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On the Padovan Triangle
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Abstract. In the present work, we consider the Padovan numbers. Inspiring of the Hosoya’s
triangle, we define the Padovan triangle. We give some identities and properties of the Padovan
triangle.
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1. Introduction

There are so many studies in the literature that are about the special number sequences
such as Fibonacci, Lucas, Pell, Jacobsthal, Tribonacci, Padovan, and Perrin (for the details
see [3, 8, 9, 10, 11, 13, 14, 18]). The most known of these are the Fibonacci numbers. The
other important special numbers are the Padovan numbers. The Padovan sequence is
named after Richard Padovan. For more information see [12, 16]. The Padovan sequence
{Pn} is defined by the third order recurrence

Pn = Pn−2 + Pn−3, n ≥ 3 (1)

with the initial conditions P0 = 1, P1 = 1, P2 = 1. The first few members of this
sequence are given as follows

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ...

Pn 1 1 1 2 2 3 4 5 7 9 12 16 21 28 37 49 ...

The recurrence (1) involves the characteristic equation

x3 − x− 1 = 0.

If its roots are denoted by λ, µ and δ, then the following equalities are hold

λ+ µ+ δ = 0,
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λµ+ λδ + µδ = −1,

λµδ = 1.

Moreover, the Binet formula for the Padovan sequence is

Pn = aλn + bµn + cδn (2)

where,

a =
(µ− 1)(δ − 1)

(λ− µ)(λ− δ)
, b =

(λ− 1)(δ − 1)

(µ− λ)(µ− δ)
, c =

(λ− 1)(µ− 1)

(δ − λ)(δ − µ)
. (3)

2. Padovan Triangle

H.Hosoya ([4]) defined a triangular array {fm,n}m≥n≥0 of positive integers which is
called Fibonacci triangle. The Fibonacci or Hosoya’s triangle {fm,n}m≥n≥0 is defined by
the two recurrences

(i) fm,n = fm−1,n + fm−2,n, (m ≥ 2)

(ii) fm,n = fm−1,n−1 + fm−2,n−2, (m ≥ 2)

with the initial conditions

f0,0 = 1, f1,0 = 1, f1,1 = 1, f2,1 = 1.

Hosoya shows that the {fm,n} is two dimensional of the Fibonacci sequence(for the details
see [4, 5, 6, 7, 15, 17]). Inspiring of the Fibonacci triangle, we consider a new array by
Padovan numbers. The Padovan triangle {Υm

n }m≥n≥0 is defined by the recurrences

(i)

Υm
n = Υm

n−2 +Υm
n−3, (m ≥ 3) (4)

(ii)

Υm
n = Υm−2

n−2 +Υm−3
n−3 , (m,n ≥ 3) (5)

with the initial conditions

Υ0
0 = Υ0

1 = Υ1
1 = 1,

Υ0
2 = Υ1

2 = Υ2
2 = 1, (6)

Υ1
3 = Υ2

3 = Υ2
4 = 1.

Here, Υm
n denotes the element in row n and column m. The numbers Υm

n can be arranged
triangularly as in Figure 1 or Figure 2.
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Figure 1: Binomial Padovan Triangle

Figure 2: Padovan Triangle numbers

From the relation (4) we write

Υ0
n = Υ0

n−2 +Υ0
n−3,

and by Υ0
0 = 1 = P0, Υ

0
1 = 1 = P1, Υ

0
2 = 1 = P2, we conclude

Υ0
n = Pn.

Likewise, since Υn
n = Υn

n−2 +Υn
n−3 it follows that

Υn
n = Pn.

Similarly, we can show that
Υ0

n = Υn
n = Pn,

or
Υ1

n = Υn−1
n = Pn−1.

Successive applications of the recurrence (4) give interesting patterns

Υm
n = Υm

n−2 +Υm
n−3
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= Υm
n−3 +Υm

n−4 +Υm
n−5

= Υm
n−4 + 2Υm

n−5 +Υm
n−6

= 2Υm
n−5 + 2Υm

n−6 +Υm
n−7

= 2Υm
n−6 + 3Υm

n−7 + 2Υm
n−8

= . . .

Continuing like this, we find a close link between Υm
n and Padovan numbers:

Υm
n = Pk−2Υ

m
n−k + Pk−1Υ

m
n−k−1 + Pk−3Υ

m
n−k−2

where, 2 ≤ k ≤ n−m− 2.
In particular, let k = n−m− 2. Then, we have

Υm
n = Pn−m−4Υ

m
m+2 + Pn−m−3Υ

m
m+1 + Pn−m−5Υ

m
m

= Pn−m−4Pm + Pn−m−3Pm + Pn−m−5Pm

= (Pn−m−4 + Pn−m−3 + Pn−m−5)Pm

= (Pn−m−2 + Pn−m−3)Pm

= Pn−mPm. (7)

Thus, every element in the array is a product of two Padovan numbers. For example,

Υ4
6 = P6−4P4 = P2P4 = 1.2 = 2,

Υ6
9 = P9−6P6 = P3P6 = 2.4 = 8.

Since Υm
n = Υn−m

n , it follows from equation (7) that

Υm
n = Υn−m

n = Pn−mPm.

Let n = 2r and m = r.The equality (7) yields

Υr
2r = PrPr = P 2

r .

Thus, Υr
2r is the square of a Padovan number. In other words, the elements along the

vertical line through the middle are Padovan squares. For example,

Υ3
6 = P 2

3 = 4,

Υ5
10 = P 2

5 = 9.

.

Theorem 2.1. The Binet-like formula for the Padovan triangle is

Υm
n = amλn + bmµn + cmδn
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where
am = a2 + abµ2mδm + acµmδ2m,

bm = b2 + abλ2mδm + bcλmδ2m,

cm = c2 + acλ2mµm + bcλmµ2m,

and a, b and c are defined in (3).

Proof. By using the relations above, we can write that

Υm
n = Pn−mPm = (aλn−m + bµn−m + cδn−m)(aλm + bµm + cδm)

= a2λn + abλn−mµm + acλn−mδm

+ abλmµn−m + b2µn + bcµn−mδm

+ acλmδn−m + bcµmδn−m + c2δn

= (a2 + abµ2mδm + acµmδ2m)λn

+ (b2 + abλ2mδm + bcλmδ2m)µn

+ (c2 + acλ2mµm + bcλmµ2m)δn

= amλn + bmµn + cmδn.

Using the similar techniques in [1, 2] we can prove the following result.

Theorem 2.2. The generating function for the partial sum of the Padovan triangle num-
bers is

GΥ(x) =
∞∑
n=0

(
n∑

m=0

Υm
n

)
xn =

1 + 2x+ x2

(1− x2 − x3)2
.

Proof. Let

GΥ(x) =

∞∑
n=0

(
Υ0

n +Υ1
n +Υ2

n · · ·+Υn−1
n +Υn

n

)
xn

= Υ0
0 +

(
Υ0

1 +Υ1
1

)
x+

(
Υ0

2 +Υ1
2 +Υ2

2

)
x2 + · · ·+

(
Υ0

n +Υ1
n + · · ·+Υn

n

)
xn + . . .

be generating function for the partial sum of the Padovan triangle numbers. Multiplying
every side of this function with −2x2, −2x3, x4, 2x5, x6, respectively, such as

−2x2GΥ(x) = −2Υ0
0x

2 − 2
(
Υ0

1 +Υ1
1

)
x3 − 2

(
Υ0

2 +Υ1
2 +Υ2

2

)
x4 + . . .

− 2
(
Υ0

n +Υ1
n + · · ·+Υn

n

)
xn+2 + . . .

−2x3GΥ(x) = −2Υ0
0x

3 − 2
(
Υ0

1 +Υ1
1

)
x4 − 2

(
Υ0

2 +Υ1
2 +Υ2

2

)
x5 + . . .
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− 2
(
Υ0

n +Υ1
n + · · ·+Υn

n

)
xn+3 + . . .

x4GΥ(x) = Υ0
0x

4 +
(
Υ0

1 +Υ1
1

)
x5 +

(
Υ0

2 +Υ1
2 +Υ2

2

)
x6 + . . .

+
(
Υ0

n +Υ1
n + · · ·+Υn

n

)
xn+4 + . . .

2x5GΥ(x) = 2Υ0
0x

5 + 2
(
Υ0

1 +Υ1
1

)
x6 + 2

(
Υ0

2 +Υ1
2 +Υ2

2

)
x7 + . . .

+ 2
(
Υ0

n +Υ1
n + · · ·+Υn

n

)
xn+5 + . . .

x6GΥ(x) = Υ0
0x

6 +
(
Υ0

1 +Υ1
1

)
x7 +

(
Υ0

2 +Υ1
2 +Υ2

2

)
x8 + . . .

+
(
Υ0

n +Υ1
n + · · ·+Υn

n

)
xn+6 + . . .

Then, we have

(1− x2 − x3)2GΥ(x) = Υ0
0 +

(
Υ0

1 +Υ1
1

)
x+

(
Υ0

2 +Υ1
2 +Υ2

2 − 2Υ0
0

)
x2

+ (Υ0
3 +Υ1

3 +Υ2
3 +Υ3

3 − 2Υ0
1 − 2Υ1

1 − 2Υ0
0)x

3 + . . .

+ (−2Υ0
n − 2Υ1

n − · · · − 2Υn
n − · · · − 2Υ0

n−2 − 2Υ1
n−2 − . . .

− 2Υn
n−2 + · · ·+Υ0

n−3 +Υ1
n−3 + · · ·+Υn

n−3 + . . .

+Υ0
n−4 +Υ1

n−4 + · · ·+Υn
n−4 + · · ·+ 2Υ0

n−5 + 2Υ1
n−5 + . . .

+ 2Υn
n−5 + · · ·+Υ0

n−6 +Υ1
n−6 + · · ·+Υn

n−6)x
n + . . .

Now, using (6) and

n∑
m=0

Υm
n − 2

n−2∑
m=0

Υm
n−2 − 2

n−3∑
m=0

Υm
n−3 +

n−4∑
m=0

Υm
n−4 + 2

n−5∑
m=0

Υm
n−5 +

n−6∑
m=0

Υm
n−6 = 0,

we obtain that

GΥ(x) =
1 + 2x+ x2

(1− x2 − x3)2
.

Thus, the proof is completed.

3. Some Identities of the Padovan Triangle

The properties of various configurations within the triangular array for the Fibonacci
triangle were investigated in [4]. Here, we examine similar properties for the Padovan
triangle.

Proposition 3.1. The following relations are valid
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1. Υm
n = Υm+3

n+6 +Υm+1
n+2 −

(
Υm+1

n+4 +Υm+3
n+4

)
,

2. Υm−1
n−2 Υ

m+1
n+2 = Υm−1

n Υm+1
n ,

3. Υm+3
n+6 = Υm+1

n+2 +Υm+1
n+1 +Υm

n+1 +Υm
n ,

4. Υn
2n = Υ0

nΥ
n
n.

Proof. 1. Using (7) and Figure 2 we can illustrated the Figure 3: By Figure 2 and (7)

Figure 3:

we obtain

Υm
n = Υm+3

n+6 +Υm+1
n+2 −

(
Υm+1

n+4 +Υm+3
n+4

)
= Pn−m+3Pm+3 + Pn−m+1Pm+1 − (Pn−m+3Pm+1 + Pn−m+1Pm+3)

= (Pn−m+1 − Pn−m+3)Pm+1 + (Pn−m+3 − Pn−m+1)Pm+3

= −Pn−mPm+1 + Pn−mPm+3

= Pn−m (Pm+3 − Pm+3)

= Pn−mPm.
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2. Using (7) and Figure 2 we can illustrated the Figure 4:

Figure 4:

By Figure 2 and (7) we obtain

Υm−1
n−2 Υ

m+1
n+2 = Υm−1

n Υm+1
n ,

Pm−n−1Pm−1Pn−m+1Pm+1 = Pm−n+1Pm−1Pn−m−1Pm+1,

1 = 1.

3. Using (7) and Figure 2 we can illustrated the Figure 5:

Figure 5:
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By Figure 2 and (7) we obtain

Υm+3
n+6 = Υm+1

n+2 +Υm+1
n+1 +Υm

n+1 +Υm
n

= Pn−m+1Pm+1 + Pn−mPm+1 + Pn−m+1Pm + Pn−mPm

= Pn−m+3Pm+1 + Pn−m+3Pm

= Pn−m+3Pm+3.

4. Using (7) and Figure 2 we can illustrated the Figure 6:

Figure 6:

By Figure 2 and (7) we obtain

Υn
2n = Υ0

nΥ
n
n

= PnP0P0Pn

= PnPn.
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