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On Fredholm property of boundary problem

N.A. Aliev ∗, G.A. Bagirov, N.I. Garaeva.

Abstract. In this paper we consider the boundary problem for third-order equation of composite
type, i.e. in considered domain equation has both the real and complex characteristics. The
presence of real characteristics is the cause of incorrectness of corresponding boundary problem.
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1. Introduction

As known, if we consider the problem for linear ordinary differential equation, regardless
of whether we study the Cauchy problem and boundary problem, the number of conditions
(initial or boundary) coincides with the highest order derivative included in the equation
in [1]. If we consider the partial differential equation, the number of initial conditions co-
incides with the highest order derivative with respect to time included in the equation,
and the number of boundary conditions in the general case (for an arbitrary domain,
when the number of spatial variables is greater than one) is equal to half the highest-order
derivative with respect to the spatial variable [2]. For the Laplace equation is given one
condition (Dirichlet, Neumann or Poincare) for the disharmonic equation (fourth-order
equation) two conditions, etc.
If we consider the boundary value problem for linear differential equations with partial
derivatives of odd order, then the following question appears: how many boundary con-
ditions must be given? When the process in a nuclear reactor, a mathematical model,
which is a linear integral-differential equation of first order in three dimensions, boundary
conditions are set at half of the boundary [3]. In connection with Trikomy problem on one
of the seminars of the Institute of Mathematics on the name of Steklov Bitsadze A.V. said
that such problems are not well placed. According to Bitsadze, the boundary conditions
for the entire boundary must be a carrier. In this regard, consider the nonlocal boundary
conditions. Nonlocal boundary condition is primarily eliminated, then a misunderstand-
ing which was in boundary problem for linear ordinary differential equations with partial
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derivatives [4], [5]. As for the nonlocal boundary conditions moves on at least two points,
then that condition must be complied with Carleman [6]. In this paper we investigate the
conditions of the following Fredholm boundary problem:

∂3U(x)

∂x3
1

+
∂3U(x)

∂x3
2

, x ∈ D, (1)


∑8

k=1

[
αi,3k−2 (x1)U (t) + αi,3k−1 (x1) ∂U(t)

∂t1
+ αi,3k (x1) ∂U(t)

∂t2

]
,
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(2)
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}
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√
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√
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√
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√
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√
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√
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Here the point (Mj , Nj) are the relevant parts Γj of the boundary Γ, j = 1, 8
(

Γ = U8
j=1Γj

)
.

We factorize equation (1) as follows:(
∂

∂x1
+

∂

∂x2

)(
∂2

∂x2
1

− ∂2

∂x1∂x2
+

∂2

∂x2
2

)
U (x) = 0

Then the problem (1), (2) splits into two problems:
∂2U (x)

∂x2
1

− ∂2U (x)

∂x1∂x2
+
∂2U (x)

∂x2
2

= U1 (x) , x ∈ D (3)
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8∑
k=1

[
αi,3k−2 (x1)U (t) + αi,3k−1 (x1)

∂U (t)

∂t1
+ αi,3k (x1)

∂U (t)

∂t2

]
= ϕi (x1) ,

t1 = Mk (x1) , t2 = Nk (x1) ; i = 1, 8, x1 ∈
(
r/
√

2, r
)

(3′)

∂U1 (x)

∂x1
+
∂U1 (x)

∂x2
= 0, x ∈ D (4)

8∑
k=1

αj+8,k (x1)U1 (t) = ϕi+8 (x1) ,

t1 = Mk (x1) , t2 = Nk (x1) ; i = 1, 8, x1 ∈
(
r/
√

2, r
)

(4′)

First solve the problems (4) ,
(

4
′
)

and thus obtained a solution, we substitute the right-

hand side of (3), and then prove the Fredholm property of problems (3) ,
(

3
′
)

. According

to the scheme in [3], we can easily construct a fundamental solution of equation (4), which
has the form:

δ1 (x− ξ) = e (x2 − ξ2) δ (x1 − ξ1 − (x2 − ξ2)) (5)

Where

e (z) =


1
2 , z > 0
0, z = 0
−1

2 , z < 0
- Heaviside-function ; δ (z)- Dirac δ - function.

Multiplying equation (4) to (5), integrating it over D and applying Green’s second formula,
we obtain:

0 =

∫
D

(
∂U1 (x)

∂x1
+
∂U1 (x)

∂x2

)
ε1 (x− ξ) dx =

=

∫
Γ
U1 (x) ε1 (x− ξ) cos

(
n∧x1

)
dl −

∫
D
U1 (x)

∂ε1 (x− ξ)
∂x1

dx+

Where n-the outward normal in boundary oblast D, dl an element of . If we are using the
definition of the fundamental solution, we obtain the following result:

Theorem 1. Any solution of equation (4) defined in D, and its boundary values satisfy the
following relations:∫

Γ
U1 (x) ε1 (x− ξ)

(
cos
(
n∧x1

)
+ cos

(
n∧x2

))
dl =

{
U1 (ξ) , ξ ∈ D;
1
2U1 (ξ) , ξ ∈ Γ.

(6)

Hence, for the boundary values are obtained the following conditions:
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r2 − ξ2

1

)
= U1

(
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√
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√
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1

)
= U1

(√
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ξ1 ∈
(
r/
√

2, r
)

These relationships take into account in
(

4
′
)

:

(αj+8,1 (x1) + αj+8,6 (x1))U1

(
x1,
√
r2 − x2

1

)
+

+ (αj+8,5 (x1) + αj+8,5 (x1))U1

(√
r2 − x2

1, x1

)
+

+ (αj+8,3 (x1) + αj+8,4 (x1))U1

(
−
√
r2 − x2

1, x1

)
+

+ (αj+8,7 (x1) + αj+8,8 (x1))U1

(
x1,−

√
r2 − x2

1

)
=

= ϕj+8 (x1) + (αj+8,7 (x1) + αj+8,8 (x1))U1

(
x1,−

√
r2 − x2

1

)
= ϕj+8 (x1) (4′)

Thus, we get a system of linear algebraic equations. Let satisfies the following condition:∣∣∣∣∣∣∣∣
α9,1 + α9,6 α9,2 + α9,5 α9,3 + α9,4 α9,7 + α9,8

α10,1 + α10,6 α10,2 + α10,5 α10,3 + α10,4 α10,7 + α10,8

α11,1 + α11,6 α11,2 + α11,5 α11,3 + α11,4 α11,7 + α11,8

α12,1 + α12,6 α12,2 + α12,5 α12,3 + α12,4 α12,7 + α12,8

∣∣∣∣∣∣∣∣ 6= 0 (8)

Then we have

Theorem 2. Suppose that the functions αi,j (x1) , ϕi (x1)
(
i = 9.12, j = 1, 8

)
are continu-

ous in the interval
(
r/
√

2, r
)

and satisfies the condition (8). Then the problem (4),
(

4
′
)

allow, and its solution has an explicit form.

Note. The solution of (4),
(

4
′
)

in an explicit form as follows:We solve the system of

linear algebraic equations
(

4
′
)

and the result is substituted into (6). This solution can

be written in the right-hand side of (3) and prove the Fredholm property of problems

(3) ,
(

3
′
)

. Here we proceed as well as for the solution of (4),
(

4
′
)

that is, first build the

fundamental solution of the equation and then calculate.
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Necessary condition: The fundamental solution of equation (3) has the following form:

ε (x− ξ) = − 1

2π
ln

√
4

3

[
(x1 − ξ1)2 + (x1 − ξ1) (x2 − ξ2) + (x2 − ξ2)2

]
, (9)

From which the derivatives have:
∂ε (x− ξ)

∂x1
= − 1

4π

2 (x1 − ξ1) + (x2 − ξ2)

(x1 − ξ1)2 + (x1 − ξ1) (x2 − ξ2) + (x2 − ξ2)2 , (10)

We have the following

Theorem 3. Every solution of equation (3) defined in D, its derivatives and their bound-
ary values satisfy the following relations:∫

Γ
U (x)

[
∂ε (x− ξ)

∂x1
cos
(
n∧x1

)
− ∂ε (x− ξ)

∂x1
cos
(
n∧x2

)
+
∂ε (x− ξ)

∂x2
cos
(
n∧x2

)]
dl−

−
∫

Γ

∂U (x)

∂x1
ε (x− ξ) cos

(
n∧x1

)
dl+

+

∫
Γ

∂U (x)

∂x1
ε (x− ξ)

(
cos
(
n∧x1

)
− cos

(
n∧x2

))
dl+

+

∫
D
U1 (x) ε (x− ξ) dx =

{
U (ξ) , ξ ∈ D;
1
2U (ξ) , ξ ∈ Γ.

(12)

∫
Γ

∂U (x)

∂x1

[
∂ε (x− ξ)

∂x1
cos
(
n∧x1

)
− ∂ε (x− ξ)

∂x1
cos
(
n∧x2

)
+
∂ε (x− ξ)

∂x2
cos
(
n∧x2

)]
dl+

+

∫
Γ

∂U (x)

∂x2

[
∂ε (x− ξ)

∂x1
cos
(
n∧x2

)
− ∂ε (x− ξ)

∂x2
cos
(
n∧x1

)]
dl−

−
∫
D
U1 (x)

∂ε (x− ξ)
∂x1

dx =

{
∂U(ξ)
∂ξ1

, ξ ∈ D;
1
2
∂U(ξ)
∂ξ1

, ξ ∈ Γ.
(13)

∫
Γ

∂U (x)

∂x1

[
∂ε (x− ξ)

∂x2
cos
(
n∧x1

)
− ∂ε (x− ξ)

∂x1
cos
(
n∧x2

)]
dl+

+

∫
Γ

∂U (x)

∂x2

[
∂ε (x− ξ)

∂x1
cos
(
n∧x1

)
− ∂ε (x− ξ)

∂x2
cos
(
n∧x1

)
+
∂ε (x− ξ)

∂x2
cos
(
n∧x2

)]
dl−

−
∫
D
U1 (x)

∂ε (x− ξ)
∂x2

dx =

{
∂U(ξ)
∂ξ2

, ξ ∈ D;
1
2
∂U(ξ)
∂ξ2

, ξ ∈ Γ.
(14)

From the expressions (10) and (11) we see that in (12) -(14), which are derivatives of the
fundamental solutions, when ξ and x be in one part of the Gammak, boundary having a
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singularity. Since we are interested only in the singular integrals (regular integrals will
mark the dots):

U

(
(−1)m ξ1, (−1)n

√
r2 − ξ2

1

)
=

= (−1)n (−1)m
1

2π

∫ r

r/
√

2

U
(

(−1)m x1, (−1)n
√
r2 − x2

1

)
x1 − ξ1

dx1 + . . .m, n = 0, 1. (15)

U

(
(−1)m

√
r2 − ξ2

1 , (−1)n ξ1

)
=

= (−1)m+n 1

2π

∫ r

r/
√

2

U
(

(−1)m
√
r2 − x2

1, (−1)n x1

)
x1 − ξ1

dx1 + . . .m, n = 0, 1 (16)

∂U (τ)

∂τ1

∣∣∣
τ1=(−1)mξ1;τ2=(−1)n

√
r2−ξ21 ;

=

= (−1)m+n
∫ r

r/
√

2

dx1

x1 − ξ1

[
∂U (y)

∂y1
− 2

∂U (y)

∂y2

] ∣∣∣∣ dx1
x1−ξ1

+ . . .

y2 = (−1)n
√
r2 − x2

1, y1 = (−1)m x1; m,n = 0, 1. (17)

∂U (τ)

∂τ1

∣∣∣
τ1=(−1)n

√
r2−ξ21 ;τ2=(−1)mξ1

=

=
(−1)m+n

2π

∫ r

r/
√

2

dx1

x1 − ξ1

[
∂U (y)

∂y1
− 2

∂U (y)

∂y2

] ∣∣∣∣ dx1
x1−ξ1

+ . .

.

y1 = (−1)n
√
r2 − x2

1, y2 = (−1)m x1; m,n = 0, 1. (18)

∂U (τ)

∂τ1

∣∣∣
τ1=(−1)mξ1;τ2=(−1)n

√
r2−ξ21 ;

=

=
(−1)m+n

2π

∫ r

r/
√

2

dx1

x1 − ξ1

[
∂U (y)

∂y1
− 2

∂U (y)

∂y2

] ∣∣∣
y2=(−1)mx1,y1=(−1)n

√
r2−x21;

+ . .

.

m,n = 0, 1. (19)

∂U (τ)

∂τ1

∣∣∣
τ1=(−1)n

√
r2−ξ21 ;τ2=(−1)mξ1

=
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=
(−1)m+n

2π

∫ r

r/
√

2

dx1

x1 − ξ1

[
∂U (y)

∂y1
− 2

∂U (y)

∂y2

] ∣∣∣
y1=(−1)n

√
r2−x21,y2=(−1)mx1;

+ . .

.

m,n = 0, 1. (20)

With this set

Theorem 4. Under the conditions of Theorem 2, every solution of equation (3) (after
substitution U1 (x) defined in D satisfy singular necessary conditions (15) - (20).
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