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Computation of Periodic Solution of Linear Constant Co-

e�cients Ordinary Di�erential Equation
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Abstract. The aim of this paper is to determinate the periodic solution of linear constant coef-

�cients ordinary di�erential equation, of any order. First, we give the exact solution in the form

of a sum of integrals twice the number of roots of the characteristic polynomial of the di�erential

equation. Then, we propose a numerical method to approximate the solution, when at least one

of the roots of the characteristic polynomial is not available. Finally, We will present numerical

examples to illustrate the e�ectiveness of the proposed method.
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1. Introduction

In this paper, we are dealing with the 2C-periodic solution of the linear di�erential
equation with constant coe�cients:

y(p)(x) + λp−1y
(p−1)(x) + · · ·+ λ1y

′
(x) + λ0y(x) = f(x). (1)

Because of its extensive use by engineers of all varieties, most notably electrical en-
gineers, several authors have been interested in this type of equation, whether from the
theoretical point of view or from the numerical point of view. See [4,8,9,10,11].

By using the Fourier series, we have developed two calculation methods: the �rst gives
us, when all the roots of the characteristic polynomial of (1) are available, the exact periodic
solution of (1). The second gives us, when at least one of the roots of the characteristic
polynomial is not available, a very good approximation of the periodic solution .

In fact, let P (z) = zp+λp−1z
p−1 + · · ·+λ1z+λ0 the characteristic polynomial of degree

p of (1). It is well known that, when P (in πC ) 6= 0 for n = 0,±1,±2, . . . , the di�erential
equation (1) has a 2C-periodic solution given by:

y(x) =

∞∑
n=−∞

cn
P (in πC )

ein
π
C
x, with cn =

1

2C

∫ C

−C
f(u)e−in

π
C
udu. (2)
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It is clear that formula (2), requires the summation of a very large number of terms in
order to obtain a suitable approximation of y(x), and this, after having correctly calculated
the coe�cients cn.

The aim of this paper is to compute, with high accurate and with minimal cost as much
as possible, the periodic solution of (1). We begin by giving, when all the roots of P (z)
are available, the solution y(x) under the form of the sum of some integrals which could
by computed by appropriate integration methods.

Note that since in this case, (the roots of P (z) are available), the general solution of
the homogeneous di�erential equation is well known in the literature, see e.g. [2], the
particular solution of (1) provided by the �rst formula proposed in this paper, will allow
us to acquire all the solutions of (1).

As this formula can only be numerically practical if all the roots of the polyomial P
are available, we propose a numerical method to approximate the periodic solution when
the roots of the polyomial P are not all availabe.

This method will be all the more precise as the forcing term f belongs to a class of
functions that will be speci�ed.

Note also that the methods proposed in this paper can solve more general problems
than those treated by Boyd in [7], where the author was interested in the approximation

of Fourier series of the form
∞∑

n=−∞
cne

in π
C
x, where the analytical form of cn is given and

has an asymptotic development in 1
nk
.

The paper is organised as follows:

In the next section, we study the case where all the roots of the characteristic poly-
nomial P are available and we show how to get, in a compact form, the sum of the serie
(2).

In section 3, we study the case where roots of the characteristic polynomial P
are not all available. We propose to split the sum into two parts. The �rst part,

SM (x) =
M∑

n=−M

cn
P ( inπ

c
)
ein

π
C
x, where M is a moderate integer, will be approximated

by computing the Fourier coe�cients cn by using trapezoidal rule, after introducing
an appropriate variable change proposed by Sidi in [5]. The second part S̃M (x) =
∞∑

n=M+1

(
cn

P ( inπ
c

)
ein

π
C
x + c−n

P (−inπ
c

)
e−in

π
C
x

)
will be approximated by using certain numbre of

the derivatives of the function f at the extermities −C and C and by using the well known
Boole summation formula which is given by

∞∑
k=M+1

(−1)kg(k) =
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= (−1)M+1

g(M)

2
+

L∑
k=1
k even

(2k − 1)
Bk
k!
g(k−1)(M)− (−1)L

2(L− 1)!

∫ ∞
M

ẼL−1(t)g(L)(t)dt


(3)

where the Bk are the Bernoulli numbers and the ẼL(t) are the periodic Euler functions.
In section 4, we give numerical examples which illustrat the e�ectiveness of the proposed

formulas.
At last, we give an appendix where we give some technical results.

2. The roots of P are available

In this paragraph, we are dealing with the case where all the roots of the characteristic
polynomial are available.

Let us �rst recall the classical result on summation of trigonometric series.
Theorem 2-1: [3, p. 270] Let r be a rational function with a zero of order ≥ 2 at in�nity

and with no pole at any integer and let 0 ≤ ξ ≤ 2π. Then

∞∑
−∞

r(n)einξ = −2πi
∑

res

{
r(z)

eizξ

e2iπz − 1

}
,

where the sum on the right involves the residues at all poles of r.
Theorem 2-2: The 2C-periodic solution of the di�erential equation (1), with the charac-

teristic polynomial of degree p ≥ 2, P (z) =
m∏
k=1

(z − zk)mk with p =
m∑
k=1

mk ≥ 2, and where

the forcing term f is supposed to be integrable on [−C,C] , is given by

y(x) =

= −i
(
C

iπ

)p m∑
k=1

1

(mk − 1)!

(
(−1)p

∫ π− π
C
x

0
f(x+

C

π
t)βk (y) dt+

∫ π+ π
C
x

0
f(x− C

π
t)λk (t) dt

)
(4)

where

βk (t) = lim
z→−C

iπ
zk

dmk−1

dzmk−1
(

1
m∏
l=1
l 6=mk

(
z + C

iπzl
)ml eizt

e2iπz − 1
),

λk (t) = lim
z→ C

iπ
zk

dmk−1

dzmk−1
(

1
m∏
l=1
l 6=mk

(
z − C

iπzl
)ml eizt

e2iπz − 1
). (5)

Proof: Since degP ≥ 2, the serie
∞∑

n=−∞

ein
π
C

(x−t)

P ( inπ
c

)
est uniformly convergent on [−C,C] .

Moerever, f is integrable on [−C,C] . Therefore, the solution y(x) can be written in the
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form:

y(x) =
1

2C

∫ C

−C
f(t)

∞∑
n=−∞

ein
π
C

(x−t)

P (inπc )
dt.

Setting Lm(z) =
m∏
l=1

(
z − C

iπzl
)mk , and making the change of variable u = x − t, the

expression of y(x) becomes:

y(x) =
1

2C

(
C

iπ

)p ∫ x+C

x−C
f(x− u)

∞∑
n=−∞

ein
π
C
u

Lm(n)
du.

Making the change of variable t = −π
C u on [x− C, 0] and the change of variable t = π

Cu
on [0, x+ C] , the precedent expression of y(x) becomes:

y(x) =

=
1

2π

(
C

iπ

)p(∫ π− π
C
x

0
f(x+

C

π
t)

∞∑
n=−∞

exp(int)

Lm(−n)
dt+

∫ π+ π
C
x

0
f(x− C

π
t)

∞∑
n=−∞

exp(int)

Lm(n)
dt

)
.

(6)

Now, since for all x in [−C,C] , 0 ≤ π − π
Cx ≤ 2π and 0 ≤ π + π

Cx ≤ 2π, we get from
Theorem 2-1,

∞∑
n=−∞

exp(int)
Lm(n) = −2πi

∑
res
{

1
Lm(z)

eizt

e2iπz−1

}
and

∞∑
n=−∞

exp(int)
Lm(−n) =

−2πi
∑
res
{

1
Lm(−z)

eizt

e2iπz−1

}
.

Or, from residue's de�nition, we have res
{

1
Lm(z)

eizt

e2iπz−1

}
= λk(t)

(mk−1)! and

res
{

1
Lm(−z)

eizt

e2iπz−1

}
= (−1)p βk(t)

(mk−1)! where λk (t) and βk (t) are given by (5). Hence,

we get the result with (6).

�
Remark 2-3: In the particular case where all the roots of the characteristic polynomial
are simple, the expression of y(x) is reduced to the following expression:

y(x) =
C

π

p∑
k=1

1

(1− e2Czk)
p∏
l=1
l 6=k

(zk − zl)
×

×

(
e2Czk

∫ π− π
C
x

0
f(x+

C

π
y)e−

C
π
zkydy +

∫ π+ π
C
x

0
f(x− C

π
y)e

C
π
zkydy

)
. (7)

Remark 2-4: The integrals appearing in (4) and in (7), can be calculated using any
suitable numerical integration method.
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3. The roots of P are not all available

In this paragraph, we are dealing with the case where the roots of the characteristic
polynomial P of the di�erential equation (1) are not all available. We propose to split the
serie (2) in the two following parts:

y(x) = SM (x) + S̃M (x)

where

SM (x) =

M∑
n=−M

cn
P (in πC )

ein
π
C
x

and

S̃M (x) =
∞∑

n=M+1

(
cn

P (in πC )
ein

π
C
x +

c−n
P (−in πC )

e−in
π
C
x

)
.

Each of the sums SM (x) and S̃M (x) will be approximated in a di�erent way. The
integer M is chosen moderate and �xed.

This method is proposed in the case where the forcing term f is of class CL [−C,C] ,
for a given L.

3.1. Computation of the sum SM(x)

Let M a moderate and �xed integer. (M ' 10). To compute e�ectively the Fourier
coe�cients (cn)−M≤n≤M , we can use any e�cient and suitable numerical method. (See [1]).
Among e�cient methods for moderate M , we can use certain transformations (Ψm(t))m,
given by Sidi in [5] and de�ned by:

Ψ0(t) = t
Ψ1(t) = 1

2 (1− cosπt)

Ψm(t) = Ψm−2(t)− Γ(m
2

)

2
√
πΓ(m+1

2
)
(sinπt)m−1 cos(πt)

, t ∈ [0, 1] . (8)

By returning to the interval [0,1] via the change of variable u = 2Ct− C, we obtain

SM (x) =

∫ 1

0
f(2Ct− C)

(
M∑

n=−M

(−1)n

P (in πC )
ein( π

C
x−2πt)

)
dt.

Now, using the Sidi transformation given by (8), the sum SM (x) becomes:

SM (x) =

∫ 1

0
f(2CΨm(t)− C)Ψ′m(t)GM,m(t, x)dt (9)

with GM,m(t, x) =
M∑

n=−M
(−1)n e−2inπΨm(t)

P (in π
C

) ein
π
C
x.
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Applying the trapezoidal rule to order N , (because the transformation of Sidi has been
proposed to make this rule optimal), we obtain the following approximation:

SM (x) = SM,N (x,m) +RM,N (x,m) (10)

with

SM,N (x,m) =
1

N

N−1∑
j=1

f(2CΨm(
j

N
)− C)Ψ′m(

j

N
)GM,m(

j

N
, x) (11)

and

RM,N (x,m) = O
(
N−(m+1) inf((δ0+1),(γ0+1))

)
as N →∞. (12)

This, if we suppose

i)

(
M∑

n=−M

(−1)n

P (inb)e
in(bx−2πt)

)
f(2Ct− C) ∼

∑
0≤s

mst
δs , t→ 0+

ii)

(
M∑

n=−M

(−1)n

P (inb)e
in(bx−2πt)

)
f(2Ct− C) ∼

∑
0≤s

ns (1− t)γs , t→ 1−

where the γs and δs are distinct complex numbers that satisfy

−1 < <γ0 ≤ <γ1 ≤ <γ2 ≤ · · · , lim
s→∞

<γs = +∞,

−1 < <δ0 ≤ <δ1 ≤ <δ2 ≤ · · · , lim
s→∞

<δs = +∞.

The estimate of the quadrature error given by (12) is deduced from Theorem 4-1 given
by Sidi in [5, p. 335]. Better still, the estimate (12) can be improved, again according to
Theorem 4-1 of Sidi, by obtaining

RM,N (x,m) = O
(
N−(m+1) inf((δ1+1),(γ1+1))

)
as N →∞

when we consider the transformation Ψm(t), where m is an integer that can be written in
the form:

m =
q − inf(δ0, γ0)

1 + inf(δ0, γ0)

where q is an even positive integer.

Let us also note that if the forcing term f is highly oscillatory, there is a large litteraure
o�ering suitable methods for computing SM (x). See e.g. [6].

3.2. Computation of the sum S̃M(x)

Let us begin by giving the following notations.

Notation: In the whole of this subsection, we are using the following notations:

Let I = {j ∈ {0, ..., p− 1} , λj 6= 0} where the λj are the coe�cients of the characteristic
polynomial P and let ip = min I.
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Let us noteQ the functionQ(z) = z−pP (z)−1 and let δk =
∑

j+i=k

djζi, k = 0, ..,K(p−ip)

where the dj are the coe�cients of the polynomial :
K∑
k=0

(−1)kQk
(

1
z

)
=

K(p−ip)∑
k=0

dkz
k and

ζi =

{
f (i)(C)− f (i)(−C) , 0 ≤ i ≤ K
0 , K + 1 ≤ i .

Let us set

R̃M,K,L(x) =
1

2C
RM,K(x) +

1

2C

K(p−ip)∑
k=0

δk

(ib)k+p+1
Rk (MK,L, x) (13)

with b = π
C and

Rk (MK,L, x) =
(−1)MK

2(2L− 1)!

∫ ∞
0

Ẽ2L−1(t)
(
h

(2L)
k (MK + t) + h

(2L)
k (−MK − t)

)
dt (14)

where hk(t) = eibxt

tk+p+1 , Ẽ2L−1(t) the periodic Euler function and with

RM,K(x) = (−1)K
K∑
k=0

ζk
∞∑

n=M+1

(−1)n

(inb)k+p+1

(
QK+1(inb)
1+Q(inb) e

inbx − (−1)k+p QK+1(−inb)
1+Q(−inb) e

−inbx
)

+
∫ C
−C f

(1+K)(y)
K(p−ip)∑
k=0

dk

(
∞∑

n=M+1

einb(x−y)−(−1)k+p+Ke−inb(x−y)

(inb)k+p+1+K

)
dy

−(−1)K
∫ C
−C f

(1+K)(y)
∞∑

n=M+1

QK+1(inb)
1+Q(inb)

einb(x−y)−(−1)p+K
QK+1(−inb)
1+Q(−inb) e−inb(x−y)

(inb)p+1+K dy

(15)
Proposition 3-1: With the notations given above, we have

S̃M (x) = S̃M,K,L(x) + R̃M,K,L (x) (16)

with R̃M,K,L (x) given by (13), and

S̃M,K,L(x) = − 1

2C (ib)p+1

K(p−ip)∑
k=0

δk

(ib)k
SM,K,L(k, x) (17)

where the SM,K,L(k, x) are given by

SM,K,L(k, x) =
MK∑

n=M+1

(−1)n

nk+p+1

(
eibxn − (−1)k+p e−ibxn

)

− (−1)MK

2 (MK)k+p+1

eibxMK − (−1)k+p e−ibxMK +
1

(k + p)!

L∑
j=1

(4j − 1)
B2j

j
UM,K(k, x, j)


(18)
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where the B2j are the Bernoulli numbers and with

UM,K(k, x, j) =

2j−1∑
l=0

(k + p+ l)!

l!(2j − 1− l)!
1

(MK)l

(
(−1)l eibxMK + (−1)k+p e−ibxMK

)
. (19)

Proof: From Lemma A-1, we have:

cn
P (inb) = (−1)n+1

2C(inb)p+1

K(p−ip)∑
k=0

δk
(inb)k

+ (−1)K+n

2C(inb)p+1
QK+1(inb)
1+Q(inb)

K∑
k=0

ζk
(inb)k

+ 1
2C

1
(inb)K+p+1

K(p−ip)∑
k=0

dk
(inb)k

∫ C
−C f

(1+K)(u)e−inbudu

− (−1)K

2C(inb)K+p+1
QK+1(inb)
1+Q(inb)

∫ C
−C f

(1+K)(u)e−inbudu.

Since
∞∑

n=M+1

(−1)neinbx
K(p−ip)∑
k=0

δk
(inb)k+p+1 =

K(p−ip)∑
k=0

δk
∞∑

n=M+1

(−1)n einbx

(inb)k+p+1 , we get

∞∑
n=M+1

cn
P (inb)

einbx = − 1

2C

K(p−ip)∑
k=0

δk

∞∑
n=M+1

(−1)n
einbx

(inb)k+p+1

+
(−1)K

2C

K∑
k=0

ζk

∞∑
n=M+1

(−1)n
QK+1 (inb)

1 +Q (inb)

einbx

(inb)k+p+1

+
1

2C

∫ C

−C
f (1+K)(y)

K(p−ip)∑
k=0

dk

( ∞∑
n=M+1

einb(x−y)

(inb)k+p+1+K

)
dy

−(−1)K

2C

∫ C

−C
f (1+K)(y)

( ∞∑
n=M+1

einb(x−y)

(inb)p+1+K

QK+1 (inb)

1 +Q (inb)

)
dy.

Replacing n by −n in the previous expression, we obtain the expression of
∞∑

n=M+1

c−n
P (−inb)e

−inbx. Hence, with RM,K(x) de�ned by (15), the expression of S̃M (x) be-

comes:

S̃M (x) = − 1

2C

K(p−ip)∑
k=0

δk

(ib)k+p+1

∞∑
n=M+1

(−1)n
einbx − (−1)k+p e−inbx

nk+p+1
+

1

2C
RM,K(x).

With hk(z) = eibxz

zk+p+1 and with The Boole summation formula recalled in (3), we get:

∞∑
n=MK+1

(−1)nhk(n) = −(−1)MK

(
hk(MK)

2 +
L∑
j=1

(22j − 1)
B2j

2j! h
(2j−1)
k (MK)

)
+ (−1)MK

2(2L−1)!

∫∞
0 Ẽ2L−1(t)h

(2L)
k (MK + t)dt.

Similarly, we get by remplacing in the previous equality, n by −n, we obtain the

corresponding equality for
∞∑

n=M+1

(−1)n (−1)k+p+1

nk+p+1 e−inbx.

Summing now the two obtained equalities, we get:
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∞∑
n=MK+1

(−1)n (hk(n) + hk(−n)) =
(−1)MK+1

2
(hk(MK) + hk(−MK))

−(−1)MK
L∑
j=1

(4j − 1)
B2j

2j!

(
h

(2j−1)
k (MK)− h(2j−1)

k (−MK)
)

+Rk (MK,L, x)

where Rk (MK,L, x) is given by (14). Thus, by setting

R̃M,K,L(x) =
1

2C
RM,K(x) +

1

2C

K(p−ip)∑
k=0

δk

(ib)k+p+1
Rk (MK,L, x)

and

SM,K,L(k, x) =
MK∑

n=M+1

(−1)n (hk(n) + hk(−n))

− (−1)MK

2 (hk(MK) + hk(−MK))

−(−1)MK
L∑
j=1

(4j − 1)
B2j

2j!

(
h

(2j−1)
k (MK)− h(2j−1)

k (−MK)
)

we get the result by applying Leibniz formula to the h
(2j−1)
k .

�

3.3. Error analysis of the solution

In this subsection, we will give an error bound due to the approximation of S̃M (x) by
S̃M,K,L(x).
Theorem 3-2: Let P (z) = zp + λp−1z

p−1 + · · · + λ1z + λ0 the characteristic polynomial

of the di�erential equation (1).

Let I = {j ∈ {0, ..., p− 1} , λj 6= 0} and let jp = max I and ip = min I.
Let Q(z) = z−pP (z)− 1 and let M and K such that:

1) ∀n ≥M + 1, |Q (inb)| < 1 and |1 +Q (inb)| ≥ 1
2 .

2) ∃A > 0, ∀n ≥M + 1 : |Q (inb)| ≤ A|λjp |
(nb)p−jp

.

3) ∃B > 0,
∫ C
−C
∣∣f (1+K)(y)

∣∣ dy ≤MKB.
With µ = p+ (p− jp) (K + 1) ,we have the two following error bounds:

x 6= 0,∣∣∣S̃M (x)− S̃M,K,L(x)
∣∣∣ ≤ 4M

(Mb)µ−K

(
A|λjp |
bM

)K+1(
B

(K+µ)bK
+

K∑
k=0

|ζk|
(k+µ)(Mb)k

)
+ 2B

(Mb)pbK+1

K∑
k=0

|dk|
(k+p+K)(Mb)k

+ 8
(3C)2L

b
(bMK)p+2

K(p−ip)∑
k=0

1
(k+p)!

|δk|
(bMK)k

2L∑
l=0

C l2L
(k+p+l)!
k+p+2+l

x2L−l

(MKb)l
.

(20)
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x = 0,

∣∣∣S̃M (x)− S̃M,K,L(x)
∣∣∣ ≤ 4M

(Mb)µ−K

(
A|λjp |
bM

)K+1(
B

(K+µ)bK
+

K∑
k=0

|ζk|
(k+µ)(Mb)k

)
+ 2B

(Mb)pbK+1

K∑
k=0

|dk|
(k+p+K)(Mb)k

+ 4
(3πMK)2L

1
(MKb)p

1
b

K(p−ip)∑
k=0

(
1− (−1)k+p

)
(k+p+2L−1)!

(k+p)!
|δk|

(bMK)k
.

(21)

Proof : We have from (16) and (13),

S̃M (x)− S̃M,K,L(x) =
1

2C
RM,K(x) +

1

2C

K(p−ip)∑
k=0

δk

(ib)k+p+1
δkRk (MK,L, x) ,

where RM,K(x) is given by (15) and Rk (MK,L, x) is given by (14).

1) with (15), we get

|RM,K(x)| ≤
K∑
k=0

|ζk|
∞∑

n=M+1

1
(nb)k+p+1

(∣∣∣QK+1(inb)
1+Q(inb)

∣∣∣+
∣∣∣QK+1(−inb)

1+Q(−inb)

∣∣∣)
+2

(
K(p−ip)∑
k=0

|dk|
∞∑

n=M+1

1
(nb)k+p+1+K

)∫ C
−C
∣∣f (1+K)(y)

∣∣ dy
+

∞∑
n=M+1

1
(nb)p+1+K

(∣∣∣QK+1(inb)
1+Q(inb)

∣∣∣+
∣∣∣QK+1(−inb)

1+Q(−inb)

∣∣∣) ∫ C−C ∣∣f (1+K)(y)
∣∣ dy.

On one hand, we have: ∃A > 0, ∀n ≥M+1 : |Q (inb)| ≤ A|λjp |
(nb)p−jp

and |1 +Q (inb)| ≥ 1
2 .

Thus: ∀n ≥M + 1,
∣∣∣QK+1(inb)

1+Q(inb)

∣∣∣ ≤ 2
AK+1|λjp |K+1

(nb)(p−jp)(K+1)
.

On the other hand, the forcing term f veri�es: ∃B > 0,
∫ C
−C
∣∣f (1+K)(y)

∣∣ dy ≤ MKB.
Hence,

|RM,K(x)| ≤ 4
AK+1|λjp |K+1

b1+µ

K∑
k=0

|ζk|
bk

∞∑
n=M+1

1
nk+1+µ

+2 MKB
bp+1+K

K∑
k=0

|dk|
bk

∞∑
n=M+1

1
nk+p+1+K

+4 MKB
b1+K+µA

K+1
∣∣λjp∣∣K+1

∞∑
n=M+1

1
n1+K+µ .

Moerever, we have for all j > 0,
∞∑

n=M+1

1
nj+1 ≤ 1

jMj . Thus,

|RM,K(x)| ≤ 4M
(Mb)µ−K

(
A|λjp |
bM

)K+1( K∑
k=0

|ζk|
(k+µ)(Mb)k

+ B
(K+µ)bK

)
+ 2B

(Mb)pbK+1

K∑
k=0

|dk|
(k+p+K)(Mb)k

.

(22)
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2) Let us now give an upper bound to the term

∣∣∣∣∣K(p−ip)∑
k=0

δk
(ib)k+p+1Rk (MK,L, x)

∣∣∣∣∣ where
Rk (MK,L, x) is given by (14).

The Fourier expansion for the periodic Euler function is given by:

Ẽ2L−1(t) = (−1)L+1 4. (2L− 1)!

π2L

∞∑
k=1

cos ((2k + 1)πt)

(2k + 1)2L
.

Thus, we obtain:

|Rk (MK,L, x)| ≤ 4

(3π)2L

∫ ∞
0

(∣∣∣h(2L)
k (MK + t) + h

(2L)
k (−MK − t)

∣∣∣) dt. (23)

To give an upper bound to the term |Rk (MK,L, x)| , we are led to distinguish two
cases: x 6= 0 and x = 0.

First case: x 6= 0

Using Leibniz formula, we get,
∣∣∣h(2L)
k (MK + t)

∣∣∣ ≤

1
(k+p)!

2L∑
l=0

C l2L
(k+p+l)!

(MK+t)k+p+1+l (bx)2L−l , which gives by using (23), |Rk (MK,L, x)| ≤

8
(
bx
3π

)2L 1
(k+p)!

1
(MK)k+p+2

2L∑
l=0

C l2L
(k+p+l)!
k+p+2+l

1
(MKbx)l

. Hence, we obtain:

∣∣∣∣∣∣
K(p−ip)∑
k=0

δk

(ib)k+p+1
Rk (MK,L, x)

∣∣∣∣∣∣ ≤
≤ 8

(3C)2L

b

(bMK)p+2

K(p−ip)∑
k=0

1

(k + p)!

|δk|
(bMK)k

2L∑
l=0

C l2L
(k + p+ l)!

k + p+ 2 + l

x2L−l

(MKb)l
.

Thus, we obtain (20) with (22) and the last inequality.

Second case: x = 0. We have h
(j)
k (y) = (−1)j

(k+p)!
(k+p+j)!
yk+p+1+j which gives:

∣∣∣h(2L)
k (MK + t) + h

(2L)
k (−MK − t)

∣∣∣ =

(
1− (−1)k+p

)
(k + p)!

(k + p+ 2L)!

(MK + t)k+p+1+2L
.

Hence, |Rk (MK,L, x)| ≤ 4(1−(−1)k+p)
(3π)2L

(k+p+2L−1)!
(k+p)!

1
(MK)k+p+2L which gives,∣∣∣∣∣∣

K(p−ip)∑
k=0

δk

(ib)k+p+1
Rk (MK,L, 0)

∣∣∣∣∣∣ ≤
≤ 4

(3πMK)2L

1

b (MKb)p

K(p−ip)∑
k=0

|δk|
bk

(
1− (−1)k+p

) (k + p+ 2L− 1)!

(k + p)!

1

(MK)k
.
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Hence, we obtain (21) with (22) and the last inequality.

�
Remark 3-3: We note from the inequalities (20) and (21), that the error of approximation

will be all the smaller the smaller the terms
A|λjp |
bM and B

bK
.

4. Numerical examples

In this paragraph, we will consider 2 di�erential equations. In practice, we will approx-
imate y (x), not by ỹ(x) = SM,N (x,m) + S̃M,K,L(x), but by

ỹ(x, l) = SM,N (x,m) + S̃M,K,L(x, l), (24)

where SM,N (x,m) given by (11), l ∈ {0, ...,K(p− ip)} , and

S̃M,K,L(x, l) = − 1

2C (ib)p+1

l∑
k=0

δk

(ib)k
SM,K,L(k, x).

The reason is that the error due to the approximation of S̃M (x) by S̃M,K,L(x) in (16),
can quickly become small compared to the error due to the approximation of SM (x) by
SM,N (x,m) in (10), because this latter approximation will depend closely on the numerical
integration method used to approximate the coe�cients cn (except in the case of course
where the exact values of cn are known).

In the following, we will note

E(x, l) = |y (x)− ỹ(x, l)| .

and we will consider two di�erential equations:

y(3)(x) + y(x) = f(x) (25)

and

y(3)(x)− 3y
′
(x) + 2y(x) = f(x) (26)

where f is a 2-periodic function.

For the �rst equation (25), we have C = 1, P (z) = z3 + 1 = (z+ 1)(z− e−i
π
3 )(z− ei

π
3 ),

ip = 0 and p = 3. The exact solution is then given from (7) by:

y(x) = 1
2π(1+cos(π

3
))(e2−1)

(∫ π(1−x)
0 f(x+ t

π )e
t
π dt+ e2

∫ π(x+1)
0 f(x− t

π )e
−t
π dt

)
+ 2
π Real

(
1

e−2z−1

∫ π(1−x)
0 f(x+ t

π )e−
z
π
tdt− 1

e2z−1

∫ π(x+1)
0 f(x− t

π )e
z
π
tdt
)

with z = e−i
π
3 .
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For the second equation (26), we have C = 1, P (z) = z3 − 3z + 2 = (z + 2) (z − 1)2 ,
ip = 0 and p = 3. The exact solution is then given from (4) by:

y(x) = 1
9π(e4−1)

(∫ π(1−x)
0 f(x+ 1

π t)e
2
π
tdt+ e4

∫ π(x+1)
0 f(x− 1

π t)e
−2
π
tdt
)

+ e2

9π2(e2−1)2

∫ π(1−x)
0 f(x+ 1

π t)
(
π(e2 + 5) + 3t(e2 − 1)

)
e−

t
π dt

+ 1
9π2(e2−1)2

∫ π(x+1)
0 f(x− 1

π t)
(
π(7e2 − 1) + 3(1− e2)t

)
e
t
π dt.

As �rst example, we consider f(x) = eax on [−1, 1] , and as second example, we consider
f(x) = 1

x+a on [−1, 1] . For these two examples, we have:

a) SM,N (x,m) = 1
N

N−1∑
j=1

f(2Ψm( jN )−1)Ψ′m( jN )GM,m( jN , x) with Ψm(t) given by (8) and

GM,m( jN , x) =
M∑

n=−M
(−1)n e−2inπΨm(t)

1−in3π3 einπx for the �rst equation and

GM,m( jN , x) =
M∑

n=−M
(−1)n e−2inπΨm(t)

2−3inπ−in3π3 e
inπx for the second equation.

b) S̃M,K,L(x, l) = − 1
2π4

l∑
k=0

δk
(iπ)k

SM,K,L(k, x) with SM,K,L(k, x) given by (18), and

δk = (ea − e−a)
∑

l+j=k

ajdl for the �rst example, and δk =∑
l+j=k

(−1)jj!
(

1
(a+1)j+1 − 1

(a−1)j+1

)
dl, for the second case, where the dl, for the two

examples, are the coe�cients of the polynomial
K∑
l=0

(−1)l z3l for the �rst equation and the

dl are the coe�cients of the polynomial
K∑
l=0

(−1)l (2z − 3)l z2l for the second equation.

We get the following results with: M = K = 10, L = 5,Ψm(t) = Ψ4(t) = t −
2

3π sin(2πt) + 1
12π sin(4πt), with N = 60 and for di�erents values of l, 0 ≤ l ≤ 3K.

For f(t) = eat on [−1, 1] , we get for the �rst equation

a = 1 a = π

E(0, l) E(1
2 , l) E( 9

10 , l) E(0, l) E(1
2 , l) E( 9

10 , l)

l = 0 8.7 10−10 3.3 10−8 8.5 10−8 8.3 10−8 9.7 10−7 2.7 10−6

l = 3 1.3 10−15 2.9 10−14 6.6 10−11 7.1 10−10 4.9 10−10 8.3 10−10

l = 6 6.6 10−16 2.9 10−14 6.6 10−11 5.3 10−14 3.0 10−13 6.3 10−10

and for the second equation

a = 1 a = π

E(0, l) E(1
2 , l) E( 9

10 , l) E(0, l) E(1
2 , l) E( 9

10 , l)

l = 0 3.4 10−9 3.1 10−8 9.1 10−8 1.0 10−7 9.5 10−7 2.8 10−7

l = 3 8.5 10−12 4.9 10−12 4.7 10−11 9.8 10−10 6.7 10−10 2.0 10−9

l = 6 4.2 10−16 2.9 10−14 6.6 10−11 7.3 10−14 6.2 10−13 8.4 10−13
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For f(t) = 1
a+t on [−1, 1] , we get for the �rst equation

a = 2 a = 20

E(0, l) E(1
2 , l) E( 9

10 , l) E(0, l) E(1
2 , l) E( 9

10 , l)

l = 0 7.0 10−10 1.3 10−8 2.9 10−8 2.7 10−14 7.1 10−12 1.7 10−11

l = 3 7.9 10−12 3.2 10−12 1.3 10−13 1.6 10−16 1.5 10−16 1.4 10−13

l = 6 9.9 10−15 6.1 10−14 1.9 10−11 4.5 10−19 6.1 10−17 1.4 10−13

and for the second equation

a = 2 a = 20

E(0, l) E(1
2 , l) E( 9

10 , l) E(0, l) E(1
2 , l) E( 9

10 , l)

l = 0 1.4 10−9 1.3 10−8 2.7 10−10 5.5 10−12 1.0 10−11 4.0 10−12

l = 3 1.2 10−11 5.2 10−12 9.4 10−12 1.5 10−14 8.5 10−15 1.0 10−13

l = 6 1.0 10−14 6.7 10−14 1.9 10−11 1.5 10−19 6.5 10−17 1.4 10−13

Remark 4-1: When x is close to the extremities C or −C, we can get better results by
increasing the value of N and the values of L and l. Indeed, we obtain with N = 120 in
(11) and L = 100 in (18), the following values for E( 9

10 , l) for di�erent values of l,

Equation (25)

f(t) = eat f(t) = 1
a+t

l a = 1 a = π a = 2 a = 20

0 8.5 10−8 2.7 10−6 2.9 10−8 1.7 10−11

5 1.3 10−15 1.1 10−11 4.4 10−13 2.9 10−18

10 1.1 10−18 9.5 10−18 5.0 10−17 4.7 10−22

Equation (26)

f(t) = eat f(t) = 1
a+t

l a = 1 a = π a = 2 a = 20

0 9.0 10−8 2.8 10−6 2.7 10−8 4.1 10−12

5 3.9 10−14 1.5 10−11 5.2 10−12 9.5 10−17

10 4.9 10−17 3.1 10−15 3.1 10−16 1.6 10−18

5. Conclusion

As we can see, the two results given in this paper, do not only apply to the approxima-
tion of the periodic solution of the di�erential equation (1), but they can also be useful in
solving any problem whose solution is written in the form (2). It also remains to propose
other methods when, simultaneously, at least one of the roots of the characteristic polyno-
mial is not available and the function is not di�erentiable or its order of di�erentiability is
very low.
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6. Appendix

Lemma A-1: Let K ∈ N∗, let f ∈ CK [−C,C] and let cn = 1
2C

∫ C
−C f(u)e−inbudu with

b = π
C .

Let P a polynomial with degP = p and ip the degree of its lowest degree monomial

and let Q the function given by: Q (z) = z−pP (z)− 1.

Let M ∈ N∗ such that: ∀n ≥M + 1, |Q (inb)| < 1.

Let δk =
∑

j+i=k

djζi, k = 0, ..,K(p − ip) where ζi ={
f (i)(C)− f (i)(−C) , 0 ≤ i ≤ K
0 , K + 1 ≤ i and the dj are the coe�cients of the polyno-

mial
K∑
k=0

(−1)kQk
(

1
z

)
=

K(p−ip)∑
k=0

dkz
k. We have:

cn
P (inb) = (−1)n+1

2C(inb)p+1

K(p−ip)∑
k=0

δk
(inb)k

+ (−1)K+n

2C(inb)p+1
QK+1(inb)
1+Q(inb)

K∑
k=0

ζk
(inb)k

+ 1
2C

1
(inb)K+p+1

K(p−ip)∑
k=0

dk
(inb)k

∫ C
−C f

(1+K)(u)e−inbudu

− (−1)K

2C(inb)K+p+1
QK+1(inb)
1+Q(inb)

∫ C
−C f

(1+K)(u)e−inbudu.

Proof: On one hand, we have by simple integration by parts:

cn =
(−1)n+1

2C

K∑
k=0

ζk

(inb)k+1
+

1

2C (inb)K+1

∫ C

−C
f (K+1)(u)e−inbudu.

On the other hand, we have P (z) = zp (1 +Q(z)) , which gives for n ≥M + 1,

1

P (inb)
=

1

(inb)p

(
K∑
k=0

(−1)kQk (inb) + (−1)K+1Q
K+1 (inb)

1 +Q (inb)

)
.

Hence,

(inb)p+1 cn
P (inb) = (−1)n+1

2C

K∑
k=0

(−1)kQk (inb)
K∑
k=0

ζk
(inb)k

+ (−1)K+n

2C
QK+1(inb)
1+Q(inb)

K∑
k=0

ζk
(inb)k

+ 1
2C

1
(inb)K

K∑
k=0

(−1)kQk (inb)
∫ C
−C f

(1+K)(u)e−inbudu

− (−1)K

2C(inb)K
QK+1(inb)
1+Q(inb)

∫ C
−C f

(1+K)(u)e−inbudu.

Or, with
K∑
k=0

(−1)kQk (inb) =
K(p−ip)∑
k=0

dk
(inb)k

, we get,
K∑
k=0

(−1)kQk (inb)
K∑
k=0

ζk
(inb)k

=

K(p−ip)∑
k=0

δk
(inb)k

with δk =
∑

j+i=k

djζi, k = 0, ..,K(p− ip). Thus, we get the result.

�
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