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Multi-sublinear rough fractional maximal operator on
product Morrey spaces

Sabir Q. Hasanov

Abstract. We will study the boundedness of multi-sublinear fractional maximal operator Mgq o.m
with rough kernels Q € L*(S"71), 1 < s < 0o on product Morrey spaces. We find for the operator
Maq,qo,m necessary and sufficient conditions on the parameters of the boundedness on product
Morrey spaces LPVA (R™) x ... x LPmAn(R™) to Morrey spaces L& (R™).
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1. Introduction

The classical Morrey spaces, introduced by Morrey [17] in 1938, have been studied
intensively by various authors and together with weighted Lebesgue spaces play an im-
portant role in the theory of partial differential equations. They appeared to be quite
useful in the study of local behavior of the solutions of elliptic differential equations and
describe local regularity more precisely than Lebesgue spaces. See [4, 5, 6] for details. The
boundedness of fractional integral operators on the classical Morrey spaces was studied by
Adams [1], Chiarenza and Frasca et al. [3]. In [3], by establishing a pointwise estimate of
fractional integrals in terms of the Hardy-Littlewood maximal function, they showed the
boundedness of fractional integral operators on the Morrey spaces.

Let R™ be the n-dimensional Euclidean space, and let (R™)"™ = R" x ... x R™ be the
m-fold product space (m € N). For x € R™ and r > 0, we denote by B(x,r) the open

ball centered at z of radius r, and by GB(:z:,r) denote its complement. Let |B(z,r)| be
the Lebesgue measure of the ball B(z,r). Also for @ = (1,...,%y) € R™ and r > 0,
we denote by B(7,r) the open ball centered at @@ € R™" of radius r, and B(Z,r) We
denote by ? the m-tuple (f1, fo, .-\ fm)s ¥ = (W1,...,ym) and dY = dy; - - - dyn.

Definition 1. Let 1 < p < o0, 0 < XA < v, [t]y = min{1,t}. We denote by L, \(R")
the Morrey space, and by W L, \(R™) the weak Morrey space, the set of locally integrable
functions f(z), x € R"™, with the finite norms
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_a
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respectively.

The multilinear theory has been well developed in the past twenty years. In 1992,
Grafakos [9] first study the following multilinear integrals, defined by

m 1

B(T@) = [ i@ 01). o (= )
re Yl

where 6;(i = 1,...,m) are fixed distinct and nonzero real numbers and 0 < 8 < n. When

m=1and Q =1, if let 6; =1, Ig o,m will be the Riesz potential operator I, [19] given by

f(x iy)dy.
R |y[nm

Iaf(x) =

Grafakos proved that the operator I')* is bounded from L,, (R") x...x L, (R™) to Ly(R™)
with 0 < 1/¢ = 1/p1 + ... + 1/pm — B/n < 1, which can be regarded as an extension
result for the classical fractional integral on Lebesgue spaces. In [11, 12, 13| was proved
a certain O’Neil type inequality for dilated multi-linear convolution operators, including
permutations of functions. This inequality was used to extend Grafakoss result [9] to more
general multi-linear operators of potential type and the relevant maximal operators.

In 1999, Kenig and Stein [16] studied the following multilinear fractional integral,

Lo (F)(@) = / f191) - Fmlym) dyrdys . . . dym,

Rm)™ (x—y1,..., ¢ —ym)|Pm @

and showed that I, ., is bounded from product Ly, (R™) x Ly, (R™) x ... x L, (R") to
L,(R™) with 1/¢ = 1/p1 + ...+ 1/pm — B/n > 0 for each p; > 1(i = 1,...,m). If some
pi = 1, then I, ,,, is bounded L, (R™) x Ly, (R™) x ... X Ly, (R™) to Lq o (R™). Obviously,
the multilinear fractional integral I, ,, is a natural generalization of the classical fractional
integral I, = I,1.

Let 1 < s < 00, 2 € L¥(S™ 1) be a homogeneous function of degree zero on R™".
The multi-sublinear fractional maximal operator M, ,, with rough kernels (2 is defined by

Ma,m(?)(x) = sup !

m

0 s [y RO i 0<a <
If m = 1, then Mg, = Mg 1 is the fractional maximal operator with rough kernel 2.
When m = 1 and Q2 = 1, then M, = M 4 is the classical fractional maximal operator.

In this work, we prove the boundedness of the multi-sublinear fractional maximal oper-
ator with rough kernels Mg 4, from product Morrey space LP1AL(R™) x ... x LPmAm (R?)
to LYMNR™), if p > s, 1 < p1,...,pm < 00, 1/g = 1/p1 + ...+ 1/pm — a/(mn — ) and
from the space LPUAY(R™) x ... x LPm2m(R™) to the weak space WLIMNR™), if p = s,



68 Sabir Q. Hasanov

1<pi,...,pm <ocand 1/qg=1/p1 + ...+ 1/py —a/(n — X) and at least one exponent
pi, 1 <1 < m equals one.

Throughout this paper, we assume the letter C' always remains to denote a positive
constant that may vary at each occurrence but is independent of the essential variables.

2. Boundedness of multi-sublinear fractional maximal operator Mg, .,
on product Morrey spaces

In this part, we investigate the boundedness of multi-sublinear fractional maximal
operator Mg o, on product Morrey spaces.

Spanne and Adams obtained two remarkable results on Morrey spaces (see Definition
1.1 of the Morrey spaces in Section 1) for I,. Their results can be summarized as follows.

Theorem 1. [14, 18] (Spanne, but published by Peetre) Let 0 < o <m, 0 < XA < n — ap,
1/g=1/p—a/n and pn/q = X\/p. Then for p > 1, the operators M, and I, are bounded
from LPAR™) to LY*(R™) and for p = 1, I, is bounded from L“»(R™) to W L9*(R™).

Theorem 2. [1, 10/ Let 0 < a <n, 1 <p <n/a, 0 <\ <n/ap.

(i) If p > 1, then condition 1/p — 1/q = a/(n — \) is necessary and sufficient for the
boundedness of the operator My, from LPMR™) to L9AN(R™).

(i) If p = 1, then condition 1 — 1/q = a/(n — ) s necessary and sufficient for the
boundedness of the operator M, from LYM(R™) to W LI (R™).

(iii) If p= "=2, then the operator M, is bounded from LP*(R™) to L>°(R").

If A = 0, then the statement of Theorems 1 and 2 reduces to the well known Hardy-
Littlewood-Sobolev inequality.

When m > 2 and Q € L¥(S™~1), in [15] was find out Mg, also have the same
properties by providing the following multi-version result of the Chiarenza and Frasca [3].

Theorem 3. [15] Let 1 < 5 < oo, Q € L*(S™ 1) be a homogeneous function of degree

zero on R™" p be the harmonic mean of p1,...,pm > 1 and
AR
—:Z—] for 0< X\ <n. (1)
b P

(i) If p > s, then the operator Mg m, is bounded from product Morrey space LP1 1 (R™) x
.o X LPmAm (R™) to LPAR™). Moreover, there exists a positive constant C such that
for all f€ LPYAM(R™) x ... x LPmAm (R?)

m
IMamfller < CTT il o5

j=1
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(it) Ifp = s, then the operator Maq ., is bounded from product Morrey space LPVAL(R™) x
x LPmAm(R™) to weak Morrey space W LPA(R™). Moreover, there exists a positive
constant C such that for all f€ LPLAM(R™) x ... x LPmAm(R")

m
[ Maflwros < CTT 1l o,

j=1

Lemma 1. Let 0 < a < mn, 1 < & < mn/a, Q € L5(S™ 1) be a homogeneous
function of degree zero on R™", p be the harmonic mean of p1,...,pm > 1 and f €

LI (R™) x ... x L{ (R™). Then for any x € R"
m i/ m s/p] /p
Moo f(o) < Co T [Meg (57)@)] " < G I [Mosr, (7)) ™. @)
j=1 m j=1 mp
Q mn—
where Cy = 190y grmn—ty sy

(mn)s

Proof. Since 2 € L*(S™ 1) with s > 1, Holder’s inequality yields that

1 m
i [ 9] Vi e

T

1 S
= pm—a </B(7 H | fi(x — i) d?) (/3(77
= Tam—a (/3(7 H|fz r—y)|° d7>_(/0 /Sm1 |Q(§)\Stm”—1d§dt)i

1TaT)’

1

=Cp SUP< m—cs’ / / H|f2 T =Y | dyl d%n)
r>0 \T B(y,r) B(y,r)

P

m 1 g/ﬁ s'ps
< o ILsup (e [, Vi =l ) ™
] bl

r>0

<C°H{ ar (f

which implies a pointwise estimate

l

7
He]

Mﬂ,a,mf(x) < C(] H |:Mas/pj (f] P )(Jj) 2y
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The lemma is proved.
When m > 2 and Q € L¥(S™ 1), we find out M@ a,m also have the same properties
by providing the following multi-version of the Theorem 2.

—1 m A _ A
Theorem 4. Let 0 < a <mn, 1 <s' < ™% and Q2 € L3(S™ ). Suppose D", i

p!
1 1 _ _«a ap’
= — = and 0 < \j <n—=—.
N sS4 m

(i) If p > s’ and E;nzl n_j’\j = m’;)‘, then the condition %7)‘ - ”Tf)‘ = « 18 necessary
and sufficient for the boundedness of the operator Mg o,m from product Morrey space
LPYAYR™) x ... x LPmAn(R™) to L9N(R™). Moreover, there exists a positive constant
C such that for all f€ LPYM(R™) x ... x LPmAm (R?)

m
IMeamfller < CTT 1AL -

=1

j s’ s’
and sufficient for the boundedness of the operator Mgq o,m from product Morrey space
LPYAY(R™) x ... x LPmAm (R™) to the weak Morrey space W LY(R™). Moreover, there
exists a positive constant C such that for all f€ LPYM(R™) x ... x LPmAm (RM)

g )\ _ . _ _ .
(it) If p=s" and 377", np—? = mnA then the condition ™52 — ”T)‘ = « s necessary

m
HMQ,a,m.mWLq,A <C H HfjHij’Aj'

j=1

(iii) If p = %7)‘ > ', then the operator Mg o.m is bounded from LP1AL(R™) x ... x
LPmAm(R™) to L°(R™).

Proof.
(i) Sufficiency. If p > s', by (2) and the Holder inequality, we get

]. 1 m ,
A fi I < Y M, H s
) /B(x,t) |IMa,a,mf(y)|?dy < Co ) /B(x,t) ]11 [ %( § )(y)] dy

q

<l (31, [t o)’

for all x € R™ and ¢t > 0. Taking the g-th root of both sides, applying Theorem 2

. / 1 1 _ / '\
with p/s’ > 1, the fact il n_o‘/\j and f7 € LP/$" | we get

1 1/q
Moantlins = s ([ MoanS)liay)
x,

zER™ t>0
q] 1

< Cﬁ sup (t% /B(m) [M%(ff/)(y)}?dy)q_j

j=1 zeR™ t>0
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1/s

19575725

- cﬁ | Mo (1)
j=1

<Cﬁ‘
j=1

which is the desired inequality.

Necessity. Suppose that Mg o, is bounded from LP1A1(R?) x ... x LPmAn(R™) to
Lya(R™). Define f.(z) = (fi(ex),..., fm(ex)) for ¢ > 0. Then it is easy to show
that

/
fi

1/5’ m
ey = C LIS s
j=1

MQ,a,mfs(y) = “Mq.a mf(gy) (3)

&y

Thus

_ 1 1/q
Maantilzon == su (55 [ [Maantenlidy)
zeR™,t>0 M B(x 1)

. 1 1/q
=€ fa Sup (t_>‘ /B(Ex ct) ‘Mﬂ,a,mf(y)‘qdy)

zeR™ t>0

1 1/q
— c—a—n/qtr/q _— M f(y)|4d
19 su
o (W /B oy M) )

= N Mgl

Since Mq o,m is bounded from LPoA . x LPmAm to L9 we have

HMQ,a,meLM = "i‘a—i_(n_)\)/q||~/\/‘Q,Omv”bfsHLq»A

m
< OV £ oy

J=1

l ! 1/pj
— Ogot(n=N)/q su 1 / P
E$GR"§>O (tAj B(o.) |fi(ey)| y)

_ @ —n/ps 1 _ 1/p;
— Ogot(n=N)/q HE /P sup (tTg /B( ) | £ (y) P dy) i
ex,et

j=1 zER™ t>0

e T ) /s 1 O\ 1/ps
_ et N T b sup ((EM /B - fiwPdy) "
ex,et

j=1 z€R™ t>0

— et NN T il oo,
j=1

where C is independent of €.
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If (mn —\)/p < (n—A)/q+ a, then for all f € LP1A x ... x LPm*m  we have
[Ma,amfllrar =0as e — 0.

If (mn —\)/p > (n — A\)/q+ a, then for all f € LP1M x ... x LPm*m  we have
HMQ,a,meLq,)\ =0as e — oo.

Therefore we get (mn — \)/p=(n—M\)/q+ a.

(ii) Sufficiency. If p = &', for any 8 > 0, let g = 8, &, = 1 and 1,€2,...,em—1 > 0 be
arbitrary which will be chosen later. From the pointwise estimate (2), we get

{y € B(x,t): |MQ,a,mf(y)‘ > ﬁ}

{ve B s [Mavs, (7] ™ > 5ty

mp

N
s

.
Il
-

[
s

{y € B(z,t): {M%(fjpj)(l‘)} é > 1%)\27)/1;7]5]}

<.
I
—

Let us now take €1,¢9,...,6,m—1 > 0 such that

= , 7=12,....m.

q
( €5 )ijj [HTzl HfjHL;Dj,Aj:|
ﬁqujHLPj»/\]’

Ej:1

Then, applying Lemma 1 with p/s’ = 1 and the fact ff 7 e LY, we get
{y € B@.t) : [ Moamfw)] > 5}

< Ci {v e B,t): Mo (11)(@) > (w—?ig/l%)p}‘
j=1 ’

m . .
t()‘*)‘J)/pjg» Piq; o
Aj J Pj 4
<o§;t(_—5:——) [l
]:
_Cm A(_E5 P pjag
=0 A () I,
j=1
Ui IS P;q;
by ] 747
=3 P[(ZL) 1l |
FECEERR A
m 1 m q
A
SO WAEY (I
j=1 j=1

m q
1
= ot (5 I1 IIfJIIijAJ-) :
j=1
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Hence, we obtain the following inequality

SR

1
[Moamflres =swps sup (5|{y € Bl Maanf)l > 5}|)
> TrER™ >

m
< T 1800
j=1
This is the conclusion (ii) of Theorem 4.

Necessity. Suppose that Mg o, is bounded from LPUAM(R™) x ... x LPmAm(R™) to
W LgA(R™). From equality (3) we get

1 1/q
H-/Vlﬂ,oz,mfs||WL‘17A =SsupT sup <_)\/ dy)
>0 zeR"t>0 t {yeB(x,t):MQ,a7mfs(y)>T}
1 1/q
=sup7T sup (—/\ dy)
7>0 zeR™t>0 13 {yGB(a:,t):Man,mf(ey)>Taa}
_n 1 1/q
=& asupT sup (—)\ dy)
>0 xeR™,t>0 t {yGB(x,st):./\/lg7a,mf(5y)>75a}
—q—n A 1 1/q
=¢ a"asupTe® sup (—)\/ dy)
>0 z€R™ t>0 (5t) {yEB(aet):MQ,a,mf(ey)>75a}

= 570‘7(”7)\)@||Mﬂ,a,mf||WLq»A-

By the boundedness of the operator Mgq q, from LPoA x| x LPmoAm to W LA,
we have

||Mﬂ,a7mf”WLM = €a+(n_)\)/q”MQ7a,meHWL«M

< e N/ TT 115 s
j=1

! 1/p;
— Ogot(n=N)/q U _/ P
311 :BG]Rn2>O (t>\j Blat) |f]( y)| y)

e TT /o 1 O\ Up;
— Ceot(n /\)/qHE P sup (tTg /B( )\fj(y)\pfdy) j
ex,et

j=1 zeR™,t>0

- m B _ 1 , 1/p;
— Cgot(n ,\)/qHé-(/\J n)/p; sup <W /B(w N |fj(y)|?’]dy> !

j=1 z€R™ t>0

= Ceot NN TT | ]| oy
j=1

where C is independent of €.
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If (mn —\)/p < (n—A)/q+ a, then for all f € LP1A x ... x LPm*m  we have
HMQ,a,meWLq.,/\ =0ase—0.

If (mn —\)/p > (n — A)/q+ a, then for all f € LP1M x ... x LPm?m  we have
HMQ,a,meWLq,/\ =0 ase— o0.

Therefore we get (mn — \)/p=(n—M\)/q+ a.

(i) Since Q € L*(S™ 1) with s’ < p = ™2=2 Hslder’s inequality yields that

Moant(@) = swp s [ 107 I 17a = v

r>0

)

< ig%) e (/ H |filx —v;) \pdﬁ) (/ ) ‘9(7)‘p1d7>p

< sup

r>0 TS </ H‘fl T = yi \pd7> (/ \Q(?)\scz?)i
nm(—__)

: Ci&%’ prm=a (/3(7 Hm o |pd7> </B(7,r> arar)

1
7 1
=Csupr® » s (/ |fi(z —y;) |pfd7) / / tm”_ldgdt)s
>0 B(y,r) smn—1

m

nm p]
=Csupr® » [] (/B , |filz — yy)lpfdya)

r>0 j=1
1

nm-—A\ m 1 1
<C o —/ i(x — i) PP dy; )™
<Csupr® 7 ] (t)‘f . | filz — i) y)

r>0 j=1

<0Hsup(ti [ 1= wpa)’

< CH 1Fill 535
j=1

The theorem is proved.
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