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Variable Domain Eigenvalue Problems for the Place Laplace
Operator with Density
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Abstract. We consider variable domain eigenvalue problems for the placeLaplace operator with
density function. The first variation of the eigenvalues is calculated with respect to domain, their
properties are investigated when the domain varies.
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1. Introduction

Eigenvalue problems are one of the intensively investigated fields of the spectral theory.
These problems have significant applications, since some mechanical characteristics of
certain systems indeed are described by the eigenvalues of the corresponding operators ([1])
. But in some cases the considered problems, as well as, the problems of the stability of
vibrating bodies, the propagation of waves in composite media, and the thermic insulation
of conductors lead to the eigenvalue problems with variable domain ([2]). Investigation
of such kind of problems meets some difficulties, because of in this case one have to deal
with domain funtionals instead of usual ones. In its mathematical formulation the problem
consists of taking an operator and considering its eiganvalues as a functionals of the domain
([3]). In spite of actuality these investigation meet some difficulties related mainly with
the definition of the domain variation. In [4-7] some properties of the eigenvalues are
investigated using the different definitions of the domain variation.

Here we use the new definition of the domain variation based on the single valued
correspondence between bounded convex domains and continuous positively homogeneous

functions. This function defined as P4 (x) = sup(l,z), = € R™ is called support function
leA
of the domain. Using this correspondence the variation of the domain is expressed by the

variation of its support function. This technique allows us to avoid some of the difficulties
during the investigation of the variable domain eigenvalue problems. In present work the
formula is obtained for the first variation relatively domain and some properties are proved
for the eigenvalues of placeLaplace operator with density function when the domain varies.
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Consider the following eigenvalue problem

—Au=M(z)u, x€D, (1)

u(z) =0, z€Sp, (2)

Here A is placeLaplace operator, p(z)is positive differentiable function in R™,D C R™,Sp =
0D- its boundary. It is known ([8]) that the first eigenvalue of the problem (1), (2) may
be calculated by the formula

Jl(u, D)

A1(D) = inf M@ D)’ (3)

where Vu = (ug,, Ugy...Usz,,) ,

Ji(u, D) = /D Vg (x)*dz , Jo(u,D) = /D p(x)u?(z)dz,

and inf is taken over all functions u € C?(D),being equal to zero at Sp. Let’s denote by
M the set of all convex bounded domainsD C R™. Define

K={DeM,SpeC?} (4)

It is known [3] that under given conditions eigenfunctions of the problem (1), (2) belong
to the classu € C?(D)(CY(D) and eigenvalues are positive and may be numbered as
0 < A1 < A2 < ... considering their multiplicity [1,8].

Using (3) we can consider the eigenvalue Ajof the problem (1), (2) as a functional of
D. We'll calculate the first variation of this functional. Using the obtained formula we
investigate various properties of the eigenvalue relatively domain.

2. The Space of The Pairs of Convex Sets

Let’s define the operations of addition and multiplication by the non-negative number
in Mby the following relations

A+B={c=a+b;ac A, be B},
M={Xa: acA }, A>0.

M is not a linear space (the operation of subtraction is not defined in M). Let’s consider
the pairs (A, B) € M x Mand define the operations:

(Al, Bl) + (AQ, BQ) = (Al + AQ, By + BQ),
MA, B) = (A, AB), if A>0, (5)
(_1) : (A>B) = (B>A)v

(A,B)~ (C,D)if A+ D=B+C
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As a zero element of this space is taken the pair (0, 0), i.e. the set of elements (A, A),
Ae M.

The set of all such pairs forms a structure of a linear space. We’'ll introduce a scalar
product in this space below.
For any A € M the function

PA(J;) = Sup(lam)a reR" (6)
leA

is called a support function of the set A. This function is continues convex and positive
homogeneous i.e.P4(Ax) = APa(z), A > 0. Also it is known [9], that for each continues
convex positive-homogeneous function P(z) there exists a convex bounded set A € M,
such that

P(z) = Py (x).

The set A € M is reconstructed as a subdifferential of the function Pp(z) at the origin
[9,10], i.e.

A=0P4(0)={l € R™: Py(z) > (I,z),z € R™}. (7)

Let’s take any a = (A1, As), b= (B1,B2), A;, B; € M, i =1,2and define the scalar
product as

(a,b) = /S p(x)q(z)ds. (8)
Here p(z) = Pa,(z) — Pay(r) ,  a(x) = Pp,(#) — Pry(x); Pa,(x), Pp,(z) are support

functions of the sets A;, B; respectively; Sp is a surface of the unit sphere B. Norm in
this space is defined as

1/2
lallyz, = v(a,a) = </S (Pa,(z) — PAQ(x))2d5> . (9)
B
For one dimensional case m = 1, the formula (8) turns to

(a,b) = p(=1)q(=1) + p(1)q(1). (10)

It may be shown that this definition satisfies all requirements of the scalar product. We
define this space by M Lo(B)orM Ls. If in (8) to take any D € Minstead of B, then
corresponding space with a scalar product

(a,b) = /S p(n(x)) q(n(z))ds

is defined by M Lo(D). Here n(z)is an outward normal to Sp in the point x.
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3. First Variation of the Eigenvalue

To investigate the behaviour of the eigenvalues of the problem (1), (2) relatively do-
main, let’s calculate the first variation of the functional A\(D).

We define the differentiability of the functional A;(D) similarly to [6].
Definition. The functional); (D) is called differentiable in Dy in the directionD, if there
exists the limit

/\1((1 — E)Do + ED) — /\(Do)
5—)-1—0 £ '

(11)

This definition may be written in the following equivalent form

A (do + ed) — A(d
52 (do,d) = lim 21l Fed) = Mdo)
e—=+0 £

It follows from the relation

do +ed = (Do,0) +&(D, Do) =
= (Do +eD,eDy) = ((1 —e)Dy +¢D,0).

For the simplicity here and later on we define dA1(Dy, D) by dA1(Dy).

Theorem 1. The functional A\ (D)is differentiable on K in the direction D € K and

Js, IVu@)* [Pp(n ( )) Pp(n(z))]ds
[p p(x)u?(x)dx '

Remark 1. If Sp = S1|J Sa, where Siis fized and Sy is unknown, then the formula (12)
instead of Sp involves Ss.

M\ (D,D) = — (12)

Corollary 1. If domain D depends of on the parameter t € Rand support function of the
domain D = D(t) is diﬁerentiable then
N(t) = —Jsp T O o eDds oy L s aD(), A = WD), P =
1 fD(t) p(x)u ( )ydx ’ 1 1 ’ D(t)

6PD(t)
ot -

Proof. 1t is easy to obtain following relation from the formula (12)
At+A) = A{t)=A(D(t+At) —A(D(t) =

fSD(t) Ivu(I”Q[PD(tJrAt)(”(I))*PD@)(n(x))]cls
a fD(t) p(x)u?(z)dx

+ o(At).

From this considering the differentiability of the functionPp ) () relatively ¢, dividing by
At, one may get (13). The theorem is proved.
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In the case of multidimensional parameter t = (ty,t,...,t;) € T C RF, where S (t) €
C?for each t € T, the formula (13) takes a form

dPp (4 (n(z))
O (1) fs(t) V()] %dm

_ , 13
o, Tovo P01 2 1)

Corollary 2. Let m =1, D(t) = (t1,t2), t1,t2 € R. Then
8)\1 . ui(tl) 8)\1 . ug(tg) (14)

Y + sy ot )
oty ;2 p(x)u?(z)de Oty .2 plx)u?(z)de
Proof. Since the support function of the interval has a form

tox, x>0,
LCES (x) = { tiz, x<0

from (14) we get (15). The theorem is proved.

(16)

4. Some Properties of the Eigenvalues

Now we investigate some properties of the first eigenvalue of the problem (1), (2)
relatively domain using the formula (12).
From (13) one may immediately get the following

Corollary 3. If

then \(t) decreases (increases ) relatively t.

Example 1. Let D (t) =D +tDy, t >0, D,Dy€ K.
Then following to the property of the support function [9]

Ppy () = Pp () +tPp, () , Ppy, (¥) = Ppy(a) (2) -
If 0 € Dy, then
Pp, (z) = sup (I,z) > (1,0) = 0.
leDg

From this considering the corollary (13) A (¢) decreases.
Example 2. Let’s take D (t) = (a(t), b(t)), where a(t) < b(t), a(t), b(t) are
differentiable functions. Then it is clear that for this case

b(t)r, = >0,
a(t)r, =<0

Poy () = {



44 A.A Niftiyev ,R.F.Efendiev, K.I. Alisheva

And
/ V(t)x, >0,
PD(t)() { /((t)) , <0
(t

It shows that A (t) increases if ¥’ (t) < 0, o’ (t) > 0 and decreases if b’ (t) > 0, o’ (¢) < 0.
Example 3. Let m = 1 and D (t) = D (t1,t2) = (t1,t2). Then as follows from the
corollary 3 A(t) increases with respect to t; and decreases with respect to ts.

Theorem 2. Let p (tx) = p(x) - t%, « # —2. Then for the egenvalues of the problem (1),
(2) in the domain D the following formula is true

Js, |Vul? Pp(n(z))ds

M(D) = (a+2) fD p(x)u?(z)dx

(15)

Proof. Take Dy € K, D (t) =t-Dg, t > 0. The first eigenfunction of the problem (1),
(2), corresponding to the domain Dy, define by u (x). Then

—Au(z) = A\ (Do) p(z)u(x) , x € Dy.

This equation one can write in the following equivalent form

- %A(m)u (%) - Al(DO)th(ﬂ “D L epp. (16)

Denote @ (z) = u (£) . Since At (z) = Au (%) , & € D (t) satisfies to the relation

- 1 x
8i(w) = ) (7).
and p (%) = p(z) - t7*, a # —2following the condition, form (18) we obtain

A1 (Dy)

— At (x) = 752ﬁp(a:)& (x).

It shows that A (x) is an eigenfunction and )‘tlg(ﬁ)) - eigenvalue of the problem (1), (2) in

the domain D(t). Considering this in (13), we get

— 2+ a))‘l (Do) _ t% fSD(t) ‘Vu (%)‘QPDO (n(x))ds
ta+3 fD(t) p (%) 02 (%) dr

Taking t = 1 one may get

Jsp, 1V (fL‘)\2 PDO (n (2)) ds

(2 + Cl))\l (Do) = fDO ) d

From last relation we obtain (15).
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The theorem is proved.
If u = u(z) is normalized eigenfunction for the problem (1), (2), e.i.

| plapi(a)s =1,
D
then

1
o+ 2

M (D) = /S Vu(z)| 2Pp(n(z))ds. (18)

Formula (20) shows that the boundary value of the function |Vu(x)|unequivocally defines
Al

From the formula (17) we obtain following result for the case a = —2.

Corollary 4. Let t2p (tx) = p(x). Then

/ V() Pp, (n (2)) ds = 0.
Spy
Corollary 5. Let m =1, D(t) = (t1,t2), t1,t2 € Rand a # —2. Then

A — Ui(h)t? —uz(t)t 7 (19)
(a+2) [, p(x)u?(z)dz

The first eigenvalue for the normalized eigenfunction we obtain following formula

Ml ta) = L [2(t) - 2 — 2(t)t4] (20)

+2
For the case a = —2 satisfy

u2(t2) . tg - UZ(tl)tl =0. (21)

Example 3. Let D(t) = B; be a sphere of radius ¢, p(x) satisfies to the condition
p(tz) = p(x) - t% «a # —2. Considering Pp,(x) = t||n(x)| = ¢, from (18) we get
1 2
Ai(t) = 7 a IVullz, s -
Theorem 3. Let A be a simple eigenvalue of the problem (1), (2) and the following
relation is satisfied for the support function P(t,x) of the domain D(t)

k
Zai(t) OPa(z,x) =b(t)P(t,x), v € Sp, teT. (22)
i=1 ¢

where Sp is a surface of the sphere B, a;(t), b(t) are given functions.
Then the eigenvalues A(t) of the problem (1), (2) in the domainD(¢) satisfy the equation

> aitt) agt(f) — (a4 2)bOA). (23)
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Proof. Multiplying both sides of (14) by a;(t) and taking a sum we get

b )\ )
ai(t) - 5 = — [V (t, )| b(t) Ppy) (n(x))dz.
; ot; /SD(t) e

Using (15) from last relation one may get (24).
The theorem is proved.

Example 4. Let’s takeD(t) = [t; t2]. Then as follows from (?7)

; OP(t,x) +t OP(t,x)
e 2ot

Thus, we get the following equation for the eigenvalues

= P(t,x).

R O}

For the unequivocal calculation of the eigenvalues from (25) the boundary condition has
to be given no on its characteristics.

t +1

Theorem 3.
—P'D(t)(a:) < HPD(t)(l‘)a t € [to,t1], > 0. (24)

Then the estimate
AE) < Ato)ePt10) ¢ e [to, t1]. (25)
1s valid.

Proof. From (13), (15) considering (24) we have

N(t) < pla+2)A(1), tE to,t1]

Multiplying this by A(¢), considering that A(¢) > 0 and integrating we get

/ N(PA() dr < (a+ 2)u / N2(r)dr (26)

to to

Integration by parts of the left hand side of (26) gives

/t N (DA (T)dr = Z)\2(t) — %)\Q(to).

to

Putting this in (21) we obtain

M (t) < 2(a+2)m t N (T)dT 4+ N (to).
to

From last relation using Granule’s lemma (see [10], p.450) we get
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A2(t) < M2 (tg) - e2letDmli—to)

or the same (25).
The theorem is proved.

Example 5. Let D(t) = tD; + Dy, t > 0 and0 € (1 +¢)D; + Dy for all ¢t € [0,T].
Then
A(t) < A(0)e@F2)t, (27)
where A\(0) = A(Dy).
Really, in this case
(1+t)Pp,(z) + Ppy(x) >0,

or

_PD1 (l‘) < tPDl (l‘) + PDo(x)'

Since Pl (x) = W0 and t- Pp, (x) + Pp(x) = Ppgy(x) ([9)), (22) is satisfied by

= 1. From this we obtain (27).

5. Proof of Theorem 1.

Denote
Ay (u, D) = /D V()2 dr,
Aot D) = [ pfe) uta)
A(u, D) = Ay (u, D)/As(u, D).
Then

A (D) = inf A(u, D), (28)

Where inf is taken over all functions u € C?, being equal to zero on Sp. This class of the
function we define by C?(D).

First we calculate the increment of the functional A (u, D). To do this we take any
D, Dy € K and calculate the increments of the functionals 17 Is.

Define

D.=(1-¢)Dg+eD, D(e)= D[ )Do,
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Se =0D., S(e)=0D(e), 0<e<1. (29)

The pair (u, D) is called to be admissible if v € C?(D), D € K.
Let (u®, D.) be an admissible pair. Then

AAl:Al(uE,DE)—Al(uO,DO):/ |Vu5(x)|2d$—/ \Vu® (z))? do =
D¢ D,

— [/ |Vl (z)|* de — / V()| da| + / |Vl (z)]? do — / |Vl ()| dx | +
D(e) D(e) D, D(e)
2 2
+ [fD(E) ‘Vuo(x)‘ dr — fDo !Vuo(x)‘ dx} == Ag + A5 + Ag. (30)
Here by Ay, As, Ag are defined the first, second and third brackets correspondingly.
Now let’s calculate each A;, i =4, 5, 6 separately.
In [6] the functional
D) = [ @)
D
have been considered and the following formulae was obtained
8J(D,D) = g f(@) [pp(n(z)) — pp(n(z))] ds (31)
B
for its first variation.
Using this formula for A5 Ag , we get
o= [ 19 @ [P, (1)~ Poge ()] ds + 0() 30
Similarly
2
Ag = — /s( | |Vu0 (x)‘ [PDO (n(z)) — Ppe) (n (l‘))] dx +o(e). (32)
€

Adding obtained expressions we obtain

As + A = /S(g) |V’ (a:)|2 [Pp, (n(x)) — Pp, (n(z))]dz+o0(e)+ o (||5u||01(D(5)) , (33)

where du = u(z) — u®(x),
Now let’s calculate Ay
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Ay = [0 2 (Vil(2), Vou()) dz = [} 2div(Vu® (2)du(z)dz—

(34)
—2 [0y A (2)0(w)dz + 0 (Iullca ey )

Define the first integral by A7 and transform it taking into account that u®(z) = 0 on S
and u°(x) = 0 on Sp,

A7 = fD(s) 2div(Vul (x)0u(z)dz — 2 fSa (Vul (z), n(z))uf (z)ds+ (35)
+2 [g,,, (Vul(@), n(@))u’ (z)ds.
Considering du = u®(z) — u’(z),

A7 = 2fD(5) div(VuO(:L‘) *(z)dx — 2 [},_div( Vu (z)uf (z))dz+
+2 fDo div(Vu® (z)u’(z))dx — 2f dw Vul (z)uf (z))dx.

Using the formulae (33), we obtain

r==2f (T @)uta)) [P () = Py ()] ds + o) +0 (I8ullncore)

Putting the obtained expression for A7 into (37) we get the following formula
for Ay

Ay = -2 fs(g) div(Vu (x)u’(z)) [PDE (n(z)) — Pps (n(a:))] ds—

(36)
=2 [0y Au®(@)0u(@)d + o(e) + 0 (I3ully (pyey) ) -
Substituting (33) and (39) into (32) we obtain
Ay = [y [V — 2i0(Vu0u®)] [Po, (n(2)) ~ Py (n(2))) ds— -
2 [y Au®(2)8u(z)dz + o(€) + o(e) + 0 (||5u||01 (D(E))) .
Considering D, = (1 —€)Dy + €D or Pp_(z) = (1 —¢)Pp,(z) + ePp(x) ,
we have
Pp_(x) — Pp,(2) = e(Pp(x) — Ppy(x))- (38)
Taking into account (38) in (40) after some transformations one may get
Ay = [, [[VOf — 2iv(Vu®u®)] [Po, (n(x)) ~ P, (n(2))] ds— )

-2 fDo Aul(z)du(x)dx + o(e) + o (||5U||01(D(e))> :

The similar considerations lead us to the following formula for the increment of the func-
tional Ao
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ANy =2 fDo p(2)u’du(x)dr + EfSDO p(x) |u0(33)‘2 [Pp (n(x)) — Pp, (n(x))] ds+

40
+0(€)+0<H5UHC‘1(D(5)))' o

Now let u%(z) and u® be normalized eigenfunctions of the problem (1), (2) in the
domains Dgpand D.correspondingly. Then as it is clear from (30)

0N = (51\1 - Al(uo, D0)5A2

Putting here the obtained formulas for AA;, AAs, considering A1(Dg) = A1(u®, Dg)/A2(u®, Do)
and boundary condition u"(x) = 0, = € Sp, one may get

AN = by o, |[V6] = 2di0(Tu0u®)| [Pp, (n(x)) = Ppy(n(2))] ds+

2(u
In this expression the second integral equals to zero since, u° is a solution of the problem
(1), (2) when D = Dy. Thus, from last equality under boundary condition u%(x) = 0,z €
Sp, we get

Js p, |78 @)|" [P () ~ Py (n())ds

0A = — T p@)u0 (@) Pde

Theorem is proved.
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