

(f s′
j )
∥

∥

∥

1/s′

Lqj/s
′,λj

≤ C
m
∏

j=1

∥

∥

∥
f s′

j

∥

∥

∥

1/s′

Lpj/s
′,λj

= C
m
∏

j=1

‖fj‖Lpj ,λj ,

which is the desired inequality.

Necessity. Suppose that MΩ,α,m is bounded from Lp1,λ1(Rn)× . . .× Lpm,λm(Rn) to
Lq,λ(R

n). Define fε(x) =
(

f1(εx), . . . , fm(εx)) for ε > 0. Then it is easy to show
that

MΩ,α,mfε(y) = ε−αMΩ,α,mf(εy). (3)

Thus

‖MΩ,α,mfε‖Lq,λ = ε−α sup
x∈Rn,t>0

( 1

tλ

∫

B(x,t)
|MΩ,α,mf(εy)|qdy

)1/q

= ε−α−n/q sup
x∈Rn,t>0

( 1

tλ

∫

B(εx,εt)
|MΩ,α,mf(y)|qdy

)1/q

= ε−α−n/q+λ/q sup
x∈Rn,t>0

( 1

(εt)λ

∫

B(εx,εt)
|MΩ,α,mf(y)|qdy

)1/q

= ε−α−(n−λ)/q‖MΩ,α,mf‖Lq,λ .

Since MΩ,α,m is bounded from Lp1,λ1 × . . . × Lpm,λm to Lq,λ, we have

‖MΩ,α,mf‖Lq,λ = εα+(n−λ)/q‖MΩ,α,mfε‖Lq,λ

≤ Cεα+(n−λ)/q
m
∏

j=1

‖fj(ε·)‖Lpj ,λj

= Cεα+(n−λ)/q
m
∏

j=1

sup
x∈Rn,t>0

( 1

tλj

∫

B(x,t)
|fj(εy)|

pjdy
)1/pj

= Cεα+(n−λ)/q
m
∏

j=1

ε−n/pj sup
x∈Rn,t>0

( 1

tλj

∫

B(εx,εt)
|fj(y)|

pjdy
)1/pj

= Cεα+(n−λ)/q
m
∏

j=1

ε(λj−n)/pj sup
x∈Rn,t>0

( 1

(εt)λj

∫

B(εx,εt)
|fj(y)|

pjdy
)1/pj

= Cεα+(n−λ)/q−(mn−λ)/p
m
∏

j=1

‖fj‖Lpj ,λj ,

where C is independent of ε.
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If (mn − λ)/p < (n − λ)/q + α, then for all f ∈ Lp1,λ1 × . . . × Lpm,λm, we have
‖MΩ,α,mf‖Lq,λ = 0 as ε → 0.

If (mn − λ)/p > (n − λ)/q + α, then for all f ∈ Lp1,λ1 × . . . × Lpm,λm, we have
‖MΩ,α,mf‖Lq,λ = 0 as ε → ∞.

Therefore we get (mn− λ)/p = (n − λ)/q + α.

(ii) Sufficiency. If p = s′, for any β > 0, let ε0 = β, εm = 1 and ε1, ε2, ..., εm−1 > 0 be
arbitrary which will be chosen later. From the pointwise estimate (2), we get

{y ∈ B(x, t) : |MΩ,α,mf(y)| > β}

⊂

m
⋃

j=1

{

y ∈ B(x, t) :
[

Mαs′pj
mp

(f

s′pj
p

j )(x)
]

p
s′pj >

εj−1

t(λ−λj)/pjεj

}

=
m
⋃

j=1

{

y ∈ B(x, t) :
[

Mαpj
m

(f
pj
j )(x)

]
1
pj >

εj−1

t(λ−λj)/pjεj

}

.

Let us now take ε1, ε2, ..., εm−1 > 0 such that

( εj
εj=1

)pjqj
=

[

∏m
j=1 ‖fj‖Lpj ,λj

]q

βq‖fj‖Lpj ,λj

, j = 1, 2, ...,m.

Then, applying Lemma 1 with p/s′ = 1 and the fact f
pj
j ∈ L1,λj , we get

∣

∣

∣

{

y ∈ B(x, t) :
∣

∣MΩ,α,mf(y)
∣

∣ > β
}

∣

∣

∣

≤ C

m
∑

j=1

∣

∣

∣

{

y ∈ B(x, t) : Mαpj
m

(f
pj
j )(x) >

( εj−1

t(λ−λj)/pjεj

)pj}
∣

∣

∣

≤ C

m
∑

j=1

tλj

(t(λ−λj)/pjεj
εj−1

)pjqj
‖f

pj
j ‖

qj

L1,λj

= C

m
∑

j=1

tλ
( εj
εj−1

)pjqj
‖fj‖

pjqj

Lpj ,λj

= C
m
∑

j=1

tλ
[( εj

εj−1

)

‖fj‖Lpj,λj

]pjqj

= C

m
∑

j=1

tλ

(

1

β

m
∏

j=1

‖fj‖Lpj ,λj

)q

= Ctλ

(

1

β

m
∏

j=1

‖fj‖Lpj ,λj

)q

.
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Hence, we obtain the following inequality

‖MΩ,α,mf‖WLp,λ = sup
β>0

β sup
x∈Rn,t>0

( 1

tλ

∣

∣

∣

{

y ∈ B(x, t) : |MΩ,α,mf(y)| > β
}∣

∣

∣

)
1
p

≤ C

m
∏

j=1

‖fj‖Lpj ,λj .

This is the conclusion (ii) of Theorem 4.

Necessity. Suppose that MΩ,α,m is bounded from Lp1,λ1(Rn)× . . .× Lpm,λm(Rn) to
WLq,λ(R

n). From equality (3) we get

‖MΩ,α,mfε‖WLq,λ = sup
τ>0

τ sup
x∈Rn,t>0

( 1

tλ

∫

{

y∈B(x,t):MΩ,α,mfε(y)>τ
}
dy
)1/q

= sup
τ>0

τ sup
x∈Rn,t>0

( 1

tλ

∫

{

y∈B(x,t):MΩ,α,mf(εy)>τεα
}
dy
)1/q

= ε
−n

q sup
τ>0

τ sup
x∈Rn,t>0

( 1

tλ

∫

{

y∈B(x,εt):MΩ,α,mf(εy)>τεα
}
dy
)1/q

= ε
−α−n

q
+λ

q sup
τ>0

τεα sup
x∈Rn,t>0

( 1

(εt)λ

∫

{

y∈B(x,εt):MΩ,α,mf(εy)>τεα
}
dy
)1/q

= ε−α−(n−λ)/q‖MΩ,α,mf‖WLq,λ .

By the boundedness of the operator MΩ,α,m from Lp1,λ1 × . . . × Lpm,λm to WLq,λ,
we have

‖MΩ,α,mf‖WLq,λ = εα+(n−λ)/q‖MΩ,α,mfε‖WLq,λ

≤ Cεα+(n−λ)/q
m
∏

j=1

‖fj(ε·)‖Lpj ,λj

= Cεα+(n−λ)/q
m
∏

j=1

sup
x∈Rn,t>0

( 1

tλj

∫

B(x,t)
|fj(εy)|

pjdy
)1/pj

= Cεα+(n−λ)/q
m
∏

j=1

ε−n/pj sup
x∈Rn,t>0

( 1

tλj

∫

B(εx,εt)
|fj(y)|

pjdy
)1/pj

= Cεα+(n−λ)/q
m
∏

j=1

ε(λj−n)/pj sup
x∈Rn,t>0

( 1

(εt)λj

∫

B(εx,εt)
|fj(y)|

pjdy
)1/pj

= Cεα+(n−λ)/q−(mn−λ)/p
m
∏

j=1

‖fj‖Lpj ,λj ,

where C is independent of ε.
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If (mn − λ)/p < (n − λ)/q + α, then for all f ∈ Lp1,λ1 × . . . × Lpm,λm, we have
‖MΩ,α,mf‖WLq,λ = 0 as ε → 0.

If (mn − λ)/p > (n − λ)/q + α, then for all f ∈ Lp1,λ1 × . . . × Lpm,λm, we have
‖MΩ,α,mf‖WLq,λ = 0 as ε → ∞.

Therefore we get (mn− λ)/p = (n − λ)/q + α.

(iii) Since Ω ∈ Ls(Smn−1) with s′ ≤ p = mn−λ
α , Hölder’s inequality yields that

MΩ,α,mf(x) = sup
r>0

1

rnm−α

∫

B(−→y ,r)
|Ω(−→y )|

m
∏

j=1

|fi(x− yi)|d
−→y

≤ sup
r>0

1

rnm−α

(

∫

B(−→y ,r)

m
∏

j=1

|fi(x− yi)|
pd−→y

)
1
p
(

∫

B(−→y ,r)
|Ω(−→y )|p

′

d−→y
)

1
p′

≤ sup
r>0

1

rnm−α

(

∫

B(−→y ,r)

m
∏

j=1

|fi(x− yi)|
pd−→y

)
1
p
(

∫

B(−→y ,r)
|Ω(−→y )|sd−→y

)
1
s
∣

∣B(−→y , r)
∣

∣

1
p′
− 1

s

≤ C sup
r>0

r
nm( 1

p′
− 1

s
)

rnm−α

(

∫

B(−→y ,r)

m
∏

j=1

|fi(x− yi)|
pd−→y

)
1
p
(

∫

B(−→y ,r)
|Ω(−→y )|sd−→y

)
1
s

= C sup
r>0

r
α−nm

p
−nm

s

m
∏

j=1

(

∫

B(y,r)
|fi(x− yi)|

pjd−→y

)
1
pj (

∫ r

0

∫

Smn−1

|Ω(ξ)|stmn−1dξdt
)

1
s

= C sup
r>0

rα−
nm
p

m
∏

j=1

(

∫

B(y,r)
|fi(x− yj)|

pjdyj

)
1
pj

≤ C sup
r>0

r
α−nm−λ

p

m
∏

j=1

( 1

tλj

∫

B(y,r)
|fi(x− yi)|

pjdyi

)
1
pj

≤ C
m
∏

j=1

sup
r>0

( 1

tλj

∫

B(y,r)
|fi(x− yi)|

pjdyi

)
1
pj

≤ C

m
∏

j=1

‖fj‖Lpj ,λj .

The theorem is proved.
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