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On the Solution of a Mixed Problem for Pivots Oscilla-

tion Equation with Convolution

K. A. Jalilov

Abstract. A mixed problem for a pivots oscillation equation containing a fractional time deriva-
tive of order 1 < α < 2 is considered. The solution is sought in the form of expansion in eigen
functions of the corresponding spectral problem and the Cauchy problem is obtained for a fractional
derivative equation that is solved by using the Laplace transform.

1. Introduction

Consider a differential equation of the form:

Dα
0tu(x, t) +

∂4u(x, t)

∂x4
= Φ(t) ∗

∂2ru(x, t)

∂x2r
, (1)

where x ∈ (0, 1), t > 0, r = 0, 1 and

Φ(t) =

{

t−β for t > 0, 0 < β < 1
0 for t < 0.

The right hand side of equation (1) is the convolution of the functions Φ(t) and ∂2ru(x,t)
∂x2r ,

1 < α < 2, Dα
0tu(x, t) is a fractional derivative of the function u(x, t) in the Riemann-

Liouville sense and of order α, determined by the formula:

Dα
otf(t) =

1

Γ(2− α)

d2

dt2

∫ t

0
f(τ)(t− τ)1−αdτ.

Set the initial and boundary conditions:

lim
t→+0

Dα−1
0t u(x, t) = ϕ0(x),

lim
t→+0

Dα−2
0t u(x, t) = ϕ1(x), 0 < x < 1 (2)

and

http://www.jcam.azvs.az 15 c© 2011 JCAM All rights reserved.



16 K. A. Jalilov

uk(0, t) = u(k)(1, t) = 0, k = 0, 2, t > 0. (3)

The functions ϕ0(x), ϕ1(x) are still considered continuous in (0,1). The additional
conditions of these functions are determined on grounding the formula obtained for the
solution of the stated problem.

Note that the equations with convolution for hyperbolic equations were considered in
various papers. The fundamental solution of wave equations with convolution that are
called the memory equations, were studied in [4].

In [5], an initial-boundary value problem for diffusion equation with fractional deriva-
tive of order 0 < α < 1 and a bounded function Φ(t) was considered. Note that the above
stated problems are solved by using the Laplace transform.

While solving problem (1)-(3) we use the indicated transformation. So, we look for
the solution of the stated problem in the form:

u(x, t) =
∞
∑

n=1

Tn(t) sin πnx, (4)

where Tn(t)is a still unknown function.

Substituting (4) in equality (1)-(3), for the function Tn(t) we get the relations:

Tα
n (t) + (πn)4Tn(t) = Φ(t) ∗ (πn)2rTn(t) (5)

lim
t→+0

T
(α−1)
n (t) = ϕ0n,

lim
t→+0

T
(α−2)
n (t) = ϕ1n,

(6)

here ϕkn = 2
∫ 1
0 ϕk(x) sin πnxdx, k = 0, 1. Thus, we obtain the Cauchy problem for the

unknown function Tn(t) that may be solved by using the Laplace transform. If is known
that the Laplace transform with fractional derivative is determined by the formula [1], [2]:

∫

∞

0
e−stDα

0tf(t)dt = sαF (s)−
n−1
∑

k=0

sk
[

Dα−k−1
0t f(t)

]

t=0
, (7)

here F (s) =
∫

∞

0 e−stf(t)dt.

Thus, by applying formula (7), from (5) and (6) we get an algebraic equation of the
form:

sαT̃n(s) + (πn)4T̃n(s) = (πn)2rT̃n(s) · Φ̃(s) + ϕ0n + ϕ1ns. (8)

Here T̃n(s) and Φ̃(s) are the Laplace transforms of the functions Tn(t) and Φ(t), respec-
tively, moreover Φ̃(s) = Γ(1− β)sβ−1, Γ(z) is the Euler’s gamma function.

We rewrite equality (8) in the form:
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T̃n(s) =
ϕ0n + sϕ1n

sα + (πn)4 − (πn)2rΦ̃(s)
=

ϕ0n + sϕ1n

sα + (πn)4
·

1

1− (πn)2rΦ̃(s)
sα+(πn)4

. (9)

Taking into account that Φ̃(s) = Γ(1 − β)sβ−1, 0 < β < 1, 0 < α < 2, r = 0, 1, we
deduce

∣

∣

∣

∣

∣

(πn)2rΦ̃(s)

sα + (πn)4

∣

∣

∣

∣

∣

< 1.

Thus, we can treat the second multiplier in (9) as a sum of infinite geometrical progres-

sion with denominator q = (πn)2rΦ̃(s)
sα+(πn)4 . Allowing for what has been said, we can represent

formula (8) in the form of a series:

T̃n(s) =
ϕ0n

sα + (πn)4
·

∞
∑

p=0

(

(πn)2rΦ̃(s)

sα + (πn)4

)p

+
sϕ1n

sα + (πn)4
·

∞
∑

p=0

(

(πn)2rΦ̃(s)

sα + (πn)4

)p

=

= ϕ0n

∞
∑

p=0

(πn)2rpΓp(1− β)s(β−1)p

(sα + (πn)4)p+1
+ ϕ1n

∞
∑

p=0

(πn)2rpΓp(1− β)s(β−1)p+1

(sα + (πn)4)p+1
=

= T̃n0(s) + T̃n1(s).

Now calculate the inverse transformation of each addend separately. This time we’ll
take into account the known formula [1]:

∫

∞

0
est(tαk+β−1E

(k)
α,β(±atα))dt =

k!sα−β

(sα ∓ a)k+1
, (10)

where a is a real parameter, Eα,β(z) is a Mittag-Leffler function determined by the formula:

Eα,β(z) =

∞
∑

k=0

zk

Γ(αk + β)
.

Here we accept the denotation:

E
(k)
α,β(z) =

dk

dzk
Eα,β(z). (11)

By applying formula (10), we see that the following inverse transformation holds:

L−1

(

sα−β

(sα ∓ a)k+1

)

=
1

k!
tαk+β−1E

(k)
α,β · (±atα).

In our case a = (π n)4, and therefore
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L−1

(

s(β−1)p

(sα + (π n)4)p+1

)

= L−1

(

sα−(α−(β−1)p)

(sα + (π n)4)p+1

)

=

=
1

p!
tαp+(α−(β−1)p)−1E

(p)
α,α−(β−1)p(−(π n)4tα).

Taking this into account, for Tn1(t) we get the representation:

Tn0(t) = ϕ0n ·

∞
∑

p=0

(π n)2rpΓp(1− β)

p!
tαp+(α−(β−1)p)−1

×

×E
(p)
α,α−(β−1)p(−(π n)4tα).

In the similar way:

Tn1(t) = ϕ1n ·

∞
∑

p=0

(π n)2rpΓp(1− β)

p!
tαp+(α−(β−1)p)−2

×

×E
(p)
α,α−(β−1)p−1(−(π n)4tα).

The sum of the last formulas defines the formal solution of the stated problem in the
form:

u(x, t) =

∞
∑

n=1

∞
∑

p=0

(π n)2rpΓp(1− β)

p!
tα(p+1)−(β−1)p−2

×

×(ϕ0ntE
(p)
α,α−(β−1)p(−(π n)4tα) + ϕ1nE

(p)
α,α−(β−1)p−1(−(π n)4tα)) =

=
∑

∞

n=1

∑

∞

p=0
(π n)2rpΓp(1−β)

p! tα(p+1)−(β−1)p−2×

×

(

2
(

∫ 1
0 ϕ0(x) sinπ nxdx

)

· tE
(p)
α,α−(β−1)p(−(π n)4tα)+

+ 2

(
∫ 1

0
ϕ1(x) sin π nxdx

)

·E
(p)
α,α−(β−1)p−1(−(π n)4tα)

)

. (12)

Note that formula (12) defining the formal solution of problem (1)-(3) contains the
derivative of the Mittag-Leffler function of order p, that may by get rid of.

We do it in the following way. In formula (11) we substitute y = −(π n)4tα and pass
from differentiation with respect to tα to the variable t.

Taking into account

d

dtα
=

t1−α

α

d

dt
,

we get that for any k times differentiable function we can write the representation:
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dkf(t)

d(tα)k
=

k
∑

i=1

Pi(α, t)
dif(t)

dti
, (13)

where Pi(α, t) are some functions from α and t. Further, by the direct calculation we get

dif(t)

dti
=

i
∑

j=0

Cj(i, β)t
1−β−j d

i−j

dti−j
(tβ−1f(t)), (14)

here Cj(i, β) are determined coefficients, moreover C0(i, β) = 1.
Now, having taken in formula (13) and (14) f(t) = Eα,β and using the known formula

[1]

dm

dtm
(tβ−1Eα,β(t

α)) = tβ−m−1Eα,β−m(tα),

in representation (12) we can pass from arbitrary E
(p)
α,β to Eα,β−p with some determined

coefficients.
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