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Analysis of the Stability of Periodic Linear Difference
Equation Systems on Extended Floating-Point Numbers
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Abstract. The computation errors come out in the computers (uses floating point numbers)
during calculations of mathematical problems. Therefore, the floating point numbers affect the
results directly. In [1] and [2], the computation of fundamental matrix analyzed for the stability
of periodic linear difference equation systems. These works used Wilkinson Model and Godunov
Model. In this study, the computation of fundamental matrix has been studied on extended floating
point numbers. The results have been applied to Schur stability of the system of linear difference
equations with periodic coefficients. Furthermore, the effect of floating point arithmetics has been
showed on numerical examples.
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1. Introduction

The computations are performed by floating point arithmetics in the computers. The
numbers required in the computations are taken into memory and processed in accordance
with the floating-point number structure. Many approaches have been introduced for the
use of floating-point numbers ([17, 21, 5, 7, 12, 23]). In 1985, a standard was created
by the IEEE (Institute of Electrical and Electronics Engineers) and ANSI (American
National Standards Institute) for floating point numbers. This standard, called ANSI /
IEEE Standard 754-1985, sets out the main principles of floating point numbers, based
on binary systems. Errors are occurred during loading the real numbers to memory as
floating-point numbers. The effect of these errors to computations has are examined by
numerous researchers.

In this study, the computation of fundamental matrix will be used to analyze the
stability of periodic linear difference equation systems. Therefore, the computation of
fundamental matrix should be examined on floating-point numbers. In [1], the effect
of computation error of monodromy matrix was examined using Wilkinson Model. Also,
Godunov Model [2] has been used to determine the effect of computation error in applying
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to stability of periodic systems. Extended Floating Point Numbers (Extended Format)
will be used to examine the effect of a computed fundamental matrix for analyzing stability
in this study.

1.1. Fundamental Matrix of Periodic Linear Difference Equation System

The system (1.1) and for given x0 ∈ RN initial value

xn+1 = Anxn, x0 − initial vector, n ≥ 0 (1.1)

is called linear difference-Cauchy problem with periodic coefficients. If I is an identity
matrix then,

Xn+1 = AnXn, X0 = I, n ≥ 0 (1.2)

is a solution of Cauchy problem. In here,

Xn =
n−1∏
j=0

Aj = An−1An−2 · · ·A0, and XT =
T−1∏
j=0

Aj = AT−1AT−2 · · ·A0, (1.3)

Xn is called fundamental matrix of the system (1.1) and XT is called as monodromy matrix
of the system (1.1) [14, 8, 9, 15, 10, 11]. The solution of the system (1.1) is

XkT+m = XmX
k
Tx0 (1.4)

where x0 ∈ RN inital value xn = Xnx0, n = kT +m , 0 ≤ m ≤ T − 1 [8, 9].

1.2. Extended Floating-Point Numbers (Extended Format, FE)

The set

F = F (γ, p−, p+, k) (1.5)

where p− ∈ Z−, k, p+ ∈ Z+ for p− ≤ p ≤ p+, p ∈ Z, is called as the set of computer
numbers or set Format [17, 21, 14, 16, 3, 20, 22]. In [17, 14, 18], the operator

fl : D→ F, f l(z) = z (1 + α) + β; ‖α‖ ≤ u, ‖β‖ ≤ v, αβ = 0 (1.6)

converts the elements of D = [−ε∞, ε∞] ∩ R to floating point numbers, where

u =

{
ε1
2 , rounding

ε1, chopping
, v =

{
εd0
2 , rounding

εd0, chopping
. (1.7)

In (1.7), εd0 = γp−−k, ε1 = γ1−k, ε∞ = γp+
(

1− 1
γk

)
are defined.

FE has been called Extended Format that is characterized by the parameters εd0, ε1, ε∞
on F.
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A matrix A ∈ MN (D) can be stored to memory by fl(A) = A+ ψ. ψ is storing error
of matrix A in FE ,

||ψ|| ≤ u
√
N ||A||+ vN. (1.8)

A multiply of matrix A, B ∈MN (FE) can be stored to memory by fl(AB) = AB+ϕ.
ϕ is computation error of AB,

||ϕ|| ≤ u
√
N ||AB||+ vN. (1.9)

Linear difference Cauchy problem is written

fl(An−1Yn−1) = Yn = (An−1 + ψn−1)Yn−1 + ϕn;Y0 = I, n = 1, 2, 3, ... (1.10)

where Yn = fl(An−1Y n− 1) is the computation of fundamental matrix Xn, A ∈MN (D).
It is clear that matrix ψn is the storing error of matrix An , matrix ϕn is computation

error of (An−1 + ψn−1)Yn−1, ϕ1 = 0.
The solution of (1.10) can be written

Y (n) =

n−1∏
i=0

(Ai + ψi) +

n∑
k=1

(

n−1∏
i=k

(Ai + ψi))ϕk. (1.11)

2. Computation of Fundamental Matrix

In this section the computation of fundamental matrix Xn will be examined on floating
point arithmetic in FE .

Let us investigate the upper bound of computation error matrix ϕn given by (1.10)
according to

||ψn−1|| ≤ u
√
N ||An−1||+ vN (2.1)

and
||ϕn|| ≤ u

√
N ||An−1 + ψn−1||||Yn−1||+ vN, Y0 = I, n = 2, 3, ... (2.2)

where An ∈MN (D), ψn is placement error matrix and u is introduced in (1.7).

Theorem 2.1. The following inequality holds:
||ϕn|| ≤ u

√
N(1 + u

√
N)n−2[(1 + u

√
N) max0≤j≤n−1 ||Aj ||+ vN ]n

+uvN3/2
∑n−1

j=2 (1 + u
√
N)n−j−1[(1 + u

√
N) max2≤k≤n−1 ||Ak||+ vN ]n−j + vN ,

where ϕn is given by (2.2) for n = 2, 3, ....

Proof. For n = 2, 3, ..., consider
||ϕn|| ≤ u

√
N(||An−1||+ ||ψn−1||)||Yn−1||+ vN ; ||Yn|| ≤ (||An−1||+ ||ψn−1||)||Yn−1||+

||ϕn||
from inequality (2.2). If we write Yn−1 and ϕn−1 in inequality (2.2) we obtain
||ϕn|| ≤ u

√
N(||An−1||+ ||ψn−1||)[(||An−2||+ ||ψn−2||)||Yn−2||+ ||ϕn−1||] + vN

≤ u
√
N(||An−1||+ ||ψn−1||)(||An−2||+ ||ψn−2||)||Yn−2||

+u2N(||An−1||+ ||ψn−1||)(||An−2||+ ||ψn−2||)||Yn−2||
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+u
√
N(||An−1||+ ||ψn−1||)vN + vN

= u
√
N(1 + u

√
N)(||An−1||+ ||ψn−1||)(||An−2||+ ||ψn−2||)||Yn−2||

+u
√
N(||An−1||+ ||ψn−1||)vN + vN .

Let’s continue to iterate in the same way. So we obtain

||ϕn|| ≤ u
√
N(1 + u

√
N)n−2(||An−1||+ ||ψn−1||)(||An−2||+ ||ψn−2||)...(||A0||+ ||ψ0||)

+uvN3/2
n−1∑
j=2

(1 + u
√
N)n−j−1

n−1∏
r=j

(||Ar||+ ||ψr||) + vN. (2.3)

Since ||Ai||+ ||ψi|| ≤ (1 + u
√
N)||Ai||+ vN , we have

||ϕn|| ≤ u
√
N(1 + u

√
N)n−2[(1 + u

√
N) max0≤j≤n−1 ||Aj ||+ vN ]n

+uvN3/2
∑n−1

j=2 (1+u
√
N)n−j−1[(1+u

√
N) max2≤k≤n−1 ||Ak||+vN ]n−j+vN .

Corollary 2.1. If An ∈MN (F ) then it is clear that the placement error ψn = 0. In this
case, it can be easily noticed that the inequality (2.3) is same as the inequality in [2].

Theorem 2.2. Let Yn be the matrix defined by (1.10), then the following inequality holds:

||Yn|| ≤ (1 + u
√
N)n−1[(1 + u

√
N) max0≤j≤n−1 ||Aj ||+ vN ]n

+vN
∑n

j=2(1 + u
√
N)n−j [(1 + u

√
N) max2≤k≤n−1 ||Ak|| + vN ]n−j, n =

1, 2, 3, ....

Proof. For n = 2, 3, ..., let us write (2.2) in

||Yn|| ≤ (||An−1||+ ||ψn−1||)||Yn−1||+ ||ϕn||.
Thus, we obtain

||Yn|| ≤ (||An−1||+ ||ψn−1||)||Yn−1||+ ||ϕn||
≤ (||An−1||+ ||ψn−1||)||Yn−1||+ u

√
N(||An−1||+ ||ψn−1||)||Yn−1||+ vN

= (1 + u
√
N)(||An−1||+ ||ψn−1||)||Yn−1||+ vN

If we continue the iteration, we have

||Yn|| ≤ (1+u
√
N)(||An−1||+||ψn−1||)[(1+u

√
N)(||An−2||+||ψn−2||)||Yn−2||+vN ]+vN

= (1 + u
√
N)2(||An−1||+ ||ψn−1||)(||An−2||+ ||ψn−2||)||Yn−2||

+(1 + u
√
N)(||An−1||+ ||ψn−1||)vN + vN

...

||Yn|| ≤ (1 + u
√
N)n−1(||An−1||+ ||ψn−1||)(||An−2||+ ||ψn−2||)...(||A0||+ ||ψ0||)

+vN
∑n

j=2(1 + u
√
N)n−j

∏n−1
r=j (||Ar||+ ||ψr||).

Since ||Ai||+ ||ψi|| ≤ (1 + u
√
N)||Ai||+ vN , the inequality

||Yn|| ≤ (1 + u
√
N)n−1[1 + u

√
N) max0≤j≤n−1 ||Aj ||+ vN ]n

+vN
∑n

j=2(1 + u
√
N)n−j [(1 + u

√
N) max2≤k≤n−1 ||Ak||+ vN ]n−j

is obtained and this is the inequality that is sought.

Theorem 2.3. The inequality

||Yn −Xn|| ≤
∑n

k=1

(
n
k

)
(max0≤j≤n−1 ||Aj ||)n−k(u

√
N max0≤j≤n−1 ||Aj ||+ vN)k

+
∑n

k=2[||An−1||...||Ak+1||||Ak||
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+
∑n−k

r=1

(
n−k
r

)
(max0≤j≤n−1 ||Aj ||)n−k−r(u

√
N max0≤j≤n−1 ||Aj || +

vN)r]

×[u
√
N(1 + u

√
N)k−2[(1 + u

√
N) max0≤j≤k−1 ||Aj ||+ vN ]k

+uvN3/2
∑k−1

j=2(1+u
√
N)k−j−1[(1+u

√
N) max0≤j≤n−1 ||Aj ||+vN ]k−j +vN ]

holds, where An ∈MN (D), Xn is the fundamental matrix and Yn is the computed funda-
mental matrix given by (1.10).

Proof. From (1.11), we can write

||Yn −Xn|| ≤ ||
∏n−1
i=0 (Ai + ψi)−

∏n−1
i=0 Ai||+

∑n
k=2 ||

∏n−1
i=k (Ai + ψi)||||ϕk||,

where Xn is fundamental matrix and Yn is the computed fundamental matrix. For the
expressions ||

∏n−1
i=0 (Ai + ψi) −

∏n−1
i=0 Ai|| and ||

∏n−1
i=k (Ai + ψi)||, we obtain the following

inequalities, respectively:

||
∏n−1
i=0 (Ai + ψi)−

∏n−1
i=0 Ai|| = ||(An−1 + ψn−1)...(A1 + ψ1)(A0 + ψ0)−An−1...A1A0||

= ||An−1...A1A0 +An−1...A1ψ0 + ...+ ψn−1...ψ1ψ0 −An−1...A1A0||
≤ ||An−1...A1ψ0||+ ...+ ||ψn−1...ψ1ψ0||
≤ (||An−1||...||A1||||ψ0||) + ...+ (||ψn−1||...||ψ1||||ψ0||)
≤ n(max0≤j≤n−1 ||Aj ||)n−1(max0≤j≤n−1 ||ψj ||)+n2−n

2 (max0≤j≤n−1 ||Aj ||)n−2(max0≤j≤n−1 ||ψj ||)2
+...+ n(max0≤j≤n−1 ||Aj ||)(max0≤j≤n−1 ||ψj ||)n−1 + (max0≤j≤n−1 ||ψj ||)n

=
∑n

k=1

(
n
k

)
(max0≤j≤n−1 ||Aj ||)n−k(max0≤j≤n−1 ||ψj ||)k,

||
∏n−1
i=k (Ai + ψi)|| = ||(An−1 + ψn−1)...(Ak+1 + ψk+1)(Ak + ψk)||

= ||An−1...Ak+1Ak +An−1...Ak+1ψk + ...+ ψn−1...ψk+1ψk||
≤ ||An−1...Ak+1Ak||+ ||An−1...Ak+1ψk||+ ...+ ||ψn−1...ψk+1ψk||
≤ ||An−1...Ak+1Ak||+ (||An−1||...||Ak+1||||ψk||) + ...+ (||ψn−1||...||ψk+1||||ψk||)
≤ ||An−1...Ak+1Ak||+ (n− k)(max0≤j≤n−1 ||Aj ||)n−k−1(max0≤j≤n−1 ||ψj ||)

+ (n−k)−(n−k−1)
2 (max0≤j≤n−1 ||Aj ||)n−k−2(max0≤j≤n−1 ||ψj ||)2 + ...

+(n − k)(max0≤j≤n−1 ||Aj ||)(max0≤j≤n−1 ||ψj ||)n−k−1 +
(max0≤j≤n−1 ||ψj ||)n−k

= ||An−1...Ak+1Ak||+
∑n−k

r=1

(
n−k
r

)
(max0≤j≤n−1 ||Aj ||)n−k−r(max0≤j≤n−1 ||ψj ||)r.

Hence, the inequality

||Yn −Xn|| ≤
∑n

k=1

(
n
k

)
(max0≤j≤n−1 ||Aj ||)n−k(max0≤j≤n−1 ||ψj ||)k+

n∑
k=2

(||An−1||...||Ak+1||||Ak||+
n−k∑
r=1

(
n− k
r

)
( max
0≤j≤n−1

||Aj ||)n−k−r( max
0≤j≤n−1

||ψj ||)r)||ϕk||

(2.4)

holds. If the upper bound of ||ϕn|| from 2.1and the inequality (2.1) substitute in (2.4), we
have

||Yn −Xn|| ≤
∑n

k=1

(
n
k

)
(max0≤j≤n−1 ||Aj ||)n−k(u

√
N max0≤j≤n−1 ||Aj ||+ vN)k

+
∑n

k=2[||An−1||...||Ak+1||||Ak||+∑n−k
r=1

(
n−k
r

)
(max0≤j≤n−1 ||Aj ||)n−k−r(u

√
N max0≤j≤n−1 ||Aj ||+ vN)r]

×[u
√
N(1 + u

√
N)k−2[(1 + u

√
N) max0≤j≤k−1 ||Aj ||+ vN ]k
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+uvN3/2
∑k−1

j=2(1 + u
√
N)k−j−1[(1 + u

√
N) max0≤j≤k−1 ||Aj ||+ vN ]k−j +

vN ].

Theorem 2.4. The inequality

||Yn −Xn|| ≤
∑n

k=2[(
∏n−1
j=k ||Aj ||)

×((u
√
N ||Ak−1|| + vN)(1 + u

√
N)k−2[(1 + u

√
N) max0≤j≤k−2 ||Aj || +

vN ]k−1

+vN
∑k−1

j=2(1 + u
√
N)k−j−1[(1 + u

√
N) max2≤i≤k−2 ||Ai||+ vN ]k−j−1

+u
√
N(1 + u

√
N)k−2[(1 + u

√
N) max0≤j≤k−1 ||Aj ||+ vN ]k

+uvN3/2
∑k−1

j=2(1+u
√
N)k−j−1[(1+u

√
N) max2≤i≤k−1 ||Ai||+vN ]k−j+

vN)]

+||An−1||||An−2||...||A1||(u
√
N ||A0||+ vN)

holds, where An ∈MN (D), Xn is the fundamental matrix and Yn is the computed funda-
mental matrix given by (1.10).

Proof. Consider the Cauchy problem Yn − Xn = An−1(Yn−1 − Xn−1) + ψn−1Yn−1 + ϕn;
Y0 −X0 = 0. The solution of this Cauchy problem is obtained by iteration as

Yn −Xn = An−1(An−2(Yn−2 −Xn−2) + ψn−2Yn−2 + ϕn−1) + ψn−1Yn−1 + ϕn.
Let us edit by iterating this solution as follows:

Yn −Xn = An−1An−2(Yn−2 −Xn−2) +An−1ψn−2Yn−2 + ψn−1Yn−1 +An−1ϕn−1) + ϕn
= An−1An−2(An−3(Yn−3 − Xn−3) + ψn−3Yn−3 + ϕn−2) + An−1ψn−2Yn−2 +

ψn−1Yn−1
+An−1ϕn−1 + ϕn

= An−1An−2An−3(Yn−3 − Xn−3) + An−1An−2ψn−3Yn−3 + An−1ψn−2Yn−2 +
ψn−1Yn−1

+An−1An−2ϕn−2 +An−1ϕn−1 + ϕn
...

Yn−Xn = An−1An−2An−3...A0(Y0−X0) +An−1An−2...A1ψ0Y0 +An−1An−2...A2ψ1Y1
+...+An−1ψn−2Yn−2 + ψn−1Yn−1 +An−1An−2...A1ϕ1

+...+An−1An−2ϕn−2 +An−1ϕn−1 + ϕn
=
∑n

k=2[(
∏n−1
j=k Aj)(ψk−1Yk−1 + ϕk)] +An−1An−2...A1ψ0.

So, for ||Yn −Xn|| we can write

||Yn − Xn|| ≤
∑n

k=2[(
∏n−1
j=k ||Aj ||)(||ψk−1||||Yk−1|| + ||ϕk||)] +

||An−1||||An−2||...||A1||||ψ0||.
If the upper bound of ||ϕn|| from Theorem 2.1 and the upper bound of ||Yn|| from
Theorem 2.2 substitute in the last inequality, we have

||Yn −Xn|| ≤
∑n

k=2[(
∏n−1
j=k ||Aj ||)

×(||ψk−1||(1 + u
√
N)k−2[(1 + u

√
N) max0≤j≤k−2 ||Aj ||+ vN ]k−1

+vN
∑k−1

j=2(1 + u
√
N)k−j−1[(1 + u

√
N) max2≤i≤k−2 ||Ai||+ vN ]k−j−1

+u
√
N(1 + u

√
N)k−2[(1 + u

√
N) max0≤j≤k−1 ||Aj ||+ vN ]k

+uvN3/2
∑k−1

j=2(1 + u
√
N)k−j−1[(1 + u

√
N) max2≤i≤k−1 ||Ai||+ vN ]k−j + vN)]
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+||An−1||||An−2||...||A1||||ψ0||.
Also, if we use (2.1) the following result is achieved:
||Yn −Xn|| ≤

∑n
k=2[(

∏n−1
j=k ||Aj ||)

×((u
√
N ||Ak−1|| + vN)(1 + u

√
N)k−2[(1 + u

√
N) max0≤j≤k−2 ||Aj || +

vN ]k−1

+vN
∑k−1

j=2(1 + u
√
N)k−j−1[(1 + u

√
N) max2≤i≤k−2 ||Ai||+ vN ]k−j−1

+u
√
N(1 + u

√
N)k−2[(1 + u

√
N) max0≤j≤k−1 ||Aj ||+ vN ]k

+uvN3/2
∑k−1

j=2(1 + u
√
N)k−j−1[(1 + u

√
N) max2≤i≤k−1 ||Ai||+ vN ]k−j + vN)]

+||An−1||||An−2||...||A1||(u
√
N ||A0||+ vN).

3. Applying The Results To Schur Stability of Periodic Systems

The results on Schur stability of linear difference Cauchy problem with periodic coeff-
cients were given in [1] and [2] for Wilkinson and Godunov Models. In this section, these
results will be applied in extended format and the changes due to differences in models
will be examined in the computations. Let

Yn+1 = (An +Bn)Yn, n ∈ Z, (3.1)

where An = An+T and Bn = Bn+T , N - dimensional periodic (T - period). It is called
perturbed system of the system (1.2). Continuity theorem on the monodromy matrix in
[15] guarantees Schur stability of the system (3.1) when the system (1.2) or matrix XT

is Schur stable ([19, 6, 13]). The following theorem which is application of continuity
theorem can easily be obtained as same to Theorem in [1]. For T = 1, the system (1.2)
transforms the system

xn+1 = Axn, n ∈ Z,

and it is called linear difference equation system with constant coefficients. Therefore,
ω1(A, T ) can be written

ω1(A, T ) = ω(A), ω(A) = ||
∑∞

k=0(A
∗)kAk||.

Furthermore, in this case ω1(A, 1) is equal to ω(X1) = ω(A) ([9, 10]).

Theorem 3.1. If the matrix YT is Schur stable and the inequality

||YT −XT || ≤

√
||YT ||2 +

1

ω(YT )
− ||YT || (3.2)

holds, then the matrix XT is Schur stable, where the matrix YT is computed monodromy
matrix of XT and the matrix XT is perturbed matrix of YT .

We can obtain following corollary by n = T in Theorem 2.3 and Theorem 2.4.
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Corollary 3.1. The following inequalities hold, where the matrix XT is the monodromy
matrix of the system (1.2) and the matrix YT is the computed matrix of the monodromy
matrix XT .

||YT −XT || ≤
∑T

k=1

(
T
k

)
(max0≤j≤T−1 ||Aj ||)T−k(u

√
N max2≤i≤k−2 ||Ai||+ vN)k

+
∑T

k=2[
∏T−1
j=k ||Aj ||+

∑T−k
r=1

(
T−k
r

)
(max0≤j≤T−1 ||Aj ||)T−k−r(u

√
N max0≤j≤T−1 ||Aj ||+

vN)r]

×[u
√
N(1 + u

√
N)k−2((1 + u

√
N) max0≤j≤k−1 ||Aj ||+ vN)k+

uvN3/2
k−1∑
j=2

(1 + u
√
N)k−j−1((1 + u

√
N) max

0≤j≤T−1
||Aj ||+ vN)k−j + vN ]

(3.3)

||YT −XT || ≤
∑T

k=2[(
∏T−1
j=k ||Aj ||)((u

√
N ||Ak−1||+ vN)

×(1 + u
√
N)k−2[(1 + u

√
N) max0≤j≤k−2 ||Aj ||+ vN ]k−1

+vN
∑k−1

j=2(1 + u
√
N)k−j−1[(1 + u

√
N) max2≤i≤k−2 ||Ai||+ vN ]k−j−1

+u
√
N(1 + u

√
N)k−2[(1 + u

√
N) max0≤j≤k−1 ||Aj ||+ vN ]k

+uvN3/2
∑k−1

j=2(1 + u
√
N)k−j−1[(1 + u

√
N) max2≤i≤k−1 ||Ai||+ vN ]k−j + vN)]

+||AT−1||||AT−2||...||A1||(u
√
N ||A0||+ vN) (3.4)

The Corollary 3.1 guarantees Schur stability of the system(1.2) (or monodromy matrix
XT ) when the computed matrix YT is Schur stable.

Corollary 3.2. Let XT be monodromy matrix of the system (1.2) and YT be the computed
matrix of the matrix XT on floating point arithmetic. If the computed matrix YT is Schur
stable and the inequality

∆i < ∆s, i = 1, 2

holds then monodromy XT is Schur stable, where

- ∆1 is the upper bound of (3.2),

- ∆2 is the upper bound of (3.3),

- ∆s =
√
||YT ||2 + 1

ω(YT ) − ||YT ||.

Corollary 3.3. If An ∈MN (F ) then it is clear that ∆i is same as in [2].

4. Numerical Examples

Numerical examples have been computed using the MVC (Matrix Vector Calculator).
The function QdaStab [4] has been used to compute the value ω(A) of matrix A.

Example 1. Let FE = FE(10,−3, 3, 3) and matrices

A0 =

 0, 9995 0, 01
0, 0005 0, 0002

 and A1

 0, 9987 0, 02
0, 0001 −0, 001


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where A0, A1 /∈ M2(FE). Let us investigate Schur stability, where T = 2. Monodromy
matrix X2 of the system (1.1) has been computed with

X2 =

 0, 99921 0, 010001
9, 945.10−5 8.10−7

.

And the monodromy matrix X2 is Schur stable, since ω(X2) = 634, 143. If the matrix Y2
is computed matrix in FE , the matrices

Y r
2 =

 1 0, 01
0 0

,Y c
2 =

 0, 997 0, 00998
0 0


are obtained. ω(Y r

2 ) = ∞, ω(Y c
2 ) = 166, 94 and so, computed matrix Y2 is Schur stable

by chopping, but is not Schur stable by rounding.

Example 2. Let FE = FE(10,−3, 3, 3) and matrices

A0 =


0.002987 0.1029 0.0675
0.05416 0.01246 0.001856
0.002137 0.06438 0.002454

, A1 =


0.005467 0.06435 0.0418
0.003464 0.004829 0.001463
0.01248 0.04352 0.0002547



and A2 =


0.02149 0.01298 0.03145
0.002367 0.03564 0.004758
0.0022657 0.004321 0.0001468


where A0, A1, A2 /∈M2(FE). Let us investigate Schur stability, where T = 3. The matrices

Y r
3 =


0.000156 0.00015 0

0 0 0
0 0 0

, Y c
3 =


0.000155 0.000149 0

0 0 0
0 0 0


are computed matrices in FE . So, the values

ω(Y r
3 ) = 1, ∆r

s = 0.9997836067, ∆r
1 = 0.9875218373 ∗ 10−4 , ∆r

2 = 0.506766165 ∗ 10−4

ω(Y c
3 ) = 1, ∆c

s = 0.9997850207, ∆c
1 = 0.2009159367 ∗ 10−3 , ∆c

2 = 0.1036855603 ∗ 10−3

are obtained. It seems that ∆r
i < ∆r

s and ∆c
i < ∆c

s for i = 1, 2. Therefore, in both cases,
Corollary 3.2guarentees Schur stability of the monodromy matrix X3 in FE(10,−3, 3, 3).
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E-mail:kaydin@selcuk.edu.tr

Received 29 October 2020
Accepted 14 November 2020


