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Ïðèìåíåíèå ìåòîäà êîíòóðíîãî èíòåãðàëà ê ðåøåíèþçàäà÷è Êîøè äëÿ óðàâíåíèÿ êîëåáàíèÿ ñòåðæíÿÀñàäîâà Îôåëÿ ÃàñàíÀííîòàöèÿ. Íàñòîÿùàÿ ðàáîòà ïîñâÿùåíà èññëåäîâàíèþ çàäà÷è Êîøè äëÿ óðàâíåíèÿãèïåðáàëè÷åñêîãî òèïà ìåòîäîì êîíòóðíîãî èíòåãðàëà. Ïîëüçóÿñü èíòåãðàëüíûìïðåîáðàçîâàíèåì Ðàñóëîâà Ì.Ë., ïîñòðîåíû óðàâíåíèå ñäåðæàùåå êîìïëåêñíûé ïàðàìåòð,ôóíäàìåíòàëüíîå ðåøåíèå è äîêàçàíî ñïðàâåäëèâîñòü íóæíûõ îöåíîê äëÿ ýòîãî ðåøåíèÿ èåãî ïðîèçâîäíûõ â îïðåäåëåííîì ñåêòîðå êîìïëåêñíîé λ-ïëîñêîñòè. Äàëåå, ñ ïîìîøüþ ýòèõîöåíîê äîêàçàíî ñóùåñòâîâàíèå ðåøåíèÿ çàäà÷è Êîøè è ïîëó÷åíî åãî ïðåäñòàâëåíèå â âèäåáûñòðîñõîäÿùåãîñÿ êîíòóðíîãî èíòåãðàëà.Key Words and Phrases: Çàäà÷à Êîøè, Ìåòîä êîíòóðíîãî èíòåãðàëà2000 Mathematics Subject Classi�cations: 45B47

Êàê èçâåñòíî, îäíèì èç ìîùíûõ ìåòîäîâ ðåøåíèÿ ñìåøàííûõ çàäà÷ è çàäà÷èÊîøè äëÿ ïàðàáîëè÷åñêèõ óðàâíåíèé è ñèñòåì ïî Ïåòðîâñêîìó, ÿâëÿåòñÿ ìåòîäêîíòóðíîãî èíòåãðàëà Ðàñóëîâà Ì.Ë. [1], [2]. Â äàëüíåéøåì, ñ ïîìîùüþ ýòîãî ìåòîäàáûëî äîêàçàíî ñóùåñòâîâàíèå è åäèíñòâåííîñòü ðåøåíèé ñìåøàííûõ çàäà÷ äëÿ ñëàáî-ïàðàáîëè÷åñêîãî óðàâíåíèÿ [3] è çàäà÷è Êîøè äëÿ ãèïåðáîëè÷åñêîãî óðàâíåíèÿ [4].Âîçíèêëà èäåÿ èññëåäîâàòü ðåøåíèå çàäà÷è Êîøè äëÿ óðàâíåíèÿ êîëåáàíèÿ ñòåðæíÿ,êîòîðîå íå ïðèíàäëåæèò òèïîâîé êëàññèôèêàöèè ïî Ïåòðîâñêîìó È.Ã.Òàêèì îáðàçîì, ðàññìàòðèâàåòñÿ çàäà÷à íàõîæäåíèÿ ðåøåíèÿ óðàâíåíèÿ
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4 Àñàäîâà Îôåëÿ Ãàñàí1. Ôóíêöèÿ f (x, t) ÿâëÿåòñÿ îðèãèíàëîì â ñìûñëå [2] äåéñòâèòåëüíîãî àðãóìåíòà
t > 0, êðîìå òîãî èìååò íåïðåðûâíûå îãðàíè÷åííûå ïðîèçâîäíûå ïî t äî âòîðîãîïîðÿäêà, à ïî x äî ïåðâîãî ïîðÿäêà2. Ôóíêöèè Φk (x) (k = 0, 1) ÿâëÿþòñÿ íåïðåðûâíûìè, îãðàíè÷åííûìè ñî ñâîèìèïðîèçâîäíûìè äî (3− 2k)-ãî (k = 0, 1) ïîðÿäêà ôóíêöèÿìè ïðè x ∈ (0,∞).Íåïîñðåäñòâåííîé ïðîâåðêîé äîêàçûâàåòñÿÒåîðåìà. Ïðè âûïîëíåíèè óñëîâèé 1 è 2 çàäà÷à (1); (2) èìååò åäèíñòâåííîåðåøåíèå, ïðåäñòàâèìîå â âèäå
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dξ, (3)ãäå
F (x, λ) = Φ1 (x) + λ2Φ0 (x) + f (x, λ) , (4)a S áåñêîíå÷íûé ðàçîìêíóòûé êîíòóð öåëèêîì ðàñïîëîæåííûé â Rδ îïðåäåëÿåìîãî
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, (7)a F (x, λ) îïðåäåëÿåòñÿ ôîðìóëîé (4)Äëÿ äîêàçàòåëüñòâà òåîðåìû íóæíî äîêàçàòü ðàâíîìåðíóþ ñõîäèìîñòüèíòåãðàëà â ïðàâîé ÷àñòè ôîðìóëû (3) è èíòåãðàëîâ ïîëó÷åííûõ ôîðìàëüíûìäèôôåðåíöèðîâàíèåì ïîä çíàêîì èíòåãðàëà 2 ðàçà ïî t è 4 ðàçà ïî x, ò.å. èíòåãðàëîâ
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dξ.Ñîãëàñíî òåîðåìå 4, (ñì. [3], ñòð. 135), èç ïîñëåäíåãî ðàâåíñòâà ñëåäóåò,÷òî ôóíêöèÿ îïðåäåëÿåìàÿ ôîðìóëîé (3) óäîâëåòâîðÿåò óðàâíåíèþ (1). Îñòàåòñÿïîêàçàòü, ÷òî ýòà ôóíêöèÿ óäîâëåòâîðÿåò è íà÷àëüíûì óñëîâèÿì (2). Äëÿ ýòîãîôîðìóëó ïðåîáðàçóåì ñëåäóþùèì îáðàçîì
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Q (x− ξ, t− τ) f (ξ, τ) dξ, (12′)Àíàëîãè÷íî òîìó, êàê ýòî áûëî ñäåëàíî â ðàáîòàõ [1]-[4], íåïîñðåäñòâåííîé ïðîâåðêîéäîêàçûâàåòñÿ, ÷òî ôóíêöèÿ îïðåäåëÿåìàÿ ôîðìóëîé (10') óäîâëåòâîðÿåò îäíîðîäíîìóóðàâíåíèþ (1), ïåðâîìó íà÷àëüíîìó óñëîâèþ, à ôóíêöèÿ îïðåäåëÿåìàÿ ôîðìóëîé(11'), òàêæå óäîâëåòâîðÿåò îäíîðîäíîìó óðàâíåíèþ, ñîîòâåòñòâóþùåå óðàâíåíèþ (1),âòîðîìó íà÷àëüíîìó óñëîâèþ. À ôóíêöèÿ îïðåäåëÿåìàÿ ôîðìóëîé (12'), êàê áûëîîòìå÷åíî âûøå, óäîâëåòâîðÿåò óðàâíåíèþ (1) è íóëåâûì íà÷àëüíûì óñëîâèÿì.Òàêèì îáðàçîì, äîêàçûâàåòñÿ òåîðåìà, àíàëîãè÷íàÿ òåîðåìå 5 (ñì. [2] ñòð. 140).
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