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Approximation of B-Continuous and B-Differentiable
Functions by GBS Operators of Bernstein-Kantorovich
Operators of Two Variables

Done Karahan, Aydin Izgi

Abstract. In this study, the generalized Bernstein-Kantorovich type operators of are introduced
and some approximation properties of these operators are studied in the space of continuous func-
tions of two variables on a compact set. The order of approximation using Peetre’s K-functional is
investigated. The GBS operators of the generalized Bernstein-Kantorovich type operators of two
variables are constructed and theorems on approximation of B-continuous and B-differentiable
functions with GBS operators are proved. The degree of approximation in terms of the mixed
modulus of smoothness is investigated. Lastly, comparisons by some illustrative graphics in Maple
for the convergence of the operators to some functions are showed and the error in the approxima-
tion by giving numerical examples are estimated.
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1. Introduction

The research in the present paper is a continuation in the recent article [1] in which
generalized Bernstein-Kantorovich operators of function of two variables defined on A =
[—1,1] x [-1,1] are investigated. In [1], the following problem is tackled:

ok+1l 1 9 d+l 4

n + 1m + 1 ntl i
Dy (fi7,y) = ZZ¢W z,y)  f(tw)didu,  (1.1)
k=0 j—0 2ty -1 o
with
o8T (2,y) = ok (2)el, () (1.2)
and
k 1 (n k n—k

http://journalcam.com 14 © 2011 JCAM All rights reserved.



GBS operators of Bernstein-Kantorovich Operators of Two Variables 15

where f € C(A) for A := [-1,1] x [-1,1] and Dy, ,(f;x,y) (n,m € N) is positive linear
operator.

In [2], for a function f defined on the closed interval [0,1], B, (f;z,y) Bernstein poly-
nomial of order n of the function f was defined. In [3], Korovkin’s theorem arose from the
study of the role of Bernstein polynomials in the proof of the Weierstrass approximation
theorem (see [4]). Later, the various generalizations of Bernstein polynomials were con-
structed and approximation properties of these operators in [5]-[12]. It is also considered
the bivariate form of these operators, for which the degree of approximation is established
in [13])-[19].

The aim of this paper is to get the order of approximation using Peetre’s K-functional,
construct the GBS operators of Bernstein-Kantorovich type operators of two variables and
estimate the degree of approximation in terms of the mixed modulus of smoothness. Then,
we prove theorems on approximation of B-continuous and B-differentiable functions with
GBS operators of Bernstein-Kantorovich type operators of two variables.

The concepts of B-continuity and B-differentiability were introduced by Karl Bogel
([21]). For more information these notations the reader is referred to [22]. It is easily
verified that, under the pointwise operations of scalar multiplication and addition, the set
B(R) of B-continuous functions constitutes a real vector space. Not very much appears to
be known as far as further algebraic or topological properties of this space are concerned.

2. Preliminaries

Now we establish the following lemmas and theorems which will be useful in the next
sections. These lemmas and theorems are proved in [1].

Lemma 2.1. For V(z,y) € A and VYn,m € N, Bernstein-Kantorovich operators (1.1) are
satisfied the following equalities:

Dn,m(l;xyy) = 17 (21)
x
Dn,m(t; xay) =T — n—‘H, (22)
Dn m(u;$,y) =Yy—- La (23)
’ m-+1
3nz? +a22—n—1 3my2—|—y2—m_l

D t2 2’ = 2 —_ 3 2 _ 3 24
n’m( Tu ’x’y) x (n+ 1)2 Y (m+ 1)2 ) ( )

Dy (£ + 15 2, y) = 2 — 23 + 6n%23 + 3na® — 3n2x + 6n + Tnx + 6na?

’ (n+1)?
3 2,3 3 2 2
+ 6m*y° + 3my° — 3m Yy + 6m + Tmy + 6m
+y3 Y Y Y y3 Y Y ’ (2.5)
(m+1)

10032t — 5n2at + 10nz? — 24 + 60322 + 6na?

4 4, _ .4
Dnm’L(t +u ,,I,y)—ff - (7’L+1)4
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10n222 + dnz — 3n2 — 4n — é
(n+1)4

4 10m3yt — 5m2yt 4+ 10my* — y* + 6m3y? + 6my?
(m+1)*

+y

2,2 2 1
10m=y® +4dmy — 3m* —4m — 5
(m+1)* '

(2.6)

Lemma 2.2. If the operator Dy, ,, is defined by (1.1), then for all (z,y) € A and Vn,m €
N,
322 —3n2? +3n+1

Dy ((t — )% 2,y) = 2.7
nﬂTb(( x) 7xay) 3(n + 1)2 9 ( )
3y? — 3my? +3m +1
D — )%z, y) = 2.8
n,m((u y) ,CE,y) 3(m I 1)2 ) ( )
4 n?xt + 8nat + z* + 44na? + 20n22? + 24n’x + 24n?%a3
Dpm((t — )% 2, y) =
7 (n+1)4 2.9)
24na3 + 20nz + 222 + 3n2 + 4n + % ’
(n+1)* ’
4 m2yt + 8my* + y* + 44my? + 20m2y? + 24m?y + 24m?y?
Dyn(u— y)s2.) = v
2.10
+24my3+20my+2y2+3m2+4m+% (2.10)

(m+1)4

Lemma 2.3. For every fized (xo,y) € A there exists a positive constant M;(xo) such that
fOT ne N; Dn,n((t - 5'30)4§5'30ay) < Ml(CCO)’I’L_Q.

Theorem 2.1. Let f € C(A), the the operators Dy, ,,, defined by (1.1) converge uniformly
to f on A C R? as n,m — oo.

Theorem 2.2. For every f € C%(A), we have

Jim n{Dnn(fr2,y) = f(2.9)}

= —xf(z,y) — yfyle,y) + %{(1 — ) i (z,y) + (L= %) f (2, 9)} (2.11)
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3. Petree’s K-functional for D, ,, Bernstein-Kantorovich Operators

Let C2(A) be the space of all functions f € C(A)
belong to C?(A). The norm on the space C2(A) is defined as

(%Jj, 8;; € C(A) fori=1,2

of
£l = 1l E:(hanm> 1% e )
The Peetre’s K-functional of the function f € C(A) is defined by

K(f;0 f 5 §>0
(f50) = It U =dllew +dlgllczay, >0}

holds for all § > 0.

Theorem 3.1. For the function f € C(A), we have

5” m
Do) = fa )l < 2 (15752

_ 1 1
where 0, ;m = max <n+1, m+1>.

Proof. Let g € C?(A). Using the Taylor theorem’s, we have
g(t,u) — g(z,y) = g(t,y) — 9(x,y) + g(t,u) — g(t v)
o t
_ g(x,y)(t_x) +/ (t—g) 2g(¢, y)d§

O 02¢2
N 095;; y) (u—1y)+ /yu(u - n)%ﬁ;;n)dn
_ W(t — )+ /Ot_x(t - 5)7829(22;””’ Y) ge
+ %xy’y)(u —y)+ /Ouy(u —y- 0)7829(;’2; y) dn.

Applying the operator D,, ,, on the above equality, we obtain

dg(z,y)
O

Dum(gi 2,9) — glay)] < \ Dot — ):2.9)]

t—x 32
|Dn,m (/0 (t—x—f)wdf;ﬁﬂay) ‘

————{u%m«u—yxmyn

vy 0%g(x,n +y
+‘Dn,m (/ (U—y—ﬁ)%dnway) ‘
0 n
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From Lemma 2.1 Dy, (t — z;2,y) = — 357 and Dy (v — y;2,y) = — %5, we have
1 ||9g
D ; — <
Iui(02.9) ~ gt lew < g |52 m+J\
1] 9%¢g 9
5|52 am\mwa o),3)
1||9%g 2
alla o Dn,m u—Y);r,Y)|-
3|38, Ponte i)
From (2.7) and (2.8), we get
1 ||0g
IDam(giz.9) = s lew) < 77 |52 H
B =110z C(a) m+1
R
2(n + 1) || 022 {[ o a) (m +1)||0y? C(A)
- n+1'm+1 9z || o) 8y C()

g
0z2

0%g

*' ay

C(M)

_ 11 . c 1
where 9y, ,, = max <n—+1, m—+1> Since Dy, p, is linear operator, we have

C(A) ‘
< dnmllglcz(a)

| Dnm(f52,9) — f(,9)llo@i) < 1Dnm(f52,9) — Dom(gi 2, 9)llca)
+ 1Dy g3 2, y) — 9(@,9)low) + I1f — Dl
<N = 9lle@) [ Dnm (152, 9)]
+ 1 Dnm (952, 9) — 9(z y)lcw) + I1f — Dllow)

(M) :

Taking the infimum on the right hand side over all g € C?(A), the proof is completed. [

From (3.1) inequality, we obtain

HDmAﬁLw—f@wwam§2<W—ywam+

4. Construction of GBS Operator of D, ,, Bernstein-Kantorovich
Operators

Now, we recall some basic definitions and notations in [21]. Let X and Y be compact
real intervals. Let A, .y f[t, u; z,y] be mixed difference of f defined by A, ) f[t,u; 2, y] =
flz,y) — fz,u) — f(t,y) + f(t,u), V(z,y), (t,u) € X X Y.
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A function f;X xY — R is called a B-continuous (Bogel continuous) at a point
(xo,y()) e X xYif

lim JAY o, Yo; x,y] =0
(o) g gy e T 70,903 23]

for any (z,y) € X xY. The function f; X xY — R is B-bounded on X x Y if there exists

M > 0 such that
A flt w2, y)| < M

for every (z,y),(t,u) € X xY. Also, if X x Y is a compact subset of R? then each
B-continuous function is a B-bounded function on X x Y — R. In this paper Bg(A)
denotes all B-bounded functions on X x Y — R. We denote by Cp(A) , the space of all
B-continuous functions on X x Y. The sup-norm ||.||o defined on these spaces.

Let R : Cp(A) — Bp(A) be a linear positive operator then the Generalized Boolean
Sum (GBS) operator associated is defined by

Rn,m(f(tau);xay) = Dn,m(f(t’y) + f(x’u) - f(t,u);x,y)

for every f € Cg(A), for each (x,y) € A and m,n € N. More precisely, the GBS operator
of Dy, ,n, Bernstein-Kantorovich Operator is defined as follows;

Ry f32,y) = nJrlerlZZqﬁn% (,9)

k=0 5=0

(4.1)
2211_1 2m+1 -1
X [f(ty) + fz,u) — f(t,u)]dtdu
2-k__1 JoJi__1q
n+1 m+1

where f € Cp(A) and the operator R, ,, is well-defined from the space Cg(A) on itself.
The mixed modulus of smoothness of f € Cg(A) is defined as

Wmixed(f;51a52) = Sup{A(x,y)f[t,u;x,y] : |$ - 7§| < o1, |y - u| < 52}

for every (z,y), (t,u) € A and for any 1,02 > 0 with wyizeq @ [0,00) X [0,00) — R. The
basic properties of wyizeq Were obtained by Badea et al. in [20] which are similar to
properties of usual modulus of continuity.

The function f; X x Y — R is B-differentiable on X x Y if the limit

. A(m,y)f[%,yo;%y]
lim
(@y)—=(@o,90) (T — 20)(y — Yo)

exists and is finite. Then, f : X x Y C R? — R function is B-differentiable at the
point (zg,y0) € X x Y and is denoted by Dy f(x0,y0) := Dp(f;z0,y0). The space of
all B-differentiable functions will be denoted Dp(X X Y). In this paper, the space of
B-differentiable functions is denoted by Dp(A) on A.

We shall estimate the rate of convergence of the sequences of the operators (4.1) to
f € Cp(A) using the mixed modulus of smoothness. For this, we use the well-known
Shisha-Mond theorem for B-continuous functions established by Badea and Cottin [20].



20 Done Karahan, Aydin Izgi

Theorem 4.1. For Vf € Cg(A) at each point ¥(z,y) € A, R, GBS operator verifies
the following inequality

1 1
R (f30,) — £(229)] < Amizea (f; . m) | (4.2)

Proof. Using the definition of wy,izeq(f; 91, 02) function and for A;, Ay > 0
Wrnized (3 A101, Aad2) < (14 A1)(1 + A2)wmizea(f; 01, 02)
inequality, we obtain

|A(x,y)f[t,u;x,y]| < Wmized (fa |t - $|, |u - y|)

e i 4.3
< |1+ M 1+ u Wmixed(f§61’62) ( )
61 62

for ¥(z,y), (t,u) € A and 61,d2 > 0. From definition of A, . f[t,u;x,y] function, we can
write

f(x,u) + f(t7y) - f(tvu) = f(l',y) - A(x,y)f[t7u;x7y]'

Applying the D,, ,,, GBS operator to the above equality and using the (4.1) expression, we
obtain

Rn,m(fvmay) = f(x7y)Dn,m(17may) - Dn,m (A(m,y)f[t7uax7y]7way) .
Since Dy, 1 (1;2,y) = 1, we get
Rn,m(fax7y) - f(xay) = _Dn,m (A(x,y)f[tauvmay]ax7y) .

If we take the absolute value of both sides in this equality, we can write

\Rn,m(f;x,y) - f(ﬂc,y)! < Dn,m (‘A(m,y)f[tvu;xvy”;xvy) :

Considering the inequality (4.3), we get

‘Rn,m(f;way) - f(xay)’

t — —
< Dn,m <| <1 + %) <1 + |u62 y|> Wmized (f;61,62)‘;x,y)> .

Applying the Cauchy-Schwartz inequality to right side of this inequality, we obtain

R = 1) < [ Dun(1i,0) + 5/ Dl (€= 22i,0)
1

1
+5_2 \/Dn,m((u B y)Q; z, y) (4'4)

1
e — _ 2. . 9.
5 \/Dn,m((t )22, 9) D1 — y)2 7, y)

X Wmized (fa 51,62) .
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From (2.7) and (2.8) equalities in the Lemma 2.2, for all (z,y) € A, we obtain

1
Dm((t = 2)%52,y) < =
and 1
Dy (v — y)2§ r,y) < mal
Choosing the §; = \/%H and dy = \/%H, from (4.4), we reach the desired inequality. O

The following theorem is an important theorem related to order of approximation for
the B-differentiable functions was proved by [25].

Theorem 4.2. Let f € Dp(A) and Dpf € Bp(A). Then for all (x,y) € A, the following
inequality is true:

7

|Rnm (f32,9y) — fz,y)] < CEDICES) (IDB fllo )
v (Po )
Wmized BJ; \/n——i-l’ \/m——i—l .
Proof. Since f € Dp(A), for x < { <t and y < n < u, we have
A(:v,y)f[t7 u; T, y] = (t - x)(u - y)DB(§7 77) (46)

It is clear that,

Applying B-differentiate to both sides of this equality, we obtain

Dpf(&n) = Ay Dyslemz,y] + Def(&,y) + Dpf(x,n) — Dpf(2,y).
Since Dpf € Bp(A), by (4.6), we can write

| Di,m (A(x,y)f[t,umy]; x7y) ’

= [Dym ((t = 2)(u —y)Dpf (€ n);7,y) |

< Do ([t = zl|u — yl| Ay P F(E 0|5 2,9)

+ Dy (It = 2l|lu — y[ (IPBf(& 9)| + P f(2.n)| + D fz,y)]) s 2, y)
< Dy ([t — 2||u = ylwmized (DB f; 1€ — 2|, 10 — yl; 2, v))

+ 3 DB fllooDnym (It — z|lu — yls2,y) .

Since the mixed modulus of smoothness wy,;zeq 1S Nnon-decreasing, we have

Wmized (DBf; |£ - $|, |77 - yl;x,y)
< Wmiged (DBf; |t - $|, |u - yI;x,y)

< 1_*_@ 1+u wmimed(DBf;(Slaé?)'
(51 52
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Using the above inequality and the linearity of D,, ,,, operator, we have

< [Dnn (It = zl|u — yl;z,y)

1
5D ([t = 2l(u = y)% 2,9)
2
1
+@Dn7m ((t — x)Q(u — y)2; x, y) wmimed(DBf; 01, 52)

+ 3P fllooDnym (It — zl|lu —yl;2,9) .
Applying the Cauchy-Schwartz inequality to right side of the above equality, we obtain

Run(fi2) = £ < [P (= 2P = )% ,0)

+5l2\/Dn,m ((t = 2)*(u = y)hs2,y)

1
+@Dn,m ((t - :c)4(u - y)4; x, y):| Wmia:ed(DBf; 51a 52)
+ 315 flloor/ Do (£ — 2)2(u — )% 2,).
From D, , ((t - z)% 2, y) < n%_l and D,, , ((u — )2z, y) < mL—i-l inequalities, for

(z,y),(t,u) € A, a,b € {1,2}, we get

Dym <(t —2)*(u—y)*; =, y) = Dy ((t = 2)**;2,9) Dnm <(u — )z, y) :

Choosing §; = \/%H and dg = \/%H, we have
7
| Ry (f32,y) — fz,9)] < (IDB fllo

(n+1)(m+1)

1 1
; Drf; .
+wmlmed< va\/n—_Hy m+1>>

So the proof is completed. O

In order to improve the measure of smoothness, the mixed K-functional is introduced
in [23]. For f € Cp(A), we can define the mixed K-functional by

Kmizea(f;01,02) = infh{Hf — 91— 692 — hllec + tl”Dzogluoo

917927

0,2 2.2 (4.7)
+t2|| D" g2lloo + tite|| D5 Ao }

where g1 € C'?B’O, g2 € C%’Q, h e C%’Q and for 0 < a,b < 2, the space C%’b denotes the space
of the functions f € Cp(A) with continuous mixed partial derivatives D3°f, 0 < r < a,
0 < s <b. The partial derivatives of the function f € Cp(A) are following:

Du () = DRt = timy 2T (02100
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- Ay (t:[u.3)

. 0 1 _ y ) (U Y
where A, f (t, o] u) = f(z,u) — f(t,u) and Ayf (t[u,5]) = f(ty) — f(t,u). The second
order partial derivatives are analogous to the ordinary derivatives. For example, the
derivative of D, f(t,u) with respect to the variable y at point (¢,u) is defined by

DDy f(tu) = DU DL(fit, ) — lim 2uPed) (G [0 y)
y&x s S (y_u) .

Now we give the order of approximation of R, ,, operator to the function f € Cg(A)
function in terms of the mixed K-functional.

Theorem 4.3. For Vf € Cg(A), Ry, GBS operator verifies the following inequality:

’Rn,m(f§xay) - f(x,y)\ < QICmmed <f’ 2(n1_|_ 1)’ 2(m1_|_ 1)> ’

Proof. From Taylor formula for g; € C2°, we can write (sce [21])

t

g1 (t7 u) =g (1’, y) + (t - x)thogl (1’, y) + / (t - g)Déogl(§7 y)d§

xT

Applying R, ,, GBS operator to the both sides of the above equality, for Ry, ,,((t —
x);z,y) =0, we have

t

Ruym(9132,y) = 91(x,y) + Rum (/ (t — &)D% g1(€,y)de; =, y> :

From definition of R, ,, GBS operator, we get

| Rum (915 2.9) = 91(2,9)| = | Do ( / (¢ - ) [D20n(€.9) — DEos 6] ds;m,y) |

<Dnm<\/ [t = €| D5 91 (6 9) — §°g1<§,u)|d§;x,y\)

HDBmH m ((t—2)%z,y)

IN

IN

L al

Similarly, for go € Cg,’z function, we have
u
| Ry (9232, y) — g2(2,y)| = (Dn,m (/ (u—n) [9%292(56,?7) - 9%292(%77)] dn;x,y> ‘
y

u
0,2 0,2
< Dym (‘/ lu —n||Dg"g2(x,n) — Dj gQ(t,n)\dn;w,yD
Y

HDBwH m ((w—y)%2,y)

D?QH

IN

| /\

m+1H
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Now, for h € 0123’2 function, we can write
1,0 0,1
h(t,u) = h(z,y) + (t — 2)Dg h(z,y) + (u — y)Dg h(z,y)

+(t— o) - )Py () + [ (6~ ODERE )
+ [ = nDn i+ [ (=) - ODEbE e
n / (6 — ) (u— n)DY2h(a, )y + / / (t — €)(u — )DEh(E, n)dnd.

Taking into account the definition of the R, ,, GBS operator and by using R, ,((t —
x);z,y) =0 and Ry, ((u —y);z,y) = 0, we obtain

Rasultiz) = ) = Do ([ "¢ = 0= mDRHE i) |

< Do (| [ [ 0= 00— incc ]z

t U
< Dpm t — &lju — nl|DEh(E, n)| dndé; >
([ [ 1=t —niinie mlandese.
1
< D5 Rl Do (8 = 2)*(u )52, y)
1 1 2,2
Egm“% h|

So, for f € Cp(A), we get

| R (f52,9) = f(2,9)| < |(f — g1 — 92 — h) (@2, 9)| + |(91 — Rnmg1) (2, 9)]
‘|‘{( - nm92 T,y {"’{(h_Rn,mh)(xay){
+ |Rom (f — g1 — 92 — h)'x y) |

SQHf—gl—QQ—hHooJr H B ng

— D5 el [2rad

1
n+1)(m+1)

1
2 (Hf—g1 — 2~ e+ 5t D3l

m+1

1 0,2

1
m“ 5 920l + 3

1
+ 4m||922h“w> :

Taking the infimum over all g; € Cé’o, g2 € Cg,’z and h € C%’Q functions, the desired result
is obtained. O
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5. Numerical examples for D, ,, and R, ,, operators

Example 1. For n =5, m =5, the comparison of convergence of Dy, ,(f;x,y) Bernstein-
Kantorovich operator (yellow) and Ry, m(f;x,y) GBS operator (red) to f(z,y) = (1—x2—
y2)e” =¥ function (blue) is illustrated in Fig.1.

- flx.y)
- Ree(fix»)
D55 (f:x. %)

Figure 1: The convergence of the Dy m(f;2,y) (yellow) and Ry . (f;2,y) GBS operator (red) to f(z,y) =
1—az%— yQ)e””z*y2 (blue).

Ezample 2. For n =5, m = 5, the comparison of convergence of D,, ,,(f;x,y) Bernstein-
Kantorovich operator (yellow) and Ry, »,(f;x,y) GBS operator (red) to f(x,y) = (1+z+
y)cos(x + y) function (blue) is illustrated in Fig.2.

Now we investigate the ratio of rate of convergences of Ry, »,(f;z,y) GBS operator and
Dy, (f; 2, y) Bernstein-Kantorovich operator to f function. Since we observe that the rate
of convergence of Ry, . (f;x,y) is better than the operator D,, ,,,(f;x,y), the following limit
is true:

im ‘Rn,m(f;.%',y) _ f(xay)‘ -0
:VLL_—:ZZ |Dn,m(f;x7y)_f(x7y)| .

Table 1. is a table of numeric values of ngzgizg:ﬁzg;‘\
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By g
. Bes(fix,y)

Dss(fix.y)

Figure 2. The convergence of the Dy n(f;x,y) (yellow) and Ry m(f;z,y) GBS operator (red) to f(z,y) =
(1+ x4+ y)cos(x +y) (blue).

. [Bn,m(fiz,y)—f(z,y)]| —
Table 1: The error rate of jFrateZri=r2is for flz,y) = 1+ 2+ y)cos(z + y).

n=m AN €2
r=y=-0.9 z=y=09
2 1.34657587 0.1734633994
9 0.2981842558 0.06920811806
10 0.1287749154 0.03370763366
50 0.02296071511 0.0064696935599
100 0.01138421001 0.003212264255
200 0.005401342461 0.001600276959
500 0.006587724028 0.0002066270426
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