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On the preservation of the B-Convexity and B-Concavity
of functions by Bernstein Operators

T. Tunc*, M. Uzun

Abstract. In this study, we investigated whether Bernstein operators preserve B-convexity and
B-concavity of functions. It has been proven that the Bernstein Operators do not preserve the
property B-convexity of functions, but preserve B-concavity of functions.
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1. Introduction

One of the major problems in approximation theory is to determine whether polyno-
mials approximating functions have the same form as functions. This kind of approach,
especially used in Computer Aided Geometric Design, Robotics and Chemistry, is called
the shape preserving approach.

Let f:]0,1] — R and n € N. The polynomial given by

Ba(f)a) = 3 (Z) (1 2y (fi)

k=0

is called nth Bernstein polynomial related to f. These polynomials are very useful for
the shape preserving approach. It is well known that if f € CJ[0,1], then the sequence
of the Bernstein polynomials related to f uniformly converges to f . There are many
studies on whether these polynomials introduced by S.N. Bernstein [3] in 1912, preserve
various convexities. Some of the studies as follows: T. Popoviciu [11] in 1937 showed that
if f:[0,1] — R is a k-convex function (k € Ng) then B, (f) is k-convex, for each n € N.

Definition 1.1 ([9]). A function f : [0,1] — R is said to be starshaped function if f(Ax) <
M (x) for each z € [0,1] and X € [0,1].
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If f differentiable on [0,1], f(0) = 0 and f(x) > 0 for each = € (0,1], then the
starshapedness of f is equivalent to inequality zf'(z) — f(x) > 0, for all z € (0,1]. In
1967, L. Lupas [9] showed that if f differentiable on [0, 1], f(0) = 0 and f(x) > 0 for
each z € (0,1], then B,(f)(0) = 0,B,(f)(x) > 0 (z € (0,1]) and B,(f) is starshaped
for all n € N. Also, in 1996, R. Paltanea [10] proved that if f is k-quasiconvex (k € Np)
then B, (f) is k-quasiconvex for each n € N. In 1989, T.N.T. Goodman [7] established
that Bernstein polynomials preserve log-concavity and in 2020, A. Komisarski [8] get a
similar result by strengthening of Goodman’s result. But, in 2016, O. Vinogradov and
A. Ulitskaya [12] have given an example that Bernstein Polynomials do not preserve log-
convexity. For further results and detail about the shape-preserving approximation of real
functions of one real variable by real polynomials, we refer to the book of S. G. Gal [6].

The aim of this paper is to investigate about whether Bernstein polynomials preserve
B-convexity and B-concavity.

The concept of B-convexity was defined by W. Briec and C. Horvath in 2004 [4].
Since this concept related with economy, in next studies concentrated to the set R’} :=
{(z1, 29, ...my) : x; > 0, i =1,2,...,n}. The properties of B-convexity were studied
widely by W. Briech, C. Horvard, A.M. Rubinov, G. Adilov and I. Yesilce (see [5, 4, 1, 2]
and references therein ). These topic have been studied to date and one of the results for
the set R} is the following: For x = (x1,%2,...,%n),y = (Y1,¥2, ..., Yn) € R", let

TV Yy = (max{xl’yl}7max{x27y2}’ "'7max{$nvyn})'

Proposition 1.1 ([4]). Let A C R". A is B-convex iff \e Vy € A for all z,y € A and
A€ [0,1].

Definition 1.2 ([2]). A function, f : A C R} — Ry is said to be B-convex function, if
and only if A is B-conver and f(Ax Vy) < Xf(z)V f(y) for all xz,y € A and X € [0, 1].

Similarly, if A is B-convex and f(Ax Vy) > Af(z) V f(y) for all z,y € A and X € [0, 1]
then f is called B-concav function.

2. Main Results

In the sequel of the study, we consider the set A = [0,1] as a B-convex set and non-
negative real valued functions defined on [0, 1].

Lemma 2.1. If f : [0,1] — Ry is a decreasing function, then f is a B-convex function.

Proof. Let z,y € [0,1] and A € [0, 1]. There are two cases:

1. For Az <y, we get f(AzVy)= f(y) < Af(z)V f(y)

2. For \x >y, we get f(AzVy)=f(Az) < f(y) < Af(z)V f(y) since f is a decreasing
function.

Thus from above two cases, for all z,y € [0,1] and A € [0,1], f(Ax Vy) < Af(z) V f(y).
This shows that f is B-convex. O
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Corollary 2.1. If f : [0,1] — Ry is a decreasing function, then B,(f) is a B-convex
function for each n € N.

Proof. Since Bernstein polynomials of a decreasing function are decreasing, proof is clear
from lemma 2.1. O

Lemma 2.2. If f:[0,1] — Ry is a starshaped function, then f is a B-convez function.

Proof. Since f is starshaped function, the inequality f(Az) < Af(x) is provided for all
A € [0,1]. Hence, for all z,y € [0,1] and A € [0, 1], we have f(AzVy) = f(y) < Af(z)V f(y)
when Az <y and then f(AzVy) = f(Ax) < Af(x) < Af(x)V f(y) when Az > y. Thus f
is B-convex.

O]

Corollary 2.2. If f : [0,1] — Ry is a starshaped function and let f(0) = 0 , then
Bernstein polynomials By, (f) are B-convez.

Lemma 2.3. Let f : [0,1] — Ry be an increasing function. Then f is a B-convex function
iff f is a starshaped function.

Proof. 1f f is a B-convex function, then, we have f(AzVy) < Af(z)V f(y), forall z,y € [0, 1]
and A € [0,1]. Let us take y = 0. Thus, the inequality f(AzV0) < Af(z)V f(0) is provided
for all A,z € [0,1]. Also, f(Az) > f(0) and Af(z) > f(0) since f is increasing. Hence, we
get the inequality f(Ax) < Af(z). for all x € [0,1] and X € [0, 1].
If f is a starshaped function, the B-convexity of the function is clear from the lemma
2.3.
O

So far, we proved that decreasing and starshapedness are sufficient for B-convexity but
not necessary. To give an example which is not decreasing and starshaped function, we
may use the following lemma.

Lemma 2.4. Let f : [0,1] — Ry and ¢ € [0,1]. If the function f is decreasing on |0, c|
and the inequality f(Ax) < Af(z) hold for all \x € [c,1] with x,\ € [0,1] then f is a

B-convex function.

Proof. When the cases ¢ = 0 and ¢ = 1, the proof is obvious. Let z,y € [0,1] and A € [0, 1].
If \x < Y, then

fAzVvy) = fly) < Af(2)V f(y) (1)
For Az > y, there are three cases. If Az,y € [c, 1], then
fOzVy) = f(Ax) < Af(x) < Mf(x)V f(y). (2)

If Ax,y € [0,c], then

fAzVvy) = f(Az) < fly) < Af(x) V f(y) (3)
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If \x € [¢,1] and y € [0, ¢], then

fQzvy) = fAz) < Af(x) < Af(x) V f(y). (4)
From (1), (2), (3) and (4) we obtain the inequality f(Az V y) < Af(z) V f(y) for all
x,y € [0,1] and X € [0,1]. This shows that f is a B-convex function. O

Remark 2.1. The Bernstein Operators do not preserve the property B-convezity of func-
tions.

Example 2.1. Let f :[0,1] — Ry be defined by
l—z, if 0<z<?i
flz) = S 2
T, if $<x<1

From lemma 2.6 this function is B-convex. However, the Bernstein polynomials related to
the funtion f do not provide the B-convexity. For example, for n =2

B =3 (D)eta—aprs(3) =1-asa

k=0

Ifwetake)\:%,le andy =1/2, wehcwe/\x:%>%:y and

Ba(f) (Am = f’l) == B) (y - ;) = and SB.(fe=1=".

As a result of these equalities, we get the inequality

B0 (§v3) = Ba0(3) > JEtn v B (5)
Thus Ba(f) is not B-convex

Lemma 2.5. Let f : [0,1] — Ry be a differentiable function on [0,1]. Then, the inequality
f(Ax) > Af(x) holds for all x € [0,1] and X € [0,1] iff the inequality zf'(x) — f(z) <0
holds for all x € [0,1].

Proof. In the case x = 0, the proof is clear. Let 2 > 0 and (\,) be a sequence in [0, 1]
with limy, e Ay = 1. Since f(A,z) > A\, f(x) for each n € N, then we have

FOn2) — £(2) _ f(@)
A=D1z — x

Thus, we get

Fa) =t LO02) ~ I _ (@)

This shows that the inequality zf'(z) — f(x) < 0 holds.
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since (@)/ =z f'(x)—f(z) <0. From this reason, we have g(Az) > g(z) i.e. % > %

Consequently we have the inequality f(Az) > Af(z).

Now, if f is differentiable on (0, 1] then g(z) = 1@ i5 a decreasing function on (0,1]
)

O]

Theorem 2.1. Let f: [0,1] — Ry. Then f is a B-concav function iff f is increasing and
the inequaliy f(Ax) > Mf(x) holds for all z, X € [0, 1].

Proof. Since f is B-concav, the inequality f(Ax V y) > Af(z) V f(y) is provided for all
z,y € [0,1] and A € [0,1]. Let A = 1. Thus, if x > y, then we have

flzvy) = f(z) > f(z)V fy) > fy)

This shows that f is an increasing function on [0, 1]. Also, if we take y = 0, then we obtain

fQzv0) = f(Ax) = Af(z) v f(0) = Af(z)
for all z, A € [0,1].

For inverse, let z,y € [0,1] and A € [0,1]. Since f is increasing,

Az <y = [f(AzVy)=[fy) =Af(z)V [fy) (5)
Ax >y = fAzVy)=fQAx) = Af(z) Vv f(y) (6)
Consequently, from (5) and (6), we get the inequality f(Ax Vy) > Af(x) V f(y) for all
x,y € [0,1] and A € [0, 1]. Hence f is a B-concav function. O

Corollary 2.3. Let f : [0,1] — Ry be a differentiable function on [0,1]. Then f is a
B-concav function iff f is increasing and the inequality xf'(x) — f(x) < 0 holds for all
z € [0,1].

Theorem 2.2. If f: [0,1] — Ry is a B-concav function then By,(f) is B-concav for each
n € N.

Proof. Let n € N. For prove to the theorem, it is sufficient to show that the nth Bernstein
polynomial of the function is increasing and satisfies the inequality zB,, (f)(x)—B,(f)(x) <
0 for all € [0, 1]. For the derivate of the nth Bernstein Polynomial, we have the following

equality
f<k::1> B f<i>]xk(1 _ gynhet

Moreover z*(1 — z)"~% > 0 for all z € [0,1], k = 0,1,...,n and [f(%) — f(E)} >0

n

since f is increasing (due to B-concavity of f). Thus, B, (f)(z) > 0 for all z € [0,1].
Consequently, B, (f) is increasing for each n € N.

B, ()@ =:§n<”;1)

=0
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For second part of proof, we can easily see the following equalities with simple algebraic

operations:
PO () (") (-
and
B, (@) - PO k::n(”;1> (k_]il)f<k:1> - f<:>]x’f(1 Y

Since f provides the inequality f(Az) > Af(z) for all z, A € [0,1], we obtain

k k+1 k kE kE+1 k k k
R _f(E) < (5 3 = E) = f(E) =0
(50— G) =) () - () -G
Considering this inequality and ("gl)xk(l —z)" "1 >0 (2 € [0,1]), consequently
Bernstein polynomial provide the condition

2B, (f)(x) = Ba(f)(x) <0

for all z € [0,1]. In this case B, (f) is B-concav for each n € N.
0

Corollary 2.4. If f :[0,1] — Ry is a B-concav function, the it is approached uniformly
to f on [0,1] by B-concav polynomials.
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