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Computation of Periodic Solution of Linear Constant Co-
efficients Ordinary Differential Equation

M. Kzaz, M. Issaoui, F.Maach

Abstract. The aim of this paper is to determinate the periodic solution of linear constant coef-
ficients ordinary differential equation, of any order. First, we give the exact solution in the form
of a sum of integrals twice the number of roots of the characteristic polynomial of the differential
equation. Then, we propose a numerical method to approximate the solution, when at least one
of the roots of the characteristic polynomial is not available. Finally, We will present numerical
examples to illustrate the effectiveness of the proposed method.
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1. Introduction

In this paper, we are dealing with the 2C-periodic solution of the linear differential
equation with constant coeflicients:

y () + Apo1y® V(@) + -+ My (z) + doy(z) = f(a). (1)

Because of its extensive use by engineers of all varieties, most notably electrical en-
gineers, several authors have been interested in this type of equation, whether from the
theoretical point of view or from the numerical point of view. See [4,8,9,10,11].

By using the Fourier series, we have developed two calculation methods: the first gives
us, when all the roots of the characteristic polynomial of (1) are available, the exact periodic
solution of (1). The second gives us, when at least one of the roots of the characteristic
polynomial is not available, a very good approximation of the periodic solution .

In fact, let P(z) = 2P+ Ap—12P"1+- -+ A1 2+ Ao the characteristic polynomial of degree
p of (1). Tt is well known that, when P(ing) # 0 for n = 0,£1,+£2,..., the differential
equation (1) has a 2C-periodic solution given by:
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It is clear that formula (2), requires the summation of a very large number of terms in
order to obtain a suitable approximation of y(x), and this, after having correctly calculated
the coeflicients c¢,.

The aim of this paper is to compute, with high accurate and with minimal cost as much
as possible, the periodic solution of (1). We begin by giving, when all the roots of P(z)
are available, the solution y(z) under the form of the sum of some integrals which could
by computed by appropriate integration methods.

Note that since in this case, (the roots of P(z) are available), the general solution of
the homogeneous differential equation is well known in the literature, see e.g. [2], the
particular solution of (1) provided by the first formula proposed in this paper, will allow
us to acquire all the solutions of (1).

As this formula can only be numerically practical if all the roots of the polyomial P
are available, we propose a numerical method to approximate the periodic solution when
the roots of the polyomial P are not all availabe.

This method will be all the more precise as the forcing term f belongs to a class of
functions that will be specified.

Note also that the methods proposed in this paper can solve more general problems

than those treated by Boyd in [7], where the author was interested in the approximation
o

of Fourier series of the form > ¢,e"c”, where the analytical form of ¢, is given and
n=—oo

has an asymptotic development in nik
The paper is organised as follows:

In the next section, we study the case where all the roots of the characteristic poly-
nomial P are available and we show how to get, in a compact form, the sum of the serie

(2).
In section 3, we study the case where roots of the characteristic polynomial P

are not all available. We propose to split the sum into two parts. The first part,
M

Sy(x) = > P(?ﬂ)em%w, where M is a moderate integer, will be approximated
n=—M ¢

by computing the Fourier coefficients ¢, by using trapezoidal rule, after introducing
an appropriate variable change proposed by Sidi in [5]. The second part Sy(z) =

o
.o . T . . . :
> ( P(c{;ﬁ)emﬁw + 5 (Cjiﬁ,r)e_mﬁ‘” will be approximated by using certain numbre of
n:M+]. c

the derivatives of the function f at the extermities —C and C and by using the well known
Boole summation formula which is given by
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N (3)
where the By are the Bernoulli numbers and the Ep(t) are the periodic Euler functions.
In section 4, we give numerical examples which illustrat the effectiveness of the proposed
formulas.

At last, we give an appendix where we give some technical results.

2. The roots of P are available

In this paragraph, we are dealing with the case where all the roots of the characteristic
polynomial are available.

Let us first recall the classical result on summation of trigonometric series.
Theorem 2-1: (3, p. 270] Let r be a rational function with a zero of order > 2 at infinity
and with no pole at any integer and let 0 < & < 27, Then

> ¢ _ eiz§
zn _
Z.O'r( —27 Z res {7“ T }

where the sum on the right involves the residues at all poles of .

Theorem 2-2: The 2C-periodic solution of the differential equation (1), with the charac-
m m

teristic polynomial of degree p > 2, P(2) = [[ (z — 2k)"™* with p = Y my > 2, and where

k=1 k=1
the forcing term f is supposed to be integrable on [—C,C], is given by

y(z) =
C\’'<&~ 1 o C e C
=—i| = —— [ (=1)P —t dt — —t)Ag (t) dt
(5) ot (( P e Somans [T o= Son )
k=1
(4)
where . .
dme— 1 e’
ﬁk (t> = lim m 71( m 2imz )’
Zﬁiczdz k H (2+%2)ml€ -1
=1
l;émk
dmk—l 1 ezzt
Ak (t) = lim 1 ( m 2iTz ) (5)
Zﬁiczkdz k H (Z_%Zl)mle —1
=1
l#my
Proof: Since degP > 2, the serie )’ % est uniformly convergent on [—C,C].

Moerever, f is integrable on [—C, C]. Therefore, the solution y(z) can be written in the
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n(mt)d
2C/f =y

m
Setting Ly, (2) = ] (= — %zl)mk , and making the change of variable u = = — ¢, the
=1
expression of y(z) becomes:

ymz;c(;)p / w3 Lm<n>d“

-C n=-—00

form:

™

Making the change of variable t = “Fu on [z — C, 0] and the change of variable t =
on [0,z + C], the precedent expression of y(x) becomes:

Ql

y(z) =

1 (C\P Tco® C .. = exp(int) ek C . = exp(int)
=— (= ¢ St — ¢ 2t
e () (g0 2 e [0 8 2
(6)
Now, since for all z in [-C,C], 0 <7 — &z <27 and 0 < 7+ Fz < 27, we get from
Theorem 2-1,

Qlx

- exp(int) _ 2 1 ezt d = exp(int) o
ng;oo T (1) = —2mi Yy res e o an n:E;oo o =
. izt
_27'(‘227"65 {mm}
Or, from residue’s definition, we have res {ﬁ@%} = (72:(3)! and

res{m%} = (- 1)p(mﬁ:7()), where X\ (t) and fj (t) are given by (5). Hence,
we get the result with (6).

[
Remark 2-3: In the particular case where all the roots of the characteristic polynomial
are simple, the expression of y(z) is reduced to the following expression:

P 1
*Z x
T p
=1 (1 —e2C%) [T (zx — 21)

=1
14k

Q

T—Ex C TG C
y <e2Czk/ © flz+ 7y)e—%2kydy _|_/ ‘ flz— y)egzkydy> . (7)
0 T 0 Q

Remark 2-4: The integrals appearing in (4) and in (7), can be calculated using any
suitable numerical integration method.
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3. The roots of P are not all available

In this paragraph, we are dealing with the case where the roots of the characteristic
polynomial P of the differential equation (1) are not all available. We propose to split the
serie (2) in the two following parts:

y(x) = Su (@) + Su(x)

where
M
Cn

= ing)

and

[e.e]
~ C. ST Cc_ i T
S _ n MET n —ingzT |
v = 3 (wig " e )
n=M+1
Each of the sums Sy/(z) and Sy;(z) will be approximated in a different way. The
integer M is chosen moderate and fixed.

This method is proposed in the case where the forcing term f is of class C* [-C, (],
for a given L.

3.1. Computation of the sum S/ (z)

Let M a moderate and fixed integer. (M ~ 10). To compute effectively the Fourier
coefficients (cn)_ ;<< » We can use any efficient and suitable numerical method. (See [1]).
Among efficient methods for moderate M, we can use certain transformations (¥,,(t))
given by Sidi in [5] and defined by:

m?

t
= 3 (1—cosmt) , t€[0,1]. (8)

m(t) = ‘I/m_g(t)—ﬂgi)(smwt) 1 cos(nt)

)

—~

By returning to the interval [0,1] via the change of variable u = 2C't — C, we obtain

S (w / fect-c < Z ]g(iizr)em(gxzmv dt.

C

Now, using the Sidi transformation given by (8), the sum Sy (z) becomes:

e / FROU (1) — OV, () Grgm (1, )t (9)
M t
With Garn(tir) = > (1) it i,

n=—M
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Applying the trapezoidal rule to order N, (because the transformation of Sidi has been
proposed to make this rule optimal), we obtain the following approximation:

SM(JS) = SMyN(ZC,m) + RM7N(JL‘, m) (10)
with
1 ' j j
Sy (z,m) = N; F200,, (%) — C)\I/’m(N)G]VLm(N,m) (11)
and
Ry n(z,m) =0 (N_(m+1)inf((5°+1)’(70+1))) as N — oc. (12)

This, if we suppose

M n .
i) (n_z_:M %em(bx2ﬂt)> f(QCt — C) ~ OZ<:S mst‘;s, ‘ot

ii) ( IE(;gb)e n(bz— 2’”>> fCt—C)~ S ng(1—t)7, t—1"

0<s
where the v, and 0, are distinct complex numbers that satisfy

-1 < %705%’71§§R’72§'“,li_>m%ysz+oo’
—1 < Rdg < NGy < RNop < -+, lim o = +o0.

The estimate of the quadrature error given by (12) is deduced from Theorem 4-1 given
by Sidi in [5, p. 335]. Better still, the estimate (12) can be improved, again according to
Theorem 4-1 of Sidi, by obtaining

Ragv(w,m) = O (N-0mDnf(@D 0090} as N — o

when we consider the transformation ¥,,(t), where m is an integer that can be written in
the form: .

_q- inf (4o, 7vq)
where ¢ is an even positive integer.

Let us also note that if the forcing term f is highly oscillatory, there is a large litteraure
offering suitable methods for computing Sy (x). See e.g. [6].

3.2. Computation of the sum S, (z)

Let us begin by giving the following notations.
Notation: In the whole of this subsection, we are using the following notations:

Let I = {j € {0,...,p — 1}, \; # 0} where the \; are the coefficients of the characteristic
polynomial P and let 7, = min I.
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Let us note @ the function Q(z) = 27 PP(z)—landlet 6y = > d;(;,k=0,..,K(p—ip)

j+i=k
K K K(p—ip)
where the d; are the coefficients of the polynomial : Y (=1)"Q* (1) = > dy2" and
k=0 k=0
¢ = fAC) - fO(=C) , 0<i<K
10 , K+1<i °
Let us set
R =—R — — R, (MK, L 13
mrp(@) = 5= Rur(@) + 55 2o Gy k (MK, L,x) (13)

with b = % and

R, (MK,L,z) = 2L—1 / Bor( ( )(MK+t)+h;2L)(—MK—t)) dt (14)
ezbzt

where hi(t) = e Esr_1(t) the periodic Euler function and with

_ K (=" QKH1(inb) inba k+p QKF(—inb) _inbax
Ryk(z) = (-1) kgo Ck n:%ﬂ (inb) PP T ( 1+QGnb) € (=)™ THQ(—inb) © )
K(p—ip) 00 inb(z— k K _—4 _
C einb(z—y) _(_1)ktP+K —inb(z—y)
+ ffo f(1+K) (y) > d > (,L»(nb)iz+p+1+1< dy
k=0 n=M+1
[e'e] QK+1(”Lb) einb(z—y) p+K QK+1( inb) e—inb(z—y)
c in =1 T
K f—C f(1+K) (y) n:%+1 e (znb)p+1+1<1+Q( = dy
(15)
Proposition 3-1: With the notations given above, we have
§M<a,’) = §M,K,L<$) + EM,K,L (a;) (16)
with RM,K,L () given by (18), and
_ 1 K(p—ip) 6k
Suk L) =———7 —Suk.L(k, @) (17)
2C (ib)PH! k;o (ib)"
where the Sy k. 1(k,x) are given by
LN (71)’” ibxrn k+p —ibxn
Suk,p(k,z) = Z ki (e —(=1) e )
n=M-+1
(—pM~ b MK hp —ibo MK - B2J
o bz s p _—ibx _
2 (MK )P e (=1)"Pe ']Z; 1)—Uwm,k(k,z,j)

(18)
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where the Baj are the Bernoulli numbers and with

(k+p+1) 1 | _ibeMK ktp —ibaMK
UMkaj Zl' (2 — 1= D) (MK)l ((—1) e +(—1) Pe )

(19)

Proof: From Lemma A-1, we have:
MEW s come gt $ g
(inb)*

Cn — (_1)n+1 +
Plinb) = 20@nb)PT = (inb)* T 2C(inb)P T 14Qnb) =
K(p ip)
1 1 f f 1+K) ) —mbudu

Tac (inb)I;+p+l 15210 (znb )E
(-1) QE+1(inb) 1+K —inb
_ 2C (inb) KTP71 1+Q(mb) f f ) nbu gq,

. o0 ninbz K(p ZP) é.k . p 7’?) 0 n einbl‘
Since >, (—=1)" > byt T = Z o > (=1) Tinb)FroeTs We get
n=M+1 k=0 n=M+1
oo c K(p- zP) ginbr
n inbr _ Z
Z —n_embr — b
n=M+1 P(an) 20 n= M+1 o
K 00 - nbx
S S e
~ kipil
20 3 A L+ @Q (inb) (inb)™"
1 C 1+K K(p ip) 0 inb(z—y)
t36 | A E:% 2 R )W
n=M+1 m

(_1)K C (14K) s etnb(z—y) QK+1 (an)
/;Cf + (y) Z (inb)p+l+Kl+Q(inb) d

2C n=M+1
we obtain the expression of

Replacing n by —n in the previous expression,
[e.e] . —~
> P(c_*ijlb)e*mb‘” Hence, with Rps i (x) defined by (15), the expression of Sys(x) be-
=M
comes:
K(p—ip) 00 inb. k+p —inb
- 1 5k eznm_(_l) Pe mox 1
Su(e) = ~55 e 2 CU + 50 Rarc (@),
iz (ib) n=M+1
With hy(z) = k:_b;il and with The Boole summation formula recalled in (3), we get
oo
D (CMhiln) = (MR R 21(22] ~ Dok ”(MK>>
n= + J
_ ]\/IK
((21L 1 Jo EQL 1( )h(QL)(MK—l-t)d

Similarly, we get by remplacmg in the previous equality, n by —n, we obtain the
k+
corresponding equality for sz; 1(—1)71%6 inbz,
n=M+

Summing now the two obtained equalities, we get:
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0 (_1)MK+1

> (=)™ (h(n) + hi(—n)) = 5 (hi(MK) + hg(-MK))
n=MK-+1

MKZ (h@” Y(MK) - h Y (- MK))+Rk (MK, L,z)

where Ry (MK, L, x) is given by (14). Thus, by setting

~ 1 1 K(p—ip) 5k
Ryk,p(z) = %RMK() Yol WRk(MK,L,x)
k=0 (ib)
and
MK
Surrlk,r) = > (=1)"(hg(n) + hi(=n))

n=M+1
(_1)ZWK

(he(MK) + hx(-MK))

(MRS @ 1) 5 (YD) - WM )
j=1

we get the result by applying Leibniz formula to the h(QJ b,

3.3. Error analysis of the solution

_In this subsection, we will give an error bound due to the approximation of S v (z) by
Sumr,L(T).
Theorem 3-2: Let P(z) = 2P + X\p_12P7 1+ - + Xz + Ao the characteristic polynomial
of the differential equation (1).

Let I ={j €{0,....,p—1},); # 0} and let j, = maxI and i, = min .

Let Q(z) =z PP(z) — 1 and let M and K such that:

1) Vn>M+1, |Q(inb)| < 1 and |1+ Q (inb)| > 1.

2) IA>0,Yn > M +1:|Q (inb)| < L]

(nb)P*jp :

%) 3B > 0, f | AT (y)| dy < MK B.

With p=p+ (p Jp) (K + 1) ,we have the two following error bounds:
x #0,

K+1 K
7 3 aM A, | __B___ Gl
Sy () SM7K,L(5L')’ < (b K < bAl ) <(K+u)bK +k§0 (k+,u)?Mb)k
|dz|
+ Z (k+p+ ) (MB)
K(p—ip) 201
L8 b 1 |5k\ (k+-p+1)!
(30)2L (bMEK)PT2 = (etp ) 2L k+p+2+l (MKB)

(20)
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K+1
~ ~ A|A B 1€
Su (@) = Swk,r(z)| < (Mg\f-K < 1|31\J4p|> <(K+u)bK + Z (k+u)lgMb)k>

||
+ o) PbK+1 Z  (k+p+K)(Mb)*
K(p—ip)
4 11 E+p\ (k+p+2L-1)! |5
+(37rMK)2L (MEKDb)? b kz (1_(_1) p) (k+p)! (bM];()k'

=0
(21)
Proof: We have from (16) and (13),
. . 1 1 K(pflp) 5k
- =— — —0 MK, L
Sy (z) — Snm k() 2CRM,K($) + 20 2 () Ry ( ,L,x),

where Rz g (x) is given by (15) and Ry (MK, L, x) is given by (14).
1) with (15), we get

K 00
1 QE+1(inb) QE+1(—inb)
|RM,K($)| < kgoKlJn:%—i—l (nb)k+p+1 (‘ 1+Q(§nb) ‘ } 1+Q(—inb) D
K(p—ip) 00 c
2 > Jdel Y —wmrr c ‘f(HK)(y)‘ dy
k=0 n=p+1 (")
s 1 QK +1(inb) QK+ (—inb) C | r1+K
+n=%+l (nb)PTITE (‘ 1+Q(§nb) ‘ 1+Q(—inb) D e ‘f( " )<y)| dy.
On one hand, we have: 34 > 0,Vn > M+1:|Q (ind)| < ( b|))\“”| and |1+ Q (inb)| > 3.
AK+1’>\Jp’K+1
Thus: Vn > M + 1, 1+Q (inb) =i (RTD) -

On the other hand, the forcing term f verifies: B > 0, f |3 (y)| dy < MEB.

Hence,

7‘K+I|)‘3P|KJr1 Kk' _ 1

R < 4 E >

| M,K(‘T” = pIFu oy IS N
n=M+1

oo
9 MXB Z |dk| S 1
bp+1+K nktp+1+K
n=M+1

o0
MEB AK+1 |y . |[K+1 1
+yrrTe bl+K+u A ‘)\Jp ‘ z nITE+u-
n=M+1

= 1
Z nitli = jMJ Thus

Moerever, we have for all j > 0,
n=M+1

K+1
Bax@) < —a1 (APl Sl B
M,K = (Mp*E bM = (k+p) (Mb)F (K+p)bx (22)

|d|
+ (Mb) PbK+1 Z (k+p+K)(Mb)
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K(p—ip)

Z giip-&-le(MKﬂLﬂ‘T)

- where
=0 ()

2) Let us now give an upper bound to the term

Ry (MK, L,x) is given by (14).
The Fourier expansion for the periodic Euler function is given by:

~ 4. (2L — cos ((2k + 1)mt

Thus, we obtain:

IR, (MK, L,z)| < /O (’h,(fL)(MK 1)+ AP (MK - t)D . (23)

4
(37r)2L
To give an upper bound to the term |Ry (MK, L,x)|, we are led to distinguish two
cases:  # 0 and x = 0.
First case:  # 0
Using Leibniz formula, we get, h,(fL)(M K+ t)’ <

2L
ketp+1)! 2L—1 : : .
ﬁlgCéLM%(bx) , which gives by using (23), |Ry (MK,L,z)|] <

2L
be\2L 1 1 1 (k+p+D)! 1 .
8 (37) &+p)! (MK)FFP72 ;0 CorL kpprati (MEKb) Hence, we obtain:

K(p—ip)

8 b 2L—1

1 |0k (k+p+0)! =z
<
~ (30)* bMK)PT? kzo (k+p)! (DM K)* Z Thtp+2+1(MED)
Thus, we obtain (20) with (22) and the last mequahty.

Second case: = 0. We have h,(fj) (y) = ((;Tg;,;ﬁfﬁﬂ); which gives:

(1-CU7) g prony
(k+p)! (MK 4 ¢)Frrri2L

WD (MK +t) + h*H (- MK - t)‘ -

4(1—(=1)*t? - . .
Hence, |Ry (MK, L, x)| < ( (:‘EW)Z)L Mk?’ﬁp& L)! (MK),%JFPHL which gives,
% R (MK,L,0)| <
;} (’ib)k+p+1 k( )
K(p—ip)
. 1 pzpw(l—(—mm) (k+p+2L—1) 1
= BrMEK)L b (MEb)P 2~ bk k+p)! (MK
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Hence, we obtain (21) with (22) and the last inequality.
[
Remark 3-3: We note from the inequalities (20) and (21), that the error of approximation

(21),
and 7.

will be all the smaller the smaller the terms AL NJ[” |

4. Numerical examples

In this paragraph, we will consider 2 differential equations. In practice, we will approx-
imate y (x), not by y(x) = Sy .n(z, m) + Sum k,(x), but by

17(95, l) = SM,N('ram) + §M,K,L($7 l)a (24)
where Sy v (z,m) given by (11), 1€ {0,..., K(p —ip)}, and
l

~ 1 Ok
Suk,r(x,l) =— . —Su i, L(k, ).
2C (ib)P* kz_o (ib)*

The reason is that the error due to the approximation of Sy(z) by §M7K,L(x) in (16),
can quickly become small compared to the error due to the approximation of Sy;(x) by
Sy, (z,m) in (10), because this latter approximation will depend closely on the numerical
integration method used to approximate the coefficients ¢, (except in the case of course
where the exact values of ¢, are known).

In the following, we will note

E(z,1) = ly () = y(=,1)| .

and we will consider two differential equations:

yI (@) + y(x) = f(2) (25)

and
v (@) - 3y (2) + 2y(2) = f(x) (26)
where f is a 2-periodic function.

For the first equation (25), we have C' =1, P(2) = 23 +1 = (2 +1)(z —e'5)(z — €'5),
ip = 0 and p = 3. The exact solution is then given from (7) by:

y(x) = 2 ( 1+cos(% )(e2—1) ( i) f(m + %)G%dt + 62 fﬂ(x-i-l) f( - %)G%tdt)
+2 < Rea 1(6 =7 W(l @) flx+ %)e_%tdt — ezz fo (@+1) f(:L‘ - %)eftdt)

. _, T
with z = e7'3.
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For the second equation (26), we have C' = 1, P(z) = 23 =32+ 2 = (2 + 2) (z — 1)?,
ip = 0 and p = 3. The exact solution is then given from (4) by:

y(z)

As ﬁrst example, we consider f(z) = e

flz) = m on [—1,1]. For these two examples, we have:

a) Samn(x
Grm(E,2)

GM,M(%)LE)

1

9m(et—1)

972 (e2—1)2

N-1 .
m) =y Zlf(ﬂfm(%)—
=

I
n——
M )
n —2inmWm (t)
ZM( 1) 233in7rfin37r3
n=

b) S]V[KL(HJ l

(e —e™) Z a]dl

Ok =

I+j=k

K
examples, are the coefficients of the polynomial ) (—
1=0

K
d; are the coefficients of the polynomial " (—
We get the following results with: M = K =

271'4 Z

( (1=

l+j=k

> (-1 (G -

e—2inT¥m (t) intx

for the

=0

D2z -
10, L = 5,0,,(t) = \114()

flz+ %t)e%tdt + et fJ(IH fz—
JTOT fa 4 Lt) (m(e? +5) + 3t(e? —
+97r2(612,1)2 foﬂ(xﬂ) fla—2t) (m(7e® = 1) + 3(1 — ¢?)

first

for the first equation and

e for the second equation.

example,

1(k,z) with Sy k.1 (k, z) given by (18), and

and 1) k

3)! 22 for the second equation.

3% sin(27t) 4+ ﬁ sin(4nt), with N = 60 and for differents values of [, 0 <1 <
For f(t) = e® on [—1,1], we get for the first equation
a=1 a=T
E(0,1) E(3,0) (10,1) E(0,1) E(3,0) (10,l)
1=0]871071°| 33108 | 85108 [ 8310 % | 971077 | 2.710°F
1=3]13100" 29107 6610711 [ 7110719] 4910710831010
1=6]6610"1% 29107 |6.610° 1 [531071*]3.010° 13631010
and for the second equation
a=1 a=T
E(0,1) E(3,1) E(lo,l) E(0,1) E(%,1) E(w,l)
1=0]34107 [ 311091108 | 10107 | 95107 | 2.8 10~
1=3]8510"12 1491072 | 471071 [ 9810719 [ 6710710 | 2.0107°
I1=6]4210"1% 29107 | 661071 [ 73107 *]6210713 |84 10713

n [—1,1], and as second example, we consider

1)\11’7,1(%)GMm(]N,x) with W, (t) given by (8) and

(a_ll)j+1>dl, for the second case, where the d;, for the two

1)! 23 for the first equation and the

— ¢ —
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For f(t) = a%rt on [—1,1], we get for the first equation
a=2 a =20
EQ,) | BGD | BGpl) | EO.D) | BEG.D | EGpD)
I=0]701071°| 13108 | 291078 | 27107 ¥ [ 7110712 ] 1710711
1=3]1791072 321072131073 |16107°1% | 1510716 | 141013
1=6]9910® 61100 [ 19107 [4510°[6110717 141071
and for the second equation
a=2 a =20
E(0,1) E(3,1) E(3%, 1) E(0,1) E(3,0) E(3%,0)
I1=01] 1410% [ 1.310°% [ 2710719 | 5510712 | 1.0 107! | 4.0 10712
1=3112100" [5210712 94107215107 85107 [ 101071
I=6]101007" 67100 191071 [15107° [6510°17 | 1410713

Remark 4-1: When z is close to the extremities C' or —C, we can get better results by
increasing the value of N and the values of L and [. Indeed, we obtain with N = 120 in

(11) and L = 100 in (18), the following values for F(-%,1) for different values of [,

Equation (25)
ft) = e ft) =25
l a= a=T a=2 a=20
085107% [ 27106 | 2910% | 1.710° 1
5 13100 [ 1.11071 [ 441078 [ 2910718
10 1.1107% [ 9510718 | 5.0 10717 | 4.7 10722
Equation (26)
F{) = e ) =5
l a= a=T7 a=2 a=20
090107 [ 281076 | 2710°% [ 4110712
5 139107 [ 151071 [ 521072 | 9510717
1049101731107 [ 31107 | 1.6 10718

5. Conclusion

As we can see, the two results given in this paper, do not only apply to the approxima-
tion of the periodic solution of the differential equation (1), but they can also be useful in
solving any problem whose solution is written in the form (2). It also remains to propose
other methods when, simultaneously, at least one of the roots of the characteristic polyno-
mial is not available and the function is not differentiable or its order of differentiability is
very low.
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6. Appendix

Lemma A-1: Let K € N*, let f € CK[-C,C] and let ¢;, = 55 f_CC f(u)e=mudy, with
b=Z.

C

Let P a polynomial with deg P = p and i, the degree of its lowest degree monomial
and let Q the function given by: Q (z) = z27PP (2) —

Let M € N* such that: Yn > M + 1, |Q (inb)| < 1.

Let o - > diGi, K = 0,..K(p — ip) where (; =
j+i=k

fOC) - fO(-C) , 0<i<K | | _

{ 0 CK+41<i and the d; are the coefficients of the polyno

K(p—ip)

K
mial Y (—1)F QF (1) = Z dpz*. We have:
k=0

(—1)nt1 K(p—ip)

cn _ Ok (=DF* QKT (inb) Z
P(inb) T 20C(inb)PT1 = (inb)* ' 2C(inb)PT1 1+Q(ind) mb
K(p_ip)

1 1 1+K —inbu
+2C (inb)K+P+1 k;ZO (an)k f f ) du

(= 1)K QK+1 inb) 1+K —inbu
"~ 20(inb) TP 1A Qin) LS O e,

Proof: On one hand, we have by simple integration by parts:

K
(=1t Ck 1 /C (K+1)(, \,—inb
Cn = + w)e "M du.
20 Z;) (inb)*1 20 (inb) KT —cf ()

On the other hand, we have P(z) = 2P (1 4+ Q(2)), which gives for n > M + 1,

K
! L . K1 Q1 (inb)
P(inb) ~ (inb)” (kzo( D Q¥ (imb) + ()
Hence,
; p+l _ cp _ 1)+l K k Ak (; K Cr (—1)K+n QE+1(inb)
(6nb) PGnb) 20 ( e (mb)k;](mb)ﬁ 2C 1+Q(ind) Z_: mb
+zc(nb)KZ( 15 Q¥ (inb) [, FOH) (u)e=mbudy
D* QKJrl inb —inbu
26(‘(m)b)K 1+Q( (mb)f FUH) (w)em v du.
Or, with Y (~1)FQt(inb) = ¥ Gy we get, Y0 (—1)"QF(inb) 3 kr =
k=0 k=0 5=0 =0
K(p—ip)
> G ’g)k with 6 = > d;¢;, k=0,.., K(p —ip). Thus, we get the result.
k=0 j+i=k
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