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Analysis of the Stability of Periodic Linear Difference
Equation Systems on Extended Floating-Point Numbers
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Abstract. The computation errors come out in the computers (uses floating point numbers)
during calculations of mathematical problems. Therefore, the floating point numbers affect the
results directly. In [1] and [2], the computation of fundamental matrix analyzed for the stability
of periodic linear difference equation systems. These works used Wilkinson Model and Godunov
Model. In this study, the computation of fundamental matrix has been studied on extended floating
point numbers. The results have been applied to Schur stability of the system of linear difference
equations with periodic coefficients. Furthermore, the effect of floating point arithmetics has been
showed on numerical examples.
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1. Introduction

The computations are performed by floating point arithmetics in the computers. The
numbers required in the computations are taken into memory and processed in accordance
with the floating-point number structure. Many approaches have been introduced for the
use of floating-point numbers ([17, 21, 5, 7, 12, 23]). In 1985, a standard was created
by the IEEE (Institute of Electrical and Electronics Engineers) and ANSI (American
National Standards Institute) for floating point numbers. This standard, called ANSI /
IEEE Standard 754-1985, sets out the main principles of floating point numbers, based
on binary systems. Errors are occurred during loading the real numbers to memory as
floating-point numbers. The effect of these errors to computations has are examined by
numerous researchers.

In this study, the computation of fundamental matrix will be used to analyze the
stability of periodic linear difference equation systems. Therefore, the computation of
fundamental matrix should be examined on floating-point numbers. In [1], the effect
of computation error of monodromy matrix was examined using Wilkinson Model. Also,
Godunov Model [2] has been used to determine the effect of computation error in applying
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to stability of periodic systems. Extended Floating Point Numbers (Extended Format)
will be used to examine the effect of a computed fundamental matrix for analyzing stability
in this study.

1.1. Fundamental Matrix of Periodic Linear Difference Equation System

The system (1.1) and for given zq € RY initial value
Tnt1 = Apn, xo — initial vector,n > 0 (1.1)

is called linear difference-Cauchy problem with periodic coefficients. If I is an identity
matrix then,
Xn+1 = Aan,Xg = I,?’L Z 0 (12)

is a solution of Cauchy problem. In here,

n—1 -1
Xp = H Aj=A, 1An 2--- Ay, and Xp= H Aj=Ar_1Ar -+ Ay, (1.3)
=0 =0

X, is called fundamental matriz of the system (1.1) and X7 is called as monodromy matriz
of the system (1.1) [14, 8, 9, 15, 10, 11]. The solution of the system (1.1) is

Xirim = X Xk (1.4)

where 2o € RY inital value z, = X209, n =kT +m ,0<m <T —118,9)].

1.2. Extended Floating-Point Numbers (Extended Format, F¥)

The set
F = ]F‘(’)/,p_,p+,k) (15)

where p_ € Z~,k,py € ZT for p_ < p < pi,p € 7Z, is called as the set of computer
numbers or set Format [17, 21, 14, 16, 3, 20, 22]. In [17, 14, 18], the operator

fl:D—=F, fl(z) =z(1+a)+6; |laf <u, [B]| <v, aB=0 (1.6)
converts the elements of D = [—£4, £0] N R to floating point numbers, where
£l rounding i rounding
u={? "y . (17)
€1, chopping 56!, chopping

In (1.7), e = 4P-7F &1 = 417K g = 4P+ (1 — #) are defined.

F¥ has been called Extended Format that is characterized by the parameters 68, €1,E00
on F.
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A matrix A € My (D) can be stored to memory by fI(A) = A+ 1. 1 is storing error
of matrix A in FF¥,

[4]] < wV/NJA[| + vN. (1.8)

A multiply of matrix A, B € My (FF) can be stored to memory by fI(AB) = AB + ¢.
@ is computation error of AB,

llel| < uVN||AB|| +vN. (1.9)
Linear difference Cauchy problem is written
fl(Anflynfl) =Y, = ( n—1 TL'QDn 1) n—1+ gDn,Yb = I n=1273,.. (110)

where Y,, = fl(A,—1Yn — 1) is the computation of fundamental matrix X,,, A € My(D).
It is clear that matrix v, is the storing error of matrix A, , matrix ¢, is computation

errorof( n— 1+¢n 1) n— 17901—0
The solution of (1.10) can be written

n—1 n n—1
Y(n) = [JA+w)+ > (T4 + %) (1.11)
=0 k=1 i=k

2. Computation of Fundamental Matrix

In this section the computation of fundamental matrix X,, will be examined on floating
point arithmetic in F¥.

Let us investigate the upper bound of computation error matrix ¢, given by (1.10)
according to

[$n-1ll < uV/N||Apr]] + 0N (2.1)

and
HSDnH < U\/NHAn_l + wn—IHHYn—lH +oN,Yo=1I,n=2,3,... (2.2)

where A,, € Mn(D), 1, is placement error matrix and w is introduced in (1.7).

Theorem 2.1. The following inequality holds:
llenll < uv/N(1+uv/N)"2[(1 + uv/N) maxo<j<n—1 ||4;|| + vN]"
+uvN3/2 3700 (14 uy/N)n=i= 1[(1+u\ﬁ)ma><2<k<n L [1Ag]| + vN]"™ 4 uN,
where @, is given by (2 2) formn =2,3,.

Proof. For n = 2,3, ..., consider
| |‘80n|| < uV'N([[Anall + [n 1D Yo all + oN; [[Yall < ([Anall + [[nalDIYa 1l +
frinm’ inequality (2.2). If we write Y;,—1 and ¢,_1 in inequality (2.2) we obtain
llonll < uV'N(|[An-all + 1[¥n-1 DI An—2l| + [[¥n—2l)[Yn-2l| + [ln-1l]] + vN
< uV/N(||[An-all + l[n-1 ) ([ An—2 + [[¢n—2])|[Yn—2l
AN (|[An-1]| + |[n-1]) ([ An—2ll + [[¥n—2|])||Yn-2]|
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+uVN (|| An-1] + [[$ha-1])JoN +oN
= uV'NL+uv'N)(|[Ap-1]| + [n-1]]) (| An—2ll + [[n—2)|[Yn—2]]
+uVN([[Ap-1] + [[¢n-1])JoN + oN.
Let’s continue to iterate in the same way. So we obtain

[lnll < uV'N(L+uv/N)" ([ Ap—1]| + a1 ([ An—2]] + [¢n—2])-.-(|[Aol| + 30 |)

n—1 n—1
+uoN*2 Y (14 u/N) T TT A + [ ]) + oN. (2.3)

Jj=2 r=j

Since [|Ay]] + [[i]] < (1 4 uv/N)||Ail| + v, we have
llonll < uvV'N(1+uv/N)"2[(1 + uv/N) maxo<j<n1 ||4j]] + vN]? |
+uoN*2 3070 (14 uv/N)" I (1 4+ uv/N) maxocp<n—1 [|Ag|[+0N]"7 + 0N,
O

Corollary 2.1. If A, € My(F) then it is clear that the placement error ¢, = 0. In this
case, it can be easily noticed that the inequality (2.3) is same as the inequality in [2].

Theorem 2.2. LetY,, be the matriz defined by (1.10), then the following inequality holds:
Vall < (14 uV/N)" (1 + uy/N) maxos;<n—i || 4] + vN]" |
+uN 2722(1 + U\/N)n_j[(]. + U\/N) maxo<g<n—1 HA]CH + 'UN]TL_J, n =
1,2,3,....

Proof. For n = 2,3, ..., let us write (2.2) in
1Yoll < (JAn—1ll + [¥n-1l DI Yn-1l + [l@nll-
Thus, we obtain
1Yol < (JAn—1l] + [[¥n—1IDI[Ya-1l] + llenl]
< ([[An—1l| + a1 IDNYa-1ll + uvV/N(|[Anal] + [[ona DI Ya-1|| + vN
= 1+ uvVN)([[An-all + [[¥nalDYnall + vN
If we continue the iteration, we have
1Yol < (4uv/N) ([ An 1| [+ -1 ID[A+uvVN) (|| An—2l [+ [ton—2l)|[Ya—2|[+oN]+0oN
= (1 4+ uV N2 ([Anall + [l An—2ll + [[¢n—2l|])||Yn—2]|
+(1+uVN)(||An-1]| + |[¢n-1|])vN + vN

1Yal] < (14 uvN)" ([ Anza ||+ [[9n-1 D ([ An-2]] + [[n—2l])--(||Aol| + I¢ol])
+oN 30 (1 4+ v/ N) I T2 ([Ar ]+ (14 ])-
Since ||A;]] + [|e]| < (1 4+ uv/N)||A;|| +vN, the inequality
1Yol < (1 +uv/N)" M1 +uv/N) maxo<j<n—1 || 45| + vN]"
+oN 305 (1+ uV'N)"[(1 +uv/N) maxs<p<n—1 || Ag|| +oN]*7
is obtained and this is the inequality that is sought. O

Theorem 2.3. The inequality
1Y — Xl SRZZ:1 (7) (maxo<j<n—1 [|4;])" " (uv'N maxo<j<n—1 || 4;5]] + vN)F
+ 2 ko[ An—1ll-- [ Ag1 || Al
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+ 300 (") (maxo<j<n 1 145 )" (uv/N maxo<jcn 1 [| A5l +
vN)"]
x[uv/N(1 +U\F)k_2[(1 +uv/N) maxoj<g1 |45 + vN]F
+qu3/2Z 5> (14+uV/ NP1 (1 +uv/N) maxo< j<n_1 || 4;]| + v N7 +uN]
holds, where A,, € MN(D), X, is the fundamental matriz and Y,, is the computed funda-
mental matriz given by (1.10).

Proof. From (1.11), we can write

1Yo — Xal| < TS0 (Ai + ) — T Aill + 352 T (A +wa)llllexl,

where X, is fundamental matrix and Y is the computed fundamental matrix. For the
expressions || [172y (A; + i) — [102 Aql| and || T2, (Ai + 1), we obtain the following
1nequaht1es respectlvely.
1 TTZ0 (A + ) = TTE50 Asll = 1(An—1 + tn-1) .. (A1 + 1) (Ao + o) — An—1... A1 Ag|
= |’An_1 A1Ag+ A1 Aty e+ Y101 — An_l...AleH
< |[Ap—1---Arvol| + - + |[¥n-1... 130
< ([An—l[--[JAl[[[boll) + - + ([eon-all--[[¥1][[]40l])
< n(maxo<j<n—1 ||A;|)" " (maxo<j<n—1 |15])+ 25 (maxo< j<n—1 || 4]1)" 2 (maxo<j<n—1 |[1;]])?
+-- + n(maxo<jcn—1 ||4; H)(maXo<y<n ] +(maX0§j§n—1 [l51D)"
= > h1 () (maxo<j<n—1 [|4;]))" " (maxo<j<n—1 |[¥;)*,

ITTS (Ai 4+ i)l = [1(An—1 + Yne1)o (At + Vi) (A + )
= [|[An—1 App1 A + Ap 1 AU F A U1 o k|
< [|An—1- App1 Al + [[An—1- App1¥el] + o+ [[Yn—1. r 1%
< An—1 Ak Al + ([An—1l|- Ak [kl ]) + -+ Ulbn—all- k][] ])
< Ap—1 A1 Al + (n = k) (maxo<j<n—1 [[A4;])" 75 (maxo<j<n—1 |[14])
+ R (a1 (| A1) R 2 (maxosj<n 1 [15]1)% +
+(n - k) (maxo<j<n—1||A;]|) (maxo<j<n1 [[¢;]])" 7+ +
(maxo<j<n—1 |[5]))"*
= [ An—1- App1 Akl [+ 021 (7F) (maxo<j<n—t || A;])" " (maxo<j<pn—1 |[15]])"
Hence, the inequality
1Yo — Xl < 3002y (7) (maxojcn—1 [|4511)"F (maxo<jcn—1 [|95] )"+

n n—k
n—k n—k—r r
> (sl Awsalliand + 3 (" F) (e AP ma 11l

0<j<n
k=2 r=1
(2.4)

holds. If the upper bound of ||¢,|| from 2.1and the inequality (2.1) substitute in (2.4), we
have
1Y5 = Xall < 2oy () (maxogj<n—1 ||44]1)" " (uv/N maxo<jcn1 [|45]] + vN)*
+ 2 ko[l An—ll- || Apsa |l Ar[+
Pt (M) (maxo<jcn [[4;])" 7 (uV/N maxo<j<n1 || 45| + vN)"]

T

X [uV/N(1 +uvN)*2[(1 + uv/N) maxocj<p-1 [|45]] + vN]*
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HuvN32 Y520 (14 w/N)EI 72 (1 + uv/N) maxocj<p—1 || 45]| + vN]F7 +
vN]. O

Theorem 2.4. The inequality
1Yo = Xall < S0 [Tk 11451
< (VN | Aa]] + oN) (L + uy/N)E2[(1 4 uy/N) maxos;<i—s || 45]] +

,UN]k—l
+ulN 25;21(1 + U\/N)kijil[(l + ’U,\/ﬁ) maxo<i<k—2 HAlH =+ '[)N]k*jfl
+uV/N (1 +uv/N)E2[(1 + uy/N) maxosjcp1 || 45| + oNT*
+uvN3/2 Z?;%(l—i—ux/ﬁ)kfjfl[(l_i_u\/ﬁ) maxp<i<h_1 ||Ai||—|—vN]k*j—|—
vN)]

[ An-1]| | An-2]---[|A1]| (uV'N]| Ao|| + vN)
holds, where A, € Mn(D), X,, is the fundamental matriz and Y, is the computed funda-
mental matriz given by (1.10).

Proof. Consider the Cauchy problem Y, — X,, = A1 (Y1 — Xn—1) + Yn_1Yn—1 + ¢n;
Yp — Xo = 0. The solution of this Cauchy problem is obtained by iteration as
Yn - Xn = An—l(An—Q(Yn—Q - Xn—2) + wn—QYn—Q + (Pn—l) + wn—IYn—l + @n-
Let us edit by iterating this solution as follows:
Y, - X, = An—lAn—2(Yn—2 - Xn—2) + An—1¢n—2Yn—2 + wn—lyn—l + An—l(;on—l) + ©n
= An—lAn—Q(An—EI(Yn—?) - Xn—S) + 7wbn—i‘llfn—?; + (Pn—Q) + An—l¢n—2Yn—2 +
'(bnflynfl
+An—190n—1 + ¢n
= An—lAn—QAn—E}(Yn—S - Xn—3) + An—lAn—an—SYn—S + An—lwn—QYn—2 +
¢n71Yn71
+An—1An—2@n—2 + An—l(;on—l + ¥n

Y, - X, = AnflAn72Anf3--'A0(YVO - XO) + AnflAan---Alr"DOY'O + AnflAan---AQV‘blYl
+...+ An71¢n72Yn72 + ¢n71Yn71 + AnflAn72~-A1801
+... + An—lAn—%On—Z + An—l‘pn—l + ¥n
=Y rol(T10=% A7) (r—1Yio1 + @r)] + An-1An_2... Artby.
So, for ||Y,, — X,|| we can write
Vo — Xl < Sp TS AN lYeeall +  lleeld] +
Ao [l Anall- 1 Ax] 1ol
If the upper bound of ||p,|| from Theorem 2.1 and the upper bound of ||Y,|| from
Theorem 2.2 substitute in the last inequality, we have

Yo = Xall < Spool(TTZ 11451
% (|lr1/1(1 + uv/N)*2[(1 + uv/N) maxoe g2 | 45| + vN]F!
+oN 3075 (14 uv/N)F (1 4+ uv/N) maxacick—a || Ail| + 0N R
+uv/N (1 +uVN)F2[(1+ uv/'N) maxo<j<p-1 || 4] + oNJ*
+uvNY/2 S E23 (1 + uV/ N1 + uy/N) maxacicp1 || Al + oN]ET + o))
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[ An-al[[[An—zl]...[[Ax][[[t0]]-
Also, if we use (2.1) the following result is achieved:
1Yo — Xall < 3o (T2 11451
< (VN[ g1 ]| + oN)(1 + w/RPF2((1 + uv/N) maosjci-2 |1 4]] +
vN k1
+oN 35 (1+ wv/N)FI7Y(1 + uv/N) maxo<icp—2 || Ail| + oNJF=I 71
+uy/N(1+uv/N)*2[(1 + uv/N) maxo<j<k—1 |45 + oN]*
+uvN32 375 (14 u/ NP7 (1 + uv/N) maxocicp1 || Ail| + oN]F7 4 oN)]
+HlAn-1[ll| An-2]]..[| A1][(uv/N|| Ao|| + vN).
O

3. Applying The Results To Schur Stability of Periodic Systems

The results on Schur stability of linear difference Cauchy problem with periodic coeff-
cients were given in [1] and [2] for Wilkinson and Godunov Models. In this section, these
results will be applied in extended format and the changes due to differences in models
will be examined in the computations. Let

Y1 = (Ap + By)Y,,n € Z, (3.1)

where A, = A,yr and B, = Bji7, N- dimensional periodic (T- period). It is called
perturbed system of the system (1.2). Continuity theorem on the monodromy matrix in
[15] guarantees Schur stability of the system (3.1) when the system (1.2) or matrix Xp
is Schur stable ([19, 6, 13]). The following theorem which is application of continuity
theorem can easily be obtained as same to Theorem in [1]. For 7" = 1, the system (1.2)
transforms the system

Tn+1 = Azp,n € Z,

and it is called linear difference equation system with constant coefficients. Therefore,
w1(A,T) can be written

wi(4,T) = w(A), w(A) = || 2o (A)FAF.
Furthermore, in this case wi(4,1) is equal to w(X1) = w(A4) (]9, 10]).

Theorem 3.1. If the matriz Yr is Schur stable and the inequality

1

Yr - X7|| < Yr|2+ ——— — ||V 2
1V TH_\/H P+ gy Vel (3.2

holds, then the matriz Xt is Schur stable, where the matrix Y1 is computed monodromy
matriz of X1 and the matriz Xt is perturbed matriz of Yr.

We can obtain following corollary by n =T in Theorem 2.3 and Theorem 2.4.
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Corollary 3.1. The following inequalities hold, where the matriz X is the monodromy

matriz of the system (1.2) and the matriz Y is the computed matriz of the monodromy
matriz Xp.

17 — Xrl| < 3752y (1) (maxocjcr—1 [|4;])T~F(uv/N maxocich o ||Ail| + 0N
+ b Tl A+ (7F) (maxo< < | A5 1) T+ (uv/N maxo< <1 || A+
vN)"]
*[uvV/N(1+uV'N)*2((1 +uv/N) maxocj<r—1 [|4j]] +oN) +

k—1
uvN3/? Z;(l +uV N1 + uVN) oA || 4] + vN)F=7 1 uN]
! (3.3)
V7 = Xl < Shoo (T2 1A ID (/N[ A1 || + vN)
X (1 +uvV/N)"2[(1 + uv/'N) maxo<j<r—2 || 45| + oN]F!

+uN 25;21(1 +uVN)FI7(1 + uv/N) maxocicp_o || As|| + vNF—I—1
+uv/N (1 +uVN)F2[(1 + uv/'N) maxo<j<p-1 || 4] + oN)*
+uv N2 370 (1 4+ uv/N)FI71(1 + uv/N) maxacick1 || Ail| + oN1F=T 4+ oN)]

| Ar_1 ||| Ar—2]|--.||A1]|(wV' N || Ao|| + vIN) (3.4)

The Corollary 3.1 guarantees Schur stability of the system(1.2) (or monodromy matrix
Xr7) when the computed matriz Yp is Schur stable.

Corollary 3.2. Let X7 be monodromy matriz of the system (1.2) and Y7 be the computed
matriz of the matriz Xt on floating point arithmetic. If the computed matriz Y is Schur
stable and the inequality

A< Ag,i=1,2

holds then monodromy Xt is Schur stable, where
- Ay is the upper bound of (3.2),

- Ay is the upper bound of (3.3),

A= IVl ke — (1Y

Corollary 3.3. If A, € My(F) then it is clear that A; is same as in [2].

4. Numerical Examples

Numerical examples have been computed using the MVC (Matrix Vector Calculator).
The function QdaStab [4] has been used to compute the value w(A) of matrix A.
Example 1. Let F¥ = F¥(10, -3, 3,3) and matrices

0,9995 0,01 0,9987 0,02
Ao =1 0,0005 0,0002 | and A; | 0,0001 —0,001
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where Ag, Ay ¢ M(FF). Let us investigate Schur stability, where 7' = 2. Monodromy
matrix Xy of the system (1.1) has been computed with

0,99921  0,010001
Xo=1 9,945.10° 8.1077

And the monodromy matrix Xs is Schur stable, since w(X2) = 634, 143. If the matrix Y>
is computed matrix in F¥, the matrices

1 0,01 0,997 0,00998
yy=10 0 |Yy£= 0 0

are obtained. w(Yy) = oo, w(Yy) = 166,94 and so, computed matrix Y is Schur stable
by chopping, but is not Schur stable by rounding.
Example 2. Let FF = FF(10, —3,3,3) and matrices

0.002987 0.1029  0.0675 0.005467 0.06435 0.0418
A — 0.05416 0.01246 0.001856 A — 0.003464 0.004829 0.001463
071 0.002137 0.06438 0.002454 |> 1~ 0.01248  0.04352 0.0002547
0.02149  0.01298  0.03145
0.002367 0.03564  0.004758

and A2 = |0 0022657 0.004321 0.0001468

where Ag, A1, As ¢ My(FF). Let us investigate Schur stability, where T = 3. The matrices

0.000156 0.00015 0 0.000155 0.000149 0
0 0 0 0 0 0

(A Cc __

Yy = 0 0 0 Yy = 0 0 0

are computed matrices in F¥. So, the values

w(YT) =1, A7 = 0.9997836067, A7 = 0.9875218373 x 10~4 | AL = 0.506766165 * 10~
w(YE) =1, AS = 0.9997850207, AS = 0.2009159367 x 1073 | A§ = 0.1036855603 % 103

are obtained. It seems that AT < A] and A{ < A§ for ¢+ = 1,2. Therefore, in both cases,
Corollary 3.2guarentees Schur stability of the monodromy matrix X3 in F¥(10, -3, 3, 3).
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