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On the Padovan Triangle
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Abstract. In the present work, we consider the Padovan numbers. Inspiring of the Hosoya’s
triangle, we define the Padovan triangle. We give some identities and properties of the Padovan
triangle.
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1. Introduction

There are so many studies in the literature that are about the special number sequences
such as Fibonacci, Lucas, Pell, Jacobsthal, Tribonacci, Padovan, and Perrin (for the details
see [3, 8,9, 10, 11, 13, 14, 18]). The most known of these are the Fibonacci numbers. The
other important special numbers are the Padovan numbers. The Padovan sequence is
named after Richard Padovan. For more information see [12, 16]. The Padovan sequence
{P,} is defined by the third order recurrence

P,=P, 2+ Py3 n=3 (1)

with the initial conditions Py = 1, P; = 1, P, = 1. The first few members of this
sequence are given as follows

n |0|1|2[3]4|5|6|7[8|9|10|11]12|13| 14|15
P, 11122 3[4]5[7|9|12|16|21|28]|37]49
The recurrence (1) involves the characteristic equation

-z —-1=0.
If its roots are denoted by A, u and §, then the following equalities are hold
A4+ p+6=0,
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A+ A6+ pd = —1,

Apd = 1.
Moreover, the Binet formula for the Padovan sequence is
P, =a\" +bu" + cd" (2)
where,
—1D(0-1 -6 -1 —D(p—1
fo (=DE=1) | O=DE=1) (A =D(=1) 5

2. Padovan Triangle

H.Hosoya ([4]) defined a triangular array {fmn},,>,>o of positive integers which is
called Fibonacci triangle. The Fibonacci or Hosoya’s triangle { Smn}msnso 18 defined by
the two recurrences o

(1) fm,n = fm—l,n + fm—2,m (m > 2)
(11) fm,n = fm—l,n—l + fm—2,n—27 (m > 2)
with the initial conditions
Joo=1fio=1/fi1=1fen1 =1

Hosoya shows that the {fy,,} is two dimensional of the Fibonacci sequence(for the details
see [4, 5, 6, 7, 15, 17]). Inspiring of the Fibonacci triangle, we consider a new array by
Padovan numbers. The Padovan triangle {Tnm}mano is defined by the recurrences

(i)
T =Tpa+Tpls (m>3) (4)

(i)

with the initial conditions
=19 =11 =1,
Yo="T;="T5=1, (6)
Ti=T3="T}i=1.

Here, 17" denotes the element in row n and column m. The numbers Y* can be arranged
triangularly as in Figure 1 or Figure 2.
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Figure 1: Binomial Padovan Triangle
1
1 1
1 1 1
2 1 1 2
2 2 1 2 2
3 2 2 2 2 3
4 3 2 4 2 3 4
5 a 3 4 4 3 4 5
7 5 4 6 4 6 4 5 7
9 7 5 8 6 6 8 s 7 9
12 9 7 10 8 9 8 10 7 9 12
16 12 9 14 10 12 12 10 14 9 12 16
21

21 16 12 18 14 15 16 15 14 18 12 16

Figure 2: Padovan Triangle numbers

From the relation (4) we write
Ty ="Th o+ Th s,
and by Y =1= Py, Y{ =1= P, T) = 1= P, we conclude
10 = P,.

Likewise, since T} = T7'_5 + 174 it follows that

Similarly, we can show that
T =" = P,

or
1 n—1
Y. =Yrl=p, .

Successive applications of the recurrence (4) give interesting patterns

T =T+
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=T s+ T+ 10
=T +2T0 5+ 106
— YT 2T T
— 2T 3T 42T

Continuing like this, we find a close link between Y] and Padovan numbers:
Ty = Pe2Xn 4+ Pea T3ty + B30 o

where, 2 < k<n-—m — 2.
In particular, let k = n — m — 2. Then, we have

Yo = Po—m-aY 0+ Poom—3Y 1+ Poom—sT),
=Pom-aPp + Po—n—3Pn + Pr—in—5Pm
= (Pp—m—-a+ Po—m—3+ Po—m—5)Pn
= (Pyr—m—2+ Prn—m—3)Pn,
= Py_nPp. (7)

Thus, every element in the array is a product of two Padovan numbers. For example,
Yi=Ps 4Py= PPy =12=2,

TS =Py ¢Ps = P3Ps = 2.4 =8.

Since T7' = Y7~™, it follows from equation (7) that
T ="T""= P, nPn.
Let n = 2r and m = r.The equality (7) yields
b= PP, = P2

Thus, 15, is the square of a Padovan number. In other words, the elements along the
vertical line through the middle are Padovan squares. For example,

Ti=P5 =4,

Theorem 2.1. The Binet-like formula for the Padovan triangle is

TP = am A" + by p" + e d”
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where

Uy = CL2 + ab’u2m5m m62m’
b = b2 + abA?™ 6™ + beN 52T,
Cm = &+ acX®m ™ + beA™ ™,

and a, b and ¢ are defined in (3).

+ acp

Proof. By using the relations above, we can write that

Yo = PP = (@X"™ ™ + 0" 4+ ¢6") (@A + bp™ + ™)
= a® A" 4 abAVT ™+ acAtT ™
+ abA" ™ 4 D2 ™ bep ™™
+ acA™E" ™ 4 bep™E" ™ + 20"

= (a® + abp®™ 6™ + acu™ >IN
+ (b® + abAF"E™ + beA™ 6P "
+ (% + ach®™ U™+ beA™ ™) 5"
= amA" + by + 6"

Using the similar techniques in [1, 2] we can prove the following result.

Theorem 2.2. The generating function for the partial sum of the Padovan triangle num-
bers is

R = m) n 1+ 2z + 22
GT(x):Z< Tn>x = (1— 22— %)%
0

n=0 \m=
Proof. Let
_ - 0 1 2 n—1 n n
Gr(z)=> (X0 +"Th+ X5+ L0+ 1)
n=0

=Y0+ (Y9 + ) e+ (Y+Y5+7 3)a” +- + (YO +Th+- +TH)a" +...

be generating function for the partial sum of the Padovan triangle numbers. Multiplying
every side of this function with —2z2, —223, 24, 225, 25, respectively, such as

—22°Gr(z) = —200® — 2 (XYY + Y1) 2® — 2 (Y9 + Y3+ T3) 2" + ...
—2(Y0 +Th Y R

—22°Gry(z) = —2Y02® — 2 (XY + Y1) a* — 2 (Y9 + Y3+ T3)2° + ...
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—2(Xp + T+ TPy

Gy () = That + (Y +11) 2® + (Y + Y3+ 73) 2% + ...
+ (X)) 4 X

20°Gr(z) = 2Y02° + 2 (T + Y1) 2% + 2 (Y + Y5+ Y3) 2" +...
+2(X0+ Xy e+ T 2"

129Gy (z) = Tt + (Y + Y1) 2" + (Y + Y3+ 13) 2%+ ...
+ (X0 + X A XY 2O
Then, we have
(1 -2 — 232Gy (z) :T8+(T?+T%)$+ (T8+T%+T§—2T8) 22
+ (Y + 5+ T3+ 75 — 270 — 277 — 270)2” + ...
+ (=200 —orl — ..oy ... 20 oyl .
S GLIPE TR R (SN T SIS SRR e SIS
Y A e YT 2 2T
+207 s+ Ty g+ Yo+ T g)a™ +

Now, using (6) and
n n—2 n—3 n—4 n—>s n—6
DA =2 A, —2) AT+ D> A +2) T+ > Yre =0,
m=0 m=0 m=0 m=0 m=0 m=0
we obtain that

1+ 2z + 22

Gr(z) = A2 =2

Thus, the proof is completed. O

3. Some Identities of the Padovan Triangle

The properties of various configurations within the triangular array for the Fibonacci
triangle were investigated in [4]. Here, we examine similar properties for the Padovan
triangle.

Proposition 3.1. The following relations are valid
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3 1 1 3
10 =T+ 0 — (T + o)

m—1lnm+1 _ ~vm—1~ym+1
2. Tn—2 T'n,—i—2 — Tn Tn )

3. TZE:%S = T;njzl + TZ?T + Toh + 10,

i Lk

n

Proof. 1. Using (7) and Figure 2 we can illustrated the Figure 3: By Figure 2 and (7)

Figure 3:

we obtain

T =T + Tty — (T + 000)
= n—m+3pm+3 + Pn—m+1Pm+1 - (Pn—m+3pm+1 + Pn—m+1Pm+3)
= (Pro—m+1 — Po—m+3) P41 + (Po—m+3 — Po—m+1) Pm+3
= —Po-mPrmt+1 + Po—mPm+3
= Po—m (Pm+3 — Pm+3)
=P,_mPn.



2. Using (7) and Figure 2 we can illustrated the Figure 4:

i
Figure 4:
By Figure 2 and (7) we obtain
—1 +1 __ —1 1
T Tty =TT,
menflpmflpnfm+lpm+1 = Pm7n+1Pm71Pnfm71Pm+1>
1=1.

3. Using (7) and Figure 2 we can illustrated the Figure 5:

§

Figure 5:

73
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By Figure 2 and (7) we obtain

Tols = Ty + T+ T+
- n—m+1Pm+1 + Pn—mpm+1 + Pn—m+1Pm + Pn—mpm
= n—m+3Pm+1 + Pn—m+3pm

= n—m+3Pm+3-

4. Using (7) and Figure 2 we can illustrated the Figure 6:

1,
Figure 6:
By Figure 2 and (7) we obtain
by =TT
— P,P,P,P,
=P, P,.

O
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