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On the preservation of the B-Convexity and B-Concavity
of functions by Bernstein Operators
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Abstract. In this study, we investigated whether Bernstein operators preserve B-convexity and
B-concavity of functions. It has been proven that the Bernstein Operators do not preserve the
property B-convexity of functions, but preserve B-concavity of functions.
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1. Introduction

One of the major problems in approximation theory is to determine whether polyno-
mials approximating functions have the same form as functions. This kind of approach,
especially used in Computer Aided Geometric Design, Robotics and Chemistry, is called
the shape preserving approach.

Let f : [0, 1]→ R and n ∈ N. The polynomial given by

Bn(f)(x) =
n∑
k=0

(
n

k

)
xk(1− x)n−kf

(
k

n

)
is called nth Bernstein polynomial related to f . These polynomials are very useful for
the shape preserving approach. It is well known that if f ∈ C[0, 1], then the sequence
of the Bernstein polynomials related to f uniformly converges to f . There are many
studies on whether these polynomials introduced by S.N. Bernstein [3] in 1912, preserve
various convexities. Some of the studies as follows: T. Popoviciu [11] in 1937 showed that
if f : [0, 1]→ R is a k-convex function (k ∈ N0) then Bn(f) is k-convex, for each n ∈ N.

Definition 1.1 ([9]). A function f : [0, 1]→ R is said to be starshaped function if f(λx) ≤
λf(x) for each x ∈ [0, 1] and λ ∈ [0, 1].
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If f differentiable on [0, 1], f(0) = 0 and f(x) ≥ 0 for each x ∈ (0, 1], then the
starshapedness of f is equivalent to inequality xf ′(x) − f(x) ≥ 0, for all x ∈ (0, 1]. In
1967, L. Lupaş [9] showed that if f differentiable on [0, 1], f(0) = 0 and f(x) ≥ 0 for
each x ∈ (0, 1], then Bn(f)(0) = 0, Bn(f)(x) ≥ 0 (x ∈ (0, 1]) and Bn(f) is starshaped
for all n ∈ N. Also, in 1996, R. Paltanea [10] proved that if f is k-quasiconvex (k ∈ N0)
then Bn(f) is k-quasiconvex for each n ∈ N. In 1989, T.N.T. Goodman [7] established
that Bernstein polynomials preserve log-concavity and in 2020, A. Komisarski [8] get a
similar result by strengthening of Goodman’s result. But, in 2016, O. Vinogradov and
A. Ulitskaya [12] have given an example that Bernstein Polynomials do not preserve log-
convexity. For further results and detail about the shape-preserving approximation of real
functions of one real variable by real polynomials, we refer to the book of S. G. Gal [6].

The aim of this paper is to investigate about whether Bernstein polynomials preserve
B-convexity and B-concavity.

The concept of B-convexity was defined by W. Briec and C. Horvath in 2004 [4].
Since this concept related with economy, in next studies concentrated to the set Rn+ :=
{(x1, x2, ..., xn) : xi ≥ 0, i = 1, 2, ..., n}. The properties of B-convexity were studied
widely by W. Briech, C. Horvard, A.M. Rubinov, G. Adilov and I. Yesilce (see [5, 4, 1, 2]
and references therein ). These topic have been studied to date and one of the results for
the set Rn+ is the following: For x = (x1, x2, ..., xn), y = (y1, y2, ..., yn) ∈ Rn, let

x ∨ y := (max{x1, y1},max{x2, y2}, ...,max{xn, yn}).

Proposition 1.1 ([4]). Let A ⊂ Rn+. A is B-convex iff λx ∨ y ∈ A for all x, y ∈ A and
λ ∈ [0, 1].

Definition 1.2 ([2]). A function, f : A ⊂ Rn+ → R+ is said to be B-convex function, if
and only if A is B-convex and f(λx ∨ y) ≤ λf(x) ∨ f(y) for all x, y ∈ A and λ ∈ [0, 1].

Similarly, if A is B-convex and f(λx ∨ y) ≥ λf(x) ∨ f(y) for all x, y ∈ A and λ ∈ [0, 1]
then f is called B-concav function.

2. Main Results

In the sequel of the study, we consider the set A = [0, 1] as a B-convex set and non-
negative real valued functions defined on [0, 1].

Lemma 2.1. If f : [0, 1]→ R+ is a decreasing function, then f is a B-convex function.

Proof. Let x, y ∈ [0, 1] and λ ∈ [0, 1]. There are two cases:

1. For λx ≤ y, we get f(λx ∨ y) = f(y) ≤ λf(x) ∨ f(y)

2. For λx > y, we get f(λx∨ y) = f(λx) ≤ f(y) ≤ λf(x)∨ f(y) since f is a decreasing
function.

Thus from above two cases, for all x, y ∈ [0, 1] and λ ∈ [0, 1], f(λx ∨ y) ≤ λf(x) ∨ f(y).
This shows that f is B-convex.



79

Corollary 2.1. If f : [0, 1] → R+ is a decreasing function, then Bn(f) is a B-convex
function for each n ∈ N.

Proof. Since Bernstein polynomials of a decreasing function are decreasing, proof is clear
from lemma 2.1.

Lemma 2.2. If f : [0, 1]→ R+ is a starshaped function, then f is a B-convex function.

Proof. Since f is starshaped function, the inequality f(λx) ≤ λf(x) is provided for all
λ ∈ [0, 1]. Hence, for all x, y ∈ [0, 1] and λ ∈ [0, 1], we have f(λx∨y) = f(y) ≤ λf(x)∨f(y)
when λx ≤ y and then f(λx ∨ y) = f(λx) ≤ λf(x) ≤ λf(x) ∨ f(y) when λx > y. Thus f
is B-convex.

Corollary 2.2. If f : [0, 1] → R+ is a starshaped function and let f(0) = 0 , then
Bernstein polynomials Bn(f) are B-convex.

Lemma 2.3. Let f : [0, 1]→ R+ be an increasing function. Then f is a B-convex function
iff f is a starshaped function.

Proof. If f is a B-convex function, then, we have f(λx∨y) ≤ λf(x)∨f(y), for all x, y ∈ [0, 1]
and λ ∈ [0, 1]. Let us take y = 0. Thus, the inequality f(λx∨0) ≤ λf(x)∨f(0) is provided
for all λ, x ∈ [0, 1]. Also, f(λx) ≥ f(0) and λf(x) ≥ f(0) since f is increasing. Hence, we
get the inequality f(λx) ≤ λf(x). for all x ∈ [0, 1] and λ ∈ [0, 1].

If f is a starshaped function, the B-convexity of the function is clear from the lemma
2.3.

So far, we proved that decreasing and starshapedness are sufficient for B-convexity but
not necessary. To give an example which is not decreasing and starshaped function, we
may use the following lemma.

Lemma 2.4. Let f : [0, 1] → R+ and c ∈ [0, 1]. If the function f is decreasing on [0, c]
and the inequality f(λx) ≤ λf(x) hold for all λx ∈ [c, 1] with x, λ ∈ [0, 1] then f is a
B-convex function.

Proof. When the cases c = 0 and c = 1, the proof is obvious. Let x, y ∈ [0, 1] and λ ∈ [0, 1].
If λx ≤ y, then

f(λx ∨ y) = f(y) ≤ λf(x) ∨ f(y). (1)

For λx > y, there are three cases. If λx, y ∈ [c, 1], then

f(λx ∨ y) = f(λx) ≤ λf(x) ≤ λf(x) ∨ f(y). (2)

If λx, y ∈ [0, c], then

f(λx ∨ y) = f(λx) ≤ f(y) ≤ λf(x) ∨ f(y). (3)



80 T. Tunc, M. Uzun

If λx ∈ [c, 1] and y ∈ [0, c], then

f(λx ∨ y) = f(λx) ≤ λf(x) ≤ λf(x) ∨ f(y). (4)

From (1), (2), (3) and (4) we obtain the inequality f(λx ∨ y) ≤ λf(x) ∨ f(y) for all
x, y ∈ [0, 1] and λ ∈ [0, 1]. This shows that f is a B-convex function.

Remark 2.1. The Bernstein Operators do not preserve the property B-convexity of func-
tions.

Example 2.1. Let f : [0, 1]→ R+ be defined by

f(x) =

{
1− x, if 0 ≤ x ≤ 1

2

x, if 1
2 < x ≤ 1

From lemma 2.6 this function is B-convex. However, the Bernstein polynomials related to
the funtion f do not provide the B-convexity. For example, for n = 2

B2(f)(x) =
2∑

k=0

(
2

k

)
xk(1− x)2−kf

(
k

2

)
= 1− x+ x2

If we take λ = 3
4 , x = 1 and y = 1/2, we have λx = 3

4 >
1
2 = y and

B2(f)

(
λx =

3

4

)
=

13

16
, B2(f)

(
y =

1

2

)
=

3

4
and

3

4
Bn(f)(x = 1) =

3

4
.

As a result of these equalities, we get the inequality

B2(f)

(
3

4
∨ 1

2

)
= B2(f)

(
3

4

)
>

3

4
B2(f)(1) ∨B2(f)

(
1

2

)
.

Thus B2(f) is not B-convex

Lemma 2.5. Let f : [0, 1]→ R+ be a differentiable function on [0, 1]. Then, the inequality
f(λx) ≥ λf(x) holds for all x ∈ [0, 1] and λ ∈ [0, 1] iff the inequality xf ′(x) − f(x) ≤ 0
holds for all x ∈ [0, 1].

Proof. In the case x = 0, the proof is clear. Let x > 0 and (λn) be a sequence in [0, 1]
with limn→∞ λn = 1. Since f(λnx) ≥ λnf(x) for each n ∈ N, then we have

f(λnx)− f(x)

(λn − 1)x
≤ f(x)

x
.

Thus, we get

f ′(x) = lim
n→∞

f(λnx)− f(x)

(λn − 1)x
≤ f(x)

x

This shows that the inequality xf ′(x)− f(x) ≤ 0 holds.
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Now, if f is differentiable on (0, 1] then g(x) = f(x)
x is a decreasing function on (0, 1]

since
(f(x)

x

)′
= xf ′(x)−f(x) ≤ 0. From this reason, we have g(λx) ≥ g(x) i.e. f(λx)

λx ≥
f(x)
x .

Consequently we have the inequality f(λx) ≥ λf(x).

Theorem 2.1. Let f : [0, 1]→ R+. Then f is a B-concav function iff f is increasing and
the inequaliy f(λx) ≥ λf(x) holds for all x, λ ∈ [0, 1].

Proof. Since f is B-concav, the inequality f(λx ∨ y) ≥ λf(x) ∨ f(y) is provided for all
x, y ∈ [0, 1] and λ ∈ [0, 1]. Let λ = 1. Thus, if x > y, then we have

f(x ∨ y) = f(x) ≥ f(x) ∨ f(y) ≥ f(y).

This shows that f is an increasing function on [0, 1]. Also, if we take y = 0, then we obtain

f(λx ∨ 0) = f(λx) ≥ λf(x) ∨ f(0) ≥ λf(x)

for all x, λ ∈ [0, 1].

For inverse, let x, y ∈ [0, 1] and λ ∈ [0, 1]. Since f is increasing,

λx ≤ y ⇒ f(λx ∨ y) = f(y) ≥ λf(x) ∨ f(y) (5)

λx > y ⇒ f(λx ∨ y) = f(λx) ≥ λf(x) ∨ f(y). (6)

Consequently, from (5) and (6), we get the inequality f(λx ∨ y) ≥ λf(x) ∨ f(y) for all
x, y ∈ [0, 1] and λ ∈ [0, 1]. Hence f is a B-concav function.

Corollary 2.3. Let f : [0, 1] → R+ be a differentiable function on [0, 1]. Then f is a
B-concav function iff f is increasing and the inequality xf ′(x) − f(x) ≤ 0 holds for all
x ∈ [0, 1].

Theorem 2.2. If f : [0, 1]→ R+ is a B-concav function then Bn(f) is B-concav for each
n ∈ N.

Proof. Let n ∈ N. For prove to the theorem, it is sufficient to show that the nth Bernstein
polynomial of the function is increasing and satisfies the inequality xB

′
n(f)(x)−Bn(f)(x) ≤

0 for all x ∈ [0, 1]. For the derivate of the nth Bernstein Polynomial, we have the following
equality

B
′
n(f)(x) =

n−1∑
k=0

n

(
n− 1

k

)[
f

(
k + 1

n

)
− f

(
k

n

)]
xk(1− x)n−k−1.

Moreover xk(1 − x)n−k ≥ 0 for all x ∈ [0, 1], k = 0, 1, ..., n and
[
f
(
k+1
n

)
− f

(
k
n

)]
≥ 0

since f is increasing (due to B-concavity of f). Thus, B
′
n(f)(x) ≥ 0 for all x ∈ [0, 1].

Consequently, Bn(f) is increasing for each n ∈ N.
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For second part of proof, we can easily see the following equalities with simple algebraic
operations:

Bn(f)(x)

x
=

n−1∑
k=0

(
n

k + 1

)(
n− 1

k

)
f

(
k + 1

n

)
xk(1− x)n−k−1

and

B
′
n(f)(x)− Bn(f)(x)

x
=

n−1∑
k=0

n

(
n− 1

k

)[(
k

k + 1

)
f

(
k + 1

n

)
− f

(
k

n

)]
xk(1− x)n−k−1.

Since f provides the inequality f(λx) ≥ λf(x) for all x, λ ∈ [0, 1], we obtain(
k

k + 1

)
f

(
k + 1

n

)
− f

(
k

n

)
≤ f

(
k

k + 1

k + 1

n

)
− f

(
k

n

)
= f

(
k

n

)
− f

(
k

n

)
= 0 .

Considering this inequality and
(
n−1
k

)
xk(1 − x)n−k−1 ≥ 0

(
x ∈ [0, 1]

)
, consequently

Bernstein polynomial provide the condition

xB
′
n(f)(x)−Bn(f)(x) ≤ 0

for all x ∈ [0, 1]. In this case Bn(f) is B-concav for each n ∈ N.

Corollary 2.4. If f : [0, 1] → R+ is a B-concav function, the it is approached uniformly
to f on [0, 1] by B-concav polynomials.
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