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Variable Domain Eigenvalue Problems for the Place Laplace

Operator with Density

A.A.Niftiyev ∗,R.F.Efendiev, K.I. Alisheva

Abstract. We consider variable domain eigenvalue problems for the placeLaplace operator with
density function. The first variation of the eigenvalues is calculated with respect to domain, their
properties are investigated when the domain varies.
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1. Introduction

Eigenvalue problems are one of the intensively investigated fields of the spectral theory.
These problems have significant applications, since some mechanical characteristics of
certain systems indeed are described by the eigenvalues of the corresponding operators ([1])
. But in some cases the considered problems, as well as, the problems of the stability of
vibrating bodies, the propagation of waves in composite media, and the thermic insulation
of conductors lead to the eigenvalue problems with variable domain ([2]). Investigation
of such kind of problems meets some difficulties, because of in this case one have to deal
with domain funtionals instead of usual ones. In its mathematical formulation the problem
consists of taking an operator and considering its eiganvalues as a functionals of the domain
([3]). In spite of actuality these investigation meet some difficulties related mainly with
the definition of the domain variation. In [4-7] some properties of the eigenvalues are
investigated using the different definitions of the domain variation.

Here we use the new definition of the domain variation based on the single valued
correspondence between bounded convex domains and continuous positively homogeneous
functions. This function defined as PA(x) = sup

l∈A
(l, x) , x ∈ Rm is called support function

of the domain. Using this correspondence the variation of the domain is expressed by the
variation of its support function. This technique allows us to avoid some of the difficulties
during the investigation of the variable domain eigenvalue problems. In present work the
formula is obtained for the first variation relatively domain and some properties are proved
for the eigenvalues of placeLaplace operator with density function when the domain varies.
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Consider the following eigenvalue problem

−∆u = λρ(x)u, x ∈ D, (1)

u(x) = 0, x ∈ SD, (2)

Here ∆ is placeLaplace operator, ρ(x)is positive differentiable function inRm,D ⊂ Rm,SD =
∂D- its boundary. It is known ([8]) that the first eigenvalue of the problem (1), (2) may
be calculated by the formula

λ1(D) = inf
J1(u,D)

J2(u,D)
, (3)

where ∇u = (ux1 , ux2 ...uxm
) ,

J1(u,D) =

∫

D

|∇ux(x)|
2 dx , J2(u,D) =

∫

D

ρ(x)u2(x)dx,

and inf is taken over all functions u ∈ C2(D),being equal to zero at SD. Let’s denote by
M the set of all convex bounded domainsD ⊂ Rm. Define

K =
{

D ∈ M,SD ∈ C2
}

(4)

It is known [3] that under given conditions eigenfunctions of the problem (1), (2) belong
to the classu ∈ C2(D)

⋂

C1(D) and eigenvalues are positive and may be numbered as
0 ≤ λ1 ≤ λ2 ≤ ... considering their multiplicity [1,8].

Using (3) we can consider the eigenvalue λ1of the problem (1), (2) as a functional of
D. We’ll calculate the first variation of this functional. Using the obtained formula we
investigate various properties of the eigenvalue relatively domain.

2. The Space of The Pairs of Convex Sets

Let’s define the operations of addition and multiplication by the non-negative number
in Mby the following relations

A+B = {c = a+ b; a ∈ A, b ∈ B} ,
λA = {λa : a ∈ A, } , λ ≥ 0.

M is not a linear space (the operation of subtraction is not defined in M). Let’s consider
the pairs (A,B) ∈ M ×Mand define the operations:

(A1, B1) + (A2, B2) = (A1 + A2, B1 +B2) ,
λ(A,B) = (λA, λB) , if λ ≥ 0,
(−1) · (A,B) = (B,A),

(5)

(A,B) ≈ (C,D) if A+D = B + C
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As a zero element of this space is taken the pair (0, 0), i.e. the set of elements (A, A),
A ∈ M .

The set of all such pairs forms a structure of a linear space. We’ll introduce a scalar
product in this space below.

For any A ∈ M the function

PA(x) = sup
l∈A

(l, x) , x ∈ Rm (6)

is called a support function of the set A. This function is continues convex and positive
homogeneous i.e.PA(λx) = λPA(x), λ ≥ 0. Also it is known [9], that for each continues
convex positive-homogeneous function P (x) there exists a convex bounded set A ∈ M ,
such that

P(x) = PA (x) .

The set A ∈ M is reconstructed as a subdifferential of the function PD(x) at the origin
[9,10], i.e.

A = ∂PA(0) = {l ∈ Rm : PA(x) ≥ (l, x), x ∈ Rm}. (7)

Let’s take any a = (A1, A2) , b = (B1, B2) , Ai, Bi ∈ M, i = 1, 2and define the scalar
product as

(a, b) =

∫

SB

p(x)q(x)ds. (8)

Here p(x) = PA1(x) − PA2(x) , q(x) = PB1(x) − PB2(x) ; PAi
(x), PBi

(x) are support
functions of the sets Ai, Bi respectively; SB is a surface of the unit sphere B. Norm in
this space is defined as

‖ a ‖ML1
=

√

(a, a) =

(
∫

SB

(PA1(x)− PA2(x))
2 ds

)1/2

. (9)

For one dimensional case m = 1, the formula (8) turns to

(a, b) = p(−1)q(−1) + p(1)q(1). (10)

It may be shown that this definition satisfies all requirements of the scalar product. We
define this space by ML2(B)orML2. If in (8) to take any D ∈ M instead of B, then
corresponding space with a scalar product

(a, b) =

∫

SD

p(n(x)) q(n(x))ds

is defined by ML2(D). Here n(x)is an outward normal to SD in the point x.
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3. First Variation of the Eigenvalue

To investigate the behaviour of the eigenvalues of the problem (1), (2) relatively do-
main, let’s calculate the first variation of the functional λ(D).

We define the differentiability of the functional λ1(D) similarly to [6].

Definition. The functionalλ1(D) is called differentiable in D0 in the directionD, if there
exists the limit

δλ1(D0,D) = lim
ε→+0

λ1((1− ε)D0 + εD)− λ(D0)

ε
. (11)

This definition may be written in the following equivalent form

δλ1(d0, d) = lim
ε→+0

λ1(d0 + εd)− λ(d0)

ε
,

It follows from the relation

d0 + εd = (D0, 0) + ε(D,D0) =
= (D0 + εD, εD0) = ((1− ε)D0 + εD, 0) .

For the simplicity here and later on we define δλ1(D0,D) by δλ1(D0).

Theorem 1. The functional λ1(D)is differentiable on K in the direction D ∈ K and

δλ1(D, D̄) = −

∫

SD
|∇u(x)|2 [PD̄(n(x))− PD(n(x))] ds

∫

D
ρ(x)u2(x)dx

. (12)

Remark 1. If SD = S1
⋃

S2, where S1is fixed and S2 is unknown, then the formula (12)
instead of SD involves S2.

Corollary 1. If domain D depends of on the parameter t ∈ Rand support function of the
domain D = D(t) is differentiable then

λ′
1(t) = −

∫
SD

|∇u(x)|2P ′

D(t)
(n(x))ds

∫
D(t)

ρ(x) u2(x)dx
, (13) where S = ∂D(t), λ1 = λ1(D(t)), P ′

D(t) =

∂PD(t)

∂t
.

Proof. It is easy to obtain following relation from the formula (12)

λ (t+∆t)− λ (t) = λ (D (t+∆t))− λ (D (t)) =

= −

∫
S
D(t)

|∇u(x)|2[PD(t+∆t)(n(x))−PD(t)(n(x))]ds
∫
D(t)

ρ(x)u2(x)dx
+ o(∆t).

From this considering the differentiability of the functionPD(t) (x) relatively t, dividing by
∆t, one may get (13). The theorem is proved.
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In the case of multidimensional parameter t = (t1, t2, ..., tk) ∈ T ⊂ Rk, where S (t) ∈
C2for each t ∈ T, the formula (13) takes a form

∂λ1 (t)

∂ti
= −

∫

S(t) |∇u (x)|2
∂PD(t)(n(x))

∂ti
dx

∫

D(t) ρ(x) u
2(x)dx

, (13)

Corollary 2. Let m = 1, D(t) = (t1, t2), t1, t2 ∈ R. Then

∂λ1

∂t1
=

u2x(t1)
∫ t2
t1

ρ(x)u2(x)dx
,
∂λ1

∂t2
= −

u2x(t2)
∫ t2
t1

ρ(x)u2(x)dx
, (14)

Proof. Since the support function of the interval has a form

P(t1,t2) (x) =

{

t2x , x ≥ 0,
t1x , x < 0

(16)

from (14) we get (15). The theorem is proved.

4. Some Properties of the Eigenvalues

Now we investigate some properties of the first eigenvalue of the problem (1), (2)
relatively domain using the formula (12).

From (13) one may immediately get the following

Corollary 3. If

P ′
D(t) (x) ≥ 0

(

P ′
D(t) (x) ≤ 0

)

, ∀x ∈ Rm ,

then λ(t) decreases (increases ) relatively t.

Example 1. Let D (t) = D + tD0, t > 0, D,D0 ∈ K.
Then following to the property of the support function [9]

PD(t) (x) = PD (x) + tPD0 (x) , P ′
D(t)x (x) = PD0(x) (x) .

If 0 ∈ D0, then

PD0 (x) = sup
l∈D0

(l, x) ≥ (l, 0) = 0.

From this considering the corollary (13) λ (t) decreases.
Example 2. Let’s take D (t) = (a (t) , b (t)), where a (t) ≤ b (t) , a (t) , b (t) are

differentiable functions. Then it is clear that for this case

PD(t) (x) =

{

b(t)x , x ≥ 0,
a(t)x , x < 0
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And

P ′
D(t) (x) =

{

b′(t)x , x ≥ 0,
a′(t)x , x < 0

It shows that λ (t) increases if b′ (t) ≤ 0, a′ (t) ≥ 0 and decreases if b′ (t) ≥ 0, a′ (t) ≤ 0.
Example 3. Let m = 1 and D (t) = D (t1, t2) = (t1, t2). Then as follows from the

corollary 3 λ(t) increases with respect to t1 and decreases with respect to t2.

Theorem 2. Let ρ (tx) = ρ(x) · tα, α 6= −2. Then for the egenvalues of the problem (1),
(2) in the domain D the following formula is true

λ1(D) =

∫

SD
|∇u|2 PD(n(x))ds

(α+ 2)
∫

D
ρ(x)u2(x)dx

(15)

Proof. Take D0 ∈ K, D (t) = t ·D0, t > 0. The first eigenfunction of the problem (1),
(2), corresponding to the domain D0, define by u (x). Then

−∆u (x) = λ1 (D0) ρ(x)u (x) , x ∈ D0.

This equation one can write in the following equivalent form

−
1

t2
∆(x

t
)u

(x

t

)

=
λ1(D0)ρ

(

x
t

)

u(x
t
)

t2
, x ∈ D (t) . (16)

Denote ũ (x) = u
(

x
t

)

. Since ∆ũ (x) = ∆u
(

x
t

)

, x ∈ D (t) satisfies to the relation

∆ũ (x) =
1

t2
∆u(x

t
)

(x

t

)

,

and ρ
(

x
t

)

= ρ(x) · t−α, α 6= −2following the condition, form (18) we obtain

−∆ũ (x) =
λ1 (D0)

t2+α
ρ(x)ũ (x) .

It shows that ∆ũ (x) is an eigenfunction and λ1(D0)
t2+α - eigenvalue of the problem (1), (2) in

the domain D(t). Considering this in (13), we get

− (2 + α)
λ1 (D0)

tα+3
= −

1
t2

∫

SD(t)

∣

∣∇u
(

x
t

)
∣

∣

2
PD0 (n (x)) ds

∫

D(t) ρ
(

x
t

)

u2
(

x
t

)

dx
.

Taking t = 1 one may get

(2 + α)λ1 (D0) =

∫

SD0
|∇u (x)|2 PD0 (n (x)) ds
∫

D0
ρ (x) u2 (x) dx

. (17)

From last relation we obtain (15).
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The theorem is proved.
If u = u(x) is normalized eigenfunction for the problem (1), (2), e.i.

∫

D

ρ(x)u2(x)dx = 1,

then

λ1(D) =
1

α+ 2

∫

SD

|∇u(x)| .2PD(n(x))ds. (18)

Formula (20) shows that the boundary value of the function |∇u(x)|unequivocally defines
λ1.

From the formula (17) we obtain following result for the case α = −2.
Corollary 4. Let t2ρ (tx) = ρ(x). Then

∫

SD0

|∇u (x)|2 PD0 (n (x)) ds = 0.

Corollary 5. Let m = 1, D(t) = (t1, t2), t1, t2 ∈ Rand α 6= −2. Then

λ1 =
u2x(t2)t2 − u2x(t1)t1

(α+ 2)
∫ t2
t1

ρ(x)u2(x)dx
, (19)

The first eigenvalue for the normalized eigenfunction we obtain following formula

λ1(t1, t2) =
1

α+ 2

[

u2(t2) · t2 − u2(t1)t1
]

(20)

For the case α = −2 satisfy

u2(t2) · t2 − u2(t1)t1 = 0. (21)

Example 3. Let D(t) = Bt be a sphere of radius t, ρ(x) satisfies to the condition
ρ (tx) = ρ(x) · tα, α 6= −2. Considering PBt

(x) = t ‖n(x)‖ = t, from (18) we get

λ1(t) =
1

2 + α
‖∇u‖2L2(S(t))

.

Theorem 3. Let λ be a simple eigenvalue of the problem (1), (2) and the following
relation is satisfied for the support function P (t, x) of the domain D(t)

k
∑

i=1

ai(t)
∂P (t, x)

∂ti
= b(t)P (t, x), x ∈ SB, t ∈ T. (22)

where SB is a surface of the sphere B, ai(t), b(t) are given functions.
Then the eigenvalues λ(t) of the problem (1), (2) in the domainD(t) satisfy the equation

k
∑

i=1

ai(t)
∂λ(t)

∂ti
= −(α+ 2)b(t)λ(t). (23)
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Proof. Multiplying both sides of (14) by ai(t) and taking a sum we get

k
∑

i=1

ai(t) ·
∂λ

∂ti
= −

∫

SD(t)

|∇u (t, x)|2 b(t)PD(t)(n(x))dx.

Using (15) from last relation one may get (24).

The theorem is proved.

Example 4. Let’s takeD(t) = [t1 t2]. Then as follows from (??)

t1
∂P (t, x)

∂t1
+ t2

∂P (t, x)

∂t2
= P (t, x).

Thus, we get the following equation for the eigenvalues

t1
∂λ(t)

∂t1
+ t2

∂λ(t)

∂t2
= −(α+ 2)λ(t).

For the unequivocal calculation of the eigenvalues from (25) the boundary condition has
to be given no on its characteristics.

Theorem 3.

−P ′
D(t)(x) ≤ µPD(t)(x), t ∈ [t0, t1] , µ > 0. (24)

Then the estimate

λ(t) ≤ λ(t0)e
µp(t−t0), t ∈ [t0, t1]. (25)

is valid.

Proof. From (13), (15) considering (24) we have

λ′(t) ≤ µ(α+ 2)λ(t), t ∈ [t0, t1].

Multiplying this byλ(t), considering that λ(t) ≥ 0 and integrating we get

∫ t

t0

λ′(τ)λ(τ) dτ ≤ (α+ 2)µ

∫ t

t0

λ2(τ)dτ. (26)

Integration by parts of the left hand side of (26) gives

∫ t

t0

λ′(τ)λ(τ)dτ =
1

2
λ2(t)−

1

2
λ2(t0).

Putting this in (21) we obtain

λ2(t) ≤ 2(α + 2)m

∫ t

t0

λ2(τ)dτ + λ2(t0).

From last relation using Granule’s lemma (see [10], p.450) we get
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λ2(t) ≤ λ2(t0) · e
2(α+2)m(t−t0 ),

or the same (25).

The theorem is proved.

Example 5. Let D(t) = tD1 + D0, t ≥ 0 and 0 ∈ (1 + t)D1 + D0 for all t ∈ [0, T ].
Then

λ(t) ≤ λ(0)e(α+2)t , (27)

where λ(0) = λ(D0).

Really, in this case

(1 + t)PD1(x) + PD0(x) ≥ 0,

or

−PD1(x) ≤ tPD1(x) + PD0(x).

Since P ′
D(t)(x) =

∂PD(t)(x)

∂t
and t · PD1(x) + PD0(x) = PD(t)(x) ([9]), (??) is satisfied by

µ = 1. From this we obtain (27).

5. Proof of Theorem 1.

Denote

Λ1(u,D) =

∫

D

|∇u(x)|2 dx,

Λ2(u,D) =

∫

D

ρ(x) |u(x)|2 dx.

Λ(u,D) = Λ1(u,D)/Λ2(u,D).

Then

λ1(D) = inf Λ(u,D), (28)

Where inf is taken over all functions u ∈ C2, being equal to zero on SD. This class of the
function we define by Ċ2(D).

First we calculate the increment of the functional Λ (u,D). To do this we take any
D,D0 ∈ K and calculate the increments of the functionals I1 I2.

Define

Dε = (1− ε)D0 + εD, D(ε) = Dε

⋂

D0,
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Sε = ∂Dε, S(ε) = ∂D(ε), 0 ≤ ε ≤ 1. (29)

The pair (u,D) is called to be admissible if u ∈ Ċ2(D), D ∈ K.
Let (uε,Dε) be an admissible pair. Then

∆Λ1 ≡ Λ1(u
ε,Dε)− Λ1(u

0,D0) =

∫

Dε

|∇uε(x)|2 dx−

∫

D◦

|∇u◦(x)|2 dx =

=

[

∫

D(ε)
|∇uε(x)|2 dx −

∫

D(ε)

∣

∣∇u0(x)
∣

∣

2
dx

]

+

[

∫

Dε

|∇uε(x)|2 dx −

∫

D(ε)
|∇uε(x)|2 dx

]

+

+
[

∫

D(ε)

∣

∣∇u0(x)
∣

∣

2
dx −

∫

D0

∣

∣∇u0(x)
∣

∣

2
dx

]

== Λ4 + Λ5 +Λ6. (30)

Here by Λ4 ,Λ5,Λ6 are defined the first, second and third brackets correspondingly.
Now let’s calculate each Λi, i = 4, 5, 6 separately.
In [6] the functional

J(D) =

∫

D

f(x) dx,

have been considered and the following formulae was obtained

δJ(D,D) =

∫

SB

f(x)
[

pD(n(x))− pD(n(x))
]

ds (31)

for its first variation.
Using this formula for Λ5 Λ6 , we get

.Λ5 =

∫

S(ε)
|∇uε (x)|2

[

PDε
(n(x))− PD(ε) (n(x))

]

ds+ o (ε) .34)

Similarly

Λ6 = −

∫

S(ε)

∣

∣∇u0 (x)
∣

∣

2 [

PD0 (n(x))− PD(ε) (n (x))
]

dx+ o (ε) . (32)

Adding obtained expressions we obtain

Λ5 + Λ6 =

∫

S(ξ)

∣

∣∇u0 (x)
∣

∣

2
[PDε

(n(x))− PD0 (n(x))] dx+ o (ε) + o
(

‖δu‖C1(D(ε)

)

, (33)

where δu = uε(x)− u0(x),
Now let’s calculate Λ4
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Λ4 =
∫

D(ε) 2
(

∇u0(x),∇δu(x)
)

dx =
∫

D(ε) 2div(∇u0(x)δu(x)dx−

−2
∫

D(ε)∆u0(x)δ(u)dx + o
(

‖δu‖C1(D(ε))

)

.
(34)

Define the first integral by Λ7 and transform it taking into account that uε(x) = 0 on Sε

and u0(x) = 0 on SD0

Λ7 =
∫

D(ε) 2div(∇u0(x)δu(x)dx − 2
∫

Sε
(∇u0(x), n(x))uε(x)ds+

+2
∫

SD0
(∇u0(x), n(x))u0(x)ds.

(35)

Considering δu = uε(x)− u0(x),

Λ7 = 2
∫

D(ε) div(∇u0(x)uε(x)dx− 2
∫

Dε
div(∇u0(x)uε(x))dx+

+2
∫

D0
div(∇u0(x)u0(x))dx− 2

∫

D(s)
div(∇u0(x)uε(x))dx.

Using the formulae (33), we obtain

Λ7 = −2

∫

S(ε)
div(∇u0(x)u(x))

[

PDε
(n(x))− PD(ε)(n(x))

]

ds+ o(ε) + o
(

‖δu‖!1(D(ε))

)

.

Putting the obtained expression for Λ7 into (37) we get the following formula
for Λ4

Λ4 = −2
∫

S(ε) div(∇u0(x)u0(x))
[

PDε
(n(x))− PD(ε)(n(x))

]

ds−

−2
∫

D(ε)∆u0(x)δu(x)dx + o(ε) + o
(

‖δu‖!1(D(ε))

)

.
(36)

Substituting (33) and (39) into (32) we obtain

∆Λ1 =
∫

S(ε)

[

∣

∣∇u0
∣

∣

2
− 2div(∇u0u0)

]

[PDε
(n(x))− PD0(n(x))] ds−

−2
∫

D(ε)∆u0(x)δu(x)dx + o(ε) + o(ε) + o
(

‖δu‖C1(D(ε))

)

.
(37)

Considering Dε = (1− ε)D0 + εD or PDε
(x) = (1− ε)PD0(x) + εPD(x) ,

we have

PDε
(x)− PD0(x) = ε(PD(x)− PD0(x)). (38)

Taking into account (38) in (40) after some transformations one may get

∆Λ1 =
∫

SD0

[

∣

∣∇u0
∣

∣

2
− 2div(∇u0u0)

]

[PDε
(n(x))− PD0(n(x))] ds−

−2
∫

D0
∆u0(x)δu(x)dx + o(ε) + o

(

‖δu‖C1(D(ε))

)

.
(39)

The similar considerations lead us to the following formula for the increment of the func-
tional Λ2
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∆Λ2 = 2
∫

D0
ρ(x)u0δu(x)dx + ε

∫

SD0
ρ(x)

∣

∣u0(x)
∣

∣

2
[PD (n(x))− PD0 (n(x))] ds+

+o(ε) + o
(

‖δu‖C1(D(ε))

)

.
(40)

Now let u0(x) and uε be normalized eigenfunctions of the problem (1), (2) in the
domains D0and Dεcorrespondingly. Then as it is clear from (30)

δΛ = δΛ1 − Λ1(u
0,D0)δΛ2.

Putting here the obtained formulas for ∆Λ1, ∆Λ2, considering λ1(D0) = Λ1(u
0,D0)/Λ2(u

0,D0)
and boundary condition u0(x) = 0, x ∈ SD0 one may get

∆Λ = 1
Λ2(u0,D0)

∫

SD0

[

∣

∣∇u0
∣

∣

2
− 2div(∇u0u0)

]

[PDε
(n(x))− PD0(n(x))] ds+

+2
∫

D0

[

−∆u0(x)− λ1ρ(x)u
0(x)

]

δu(x)dx + o(ε) + o
(

‖δu‖C1(D(ε))

)

In this expression the second integral equals to zero since, u0 is a solution of the problem
(1), (2) when D = D0. Thus, from last equality under boundary condition u0(x) = 0, x ∈
SD0 we get

δλ1 = −

∫
SD0

|∇u0(x)|
2
[PD(n(x))−PD0

(n(x))]ds
∫
D

ρ(x)|u0(x)|2dx .

Theorem is proved.

Acknowledgment.

The work is supported by Baku State University Internal Grant Project ”50+50”, 2011

References

[1] Vladimirov V. S. Equations of Mathematical Physics. M.: Nauka, 1988.

[2] Gould S.H. Variational Methods for Eigenvalue Problems. Oxford/Toronto, country-
regionCanada: placeCityOxford University, Press/University of CityplaceToronto
Press, 1996.

[3] Zolesio J-P. Domain vibration formulas for free boundary problem. Optimization of
Distributed ParameterSystems vol II, CityplaceAmsterdam: Nijhoff, Nagae, 1981, pp
1152–94.

[4] Bugur D., Buttazzo G. and Figueiredo I. On the attainable eigenvalues of the place-
Laplace operator. placecountry-regionSIAM J.Math. Anal., 30, 1999, 527–36.



Variable Domain Eigenvalue Problems for the Place Laplace Operator with Density 51

[5] Gasimov Y. S., Niftiev A.A. On a minimization of the eigenvalues of Shrodinger
operator over domains. Doclady Mathematics, 2001, v.64, 2, p.187-189.

[6] Niftiyev A.A., Gasimov Y.S. Control by boundaries and eigenvalue problems by vari-
able domain. Publishing House “BSU”, 2004, 185 p.

[7] Yusif S. Gasimov. Some shape optimization problems for the eigenvalues. J. Phys. A:
Math. Theor. 41 (2008), 521-529.

[8] Mikhaylov V.S. Partial differential equations M.: Nauka , 1976, 391 p.

[9] Demyanov V.F., Rubinov A.M. Basises of non-smooth analyses and quasidifferential
calculas. M.: Nauka, 1990, 320 p.

[10] Vasilyev F.P. Numerical methods of solution of the extremal problems. M.: Nauka,
1980, 518 p.

[11] Chakib A., Nachaoui A. Non linear programming approach for a transient free bound-
ary flow problem. Appl. Math. Comput., 2005, 160 317–28.

A.A.Niftiyev
Institute of Applied Mathematics, and Department of Baku State University, Z. Khalilov 23, AZ1148,

Baku, Azerbaijan

E-mail: aniftiyev@yahoo.com

R.F.Efendiev
Institute of Applied Mathematics, and Department of Baku State University, Z. Khalilov 23, AZ1148,

Baku, Azerbaijan

E-mail: rakibaz@yahoo.com

K.I. Alisheva
Institute of Applied Mathematics, and Department of Baku State University, Z. Khalilov 23, AZ1148,

Baku, Azerbaijan

E-mail: alaktika2002@mail.com

Received 08 March 2012
Accepted 31 March 2012


