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Fundamental Solution of Cauchy and Goursat Type Problems
in Lines with Characteristic and Non-Characteristic Pieces for
Third Order Hyperbolic Equations

O.M.Huseynov, T.D.Mamedov

Abstract. In the paper, the existence and uniqueness of the solution for boundedness and summability type
rather weak restrictions on the coefficients of a third order hyperbolic equation of a Cauchy and Goursat
type problem were proved and an integral representation of the solution for a non-homogeneous problem
was found.
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1. Introduction

In the paper, for boundedness and summability type rather weak restriction on the coefficients
of a third order hyperbolic equation of a Cauchy and Goursat type problem we introduce the notion
of 6 -fundamental solution that generalizes the notion of the Riemann function in a natural way
for the case third-orderer hyperbolic equations with non-smooth coefficients and allows to find
integral representation of the solution of a non-homogeneous problem, is introduced. The concept
of a # -fundamental solution was first introduced in the general case in [1] by S.S.Akhiev. Fur-
thermore, sufficient conditions under which this problem is well-defined together with its adjoint
system and there exists a unique 6 -fundamental solution are found. This problem includes as a
particular case the Cauchy problem and the Goursat problem [2,3].

2. Problem statement

On a rectangular domain
G = G1 x Gy, G1 = (z0,21), G2 = (Yo, 1)

of the plane XOY we consider a continuous line T', that is located on G, and connects the
points (zg,y1) and (z1,yp), and satisfies the conditions with all straightlines of the form
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T =« = const and y:B:const(aeél,ﬁeag)
the line I' has a unique intersection point with the possible exception of finite number of straight-
lines = ag, k = 1,2,.., Ny, andy = B¢, k = 1,2,..,No, (o € G1, B, € G2), with
which T' can interest along some sections. We call any such a line a monotone line. We will
consider monotone lines that can be determined as combination

{(@,8r (@) [z € G} U {(r(),y)]|ye G}

of graphs of some pair of monotonically increasing functions y = Sp(z) and = =
v(y) continuous on G and G4 , with possible exception of finitely many points

T = Qo Eég, k=1,2,...,N; and y:Bk 662, k=1,2,...,No,

where they can have first kind discontinuities (at discontinuity points their values are considered
to be equal to one of the limits at this point from the right or left).

This time the function x = vp (y) can be considered as a generalized inverse for the function
y = Sr (z) and vice versa. Such monotone lines, in particular, can be built up as combination of
finitely many pieces of straightlines parallel to coordinate axes.

Let WZSQ’U (G), 1 <p < oo beaspaceofall u e L, (G) having S.L.Sobolev generalized
derivatives o
DiDiue L,(G), i=0,1,2; j=0,1,

where D, = % .The space WISZ’U (G) is Banach in the norm

lll o gy = 3 IDEDIul L () -

0<i<2
0<5<1

Let us consider the equation

(Lu) (z,y) = DiDyu(z,y) + azo (z,y) Diu(z,y) +
—I—(l]_,l (SU, y) D:chu (Iv y) + a1,0 (:1:) y) Dm‘u (ﬂf, y) +

+a0,l (.’E, y) Dy (‘T’ y) + ao,0 (JJ, y) u (LIZ‘, y) = 900 (IL‘, y) ) (l‘, y) S G) (1)
where ¢° € L, (G)

Let a;;(z,y) (i=0,1,2; j=0,1) be measurable on G, 0;9 € L, (G) (i =0,1) and
there exist such functions agl € Ly(G1),i = 0,1; a3y € Ly(Gz) that [0 (z,y)] <
ady (x), 020 (z,y)| < a9 (y).

Under the imposed conditions the operator L of the equation (1) acts from
Wp(2’1) (G) to L,(G) and is bounded.
For the equation (1) on some monotone line I' we give the conditions:

(Laou) (x) = D2u(,y) |yesp@) = 920 (), © € Gy
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(Ll,lu) (y) = Danyu (xa y) ‘x:zxp(y) = Y11 (y) , Y € Go
(Lo,lu) (y) = Dyu (‘rvy)Lz::V(y) = 0,1 (y)

Ll,Ou = DTL’U (.’L’, y)

z=x0 = @10, Loou = u(x,y) |z=20 = ©0,0; ()
Y=y Y=y1

where
UaT‘phiQ,o S Lp (Gl) , Pi1 € Lp (Gz) , Pi0 € R, (Z =0, 1)

are the given elements.
The operations Log, L, 1, Lij 0 (i =0,1) of taking traces are continuous from

WISQ’U (G1) to L, (Gi),L,(G2),R, respectively. Therefore, the operator L
(Lo, L1o, Loy, L1ty Log, L) of the problem (1), (2) acts from W (@) to BV =
R x R x L, (Gg) x L, (G2) x L, (G1) X L, (G) and is bounded.

We can also write the problem (1), (2) in the form of the operator equation

A A
Lu =, 3)

where
@ = (00,0, 1,0, 90,1, P11, 92,0, ¢") € E,(>2’1)-

As the solution of the problem (1), (2) we will call the function u € W,EQ’I) (G) for which
equality (1) is fulfilled almost everywhere on G, the first second and third equalities from (2),
almost everywhere on G1 and G2, and also the fourth and fifth equality from (2), in the usual
sense.

We call the problem (1), (2) a Cauchy or Goursat type problem. It I =
{(z,¢(x)) |z € G1}, then the problem (1), (2) is equivalent to the classic Cauchy prob-
lem, where ¢ () is a continuously differentiable function on G; ' (z) < 0, ¢ (z0) =
Y1, ¢ (x1) = yo (is this case the line T' is non-characteristic).

If

I'={(z,9)ly = Sr (z) = yo, « € [vo, 1] } U{(z,y) |z = vr (y) = w0, y € [yo, 1]}

or

I'=A{(z,9)ly = Sr (z) = y1, x € [z, 1] } U{(z,y) |z = vr (y) = 21,9 € [yo, 1] }

the problem (1), (2) is equivalent to the classic form Goursat problem (in this case I' is a charac-
teristic line). In this sense, problem (1), (2) includes as a particular case the Cauchy and Goursat
problems.

If the problem (1), (2) for any ¢ € EI(,Q’I) has a unique solution u € WISM) (G) and this
time

Ju < M@l g

wi (@)

where

H@Hgn = [po0lp + l¥10lg + llvo Ly(G) T WLIHLP(GQ) + HSOQ,OHLP(GI) + HWOHLP(@ :
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M- is a positive constant independent of ¢ , we will say that the problem (1), (2) is everywhere
well-defined. Note that well-defined solvability of the problem (1), (2) is equivalent to the fact

that its operator L has a bounded inverse L~' determined on EZ(,Z’U .

3. Constracting an adjoint operator

For the operator L of the problem (1), (2) the explicit form of the conjugated operator L

was found. We take some functional f € Ef’l), % + % =1 bounded on ESQ’I).

Then f has the form

= (fo,0: f1,00 fo1 (W), fi1(y), foo(x), f(x,y)),

where

foo € R, fio € R, fo1 € Lqy(G2), fi1 € Ly (Ga), fop € Lq(G1), f € Ly (G)

and by the definition we have

f (E) = wao,n) foo + Dat(momn) Fro+ [ Dy (). ) foo () dyt

+ . D,Dyu (v (y).y) fi1 (y)dy + ; D2u (z, S () fa0 (x) do+

n / /G (L) (2,9) f (2,y) drdy @

Taking into account the expression of the operator L from (1), we reduce the right hand side
of the equality (4) to the form

f(LU) = (Vo,of) u (21, 91) + (Vl,of) Dyu(z1,y1) +
+/G (V(),1f) Dyu (z1,y) dy+/G (V1,1f> (71,y) DeDyu (z1,y) dy+

+/G (VZO]?) D?Eu(x,yl)dcz:—i—//G (Vf) DﬁDyU(IE,y) dxdy, &)

where

(VF) () = £ (1, =06 = Sv () fa (1) = 0 (7 = v () fra () +

+/70(Tl —vr(§))dm - for+

0

+ / /G laro (2,) — a0 (@.9) (r — )] 6.(r — 2) 8 (€ — ) f () dirdy—
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- /G lans (2,€)8 (r — ) — aps (2,€) (1 — )6 (r — )] f (2, €) da—
- /G 020 (1,9) 0. (€ — y) £ (7,) dy;
(Veod) ()= oo (1) = o+ (7 =20) - oo + [ £ (rev)aza (o) dy-
Go
- / /G aro (2,y) f (2,9) 0 (v — x) dudy+
+ //G aoo (z,y) f(x,y)0 (1 — x) (1 — ) dedy;
(Viaf) © = fua @ = @1 =0 @) or = [ avo @) £ @) 0 € =) dyda+
+ /G a1 (6 F (€ - /G a0 (2,6 (51— ) f (1, €) et

4 / /G 100 (2.9) | (@,9) (@1 — 2) 0 (€ — y) dudy;

(V6af) © = foa©)+ |

G1

a01 (2,€) f (2, €) dx — / /G a00 (2,9) f (2.9) 0 (€ — y) dady
Vl,of = f10 — (x1 — 20) foo + //G aio (z,y) f (z,y) dydz—
- / /G a00 (2,9) f (2,y) (21 — ) dady

Voof = foo + //G aop (z,y) f (z,y) dydx (6)

Comparing the equality (4) and (5) and considering the general form of linear bounded func-
tionals on WZS2’1) (G) (see [1,2,3]) we obtain that the operator L, has an adjoint Lt — L
that acts in Ef’l) , bounded and is of the form L* = (Vo,0, V1,0, Vo1, Vi1, V2,0, V) , where the
operators are determined by means of the equality (6). Hence it follows that the conjugate equation

Lf=4 (7)
can be written also in the form of the equivalent system of equations
Vo,of = 90,03
Viof = ¥1,03
Vouf) (y) = ¢01(y) y € G
Viaf) () =11 (y), y € Ga; ©
Vaof ) () = ¢2,0 (z), = €Gy;
Vi) (@y) = v (). @) e
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5 (2,1) . .
where ¥ = (100,0,%1,0,%0,1,¥1,1,%2,0,%) € Eq” is a given,,

f = (foo, fro. for, fui, f20. f) € BV

are the desired elements.

4. Existence and uniqueness of the solution of problem (1), (2) and its adjoint

system

The system (6) by its form at first sight may seem to be complicated, below we will show that
this system can be reduced to such an equivalent form in which the equation f is an independent

equation. For that, we will study system (8) separately in the domains G+ and G~ , where

Gt ={(z,y) €Gly > Sr(z),z € G}, G =G|GT

Note that if f = (fo.0, f1.0, fo.1, f1.1, f2.0, f) is some solution of (8), then from (6) it follows
that the components f2 0, f1,1, fo,1, f1,0, fo,0 of this solution can be expressed by means of its

first component f as follows:

f0,0 = ¢070 - ffG ao,0 (CC, y) f (l’,y) d$dy,

Jr0 =10+ (1 — 20) 0,0~

— [Jg (& = w0) aop (x,y) f (x,y) dedy — [[ a1 (z,y) [ (z,y) dedy,

fo1(§) =01 — Jg, a0 (2,€) f (z,§) dz + [[ga00 (2,y) [ (x,y) 0 (§ — y) dzdy,
fi1(§) =11+ (w1 —vr (§) Yo1 — [, a0 f (x,8) (x —vr (§)) da+

+ [fo (@1 —vr (§)) aoof (z,y) - 0 (€ — y) dedy+

+ [Jgarof (z,y)0 (€ —y)dady — [ ar1(x,€) f(x,€) da,

f2,0 (&) = a0 + 10+ (1 —10) Yoo + [7 [, ao0 (x,9) f (2,y) (7 — x) dedy—
— 7 o, a0 (2.y) f(2,y) 0 (1 — @) dedy — [, a20(7,y) f (1,y) dy.

If (1,€) € G, then

06~ S0 () =0((r - (©)=1u [ 0((n-w(@)dn=1-m ().
)
Then, using (9), the first equation of the system (8) can be reduced to the form

(A g f) = F (0,6 + [T [ [a10 (2,y) + a0 (,y) (x = 7)] f (2, y) dedy+
+fx1 all(ﬂﬂ f) (90*7')@0,1 (2, 8)] f (z,&) do+
+ [ azo (1oy) f(my) dy = i (1,€) (2,€) € GF

(€))

(10)

Butif (7,£) € G~ then 6(§ —Sp (1) =0(t —vr (§)) = 0, and then the first equation of the

system (8) has the following form:

(A(zo,yo F(.8) = F () + [ [S lar0(2,y) + aoo (z,y) (x — 7)) f (2, y) dzdy+
+ [o lar (2,8) + a1 (2,€) (v = 7)) f (2,€) do+
+f§0a2,0 (r.y) f(r,y)dy =¥ (1,€),(7,8) € G

1D
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Thus we showed that the solution of the system (8) is equivalent to the solution of the pair of
independent Volterra integral equations (10) and (11).

The operators A (x1,y1) and A (z0,yo) are bounded operators acting in the spaces L, (GT)
and L, (G™) , respectively. Furthermore, A (z1,y1) u A (o, yo) are Volterra operators in nega-
tive and positive directions of the variables, 7, &, respectively. Using this we can show that each
of these equations (10) and (11) has a unigue solution f € L, (GT) and f- € Ly (G™) .

This shows that the solution of the system (8) is equivalent to the solution of the pair of
independent equations (10) and (11), with unique solutions fi and f_ . The inverse is also
valid in the sense that if f. € L,(G") and f- € L,(G™) are the solutions of equations
(10) and (11), then the function f(7,&) = fx (1,€),(7,€) € G* together with the equalities
(9) determines some solution f = (fo,0, f1,0, f0,1, f1,1, f2,0, f) of the system (8) from E{gz,l) .

Hence it follows that the system for any 1& € E(gZ’l) has a unique solution f € E(SQ’D

. Using
. !
the Banach theorem, we obtain that L* has a bounded inverse (L*) acting in E(gz’l) . Since

. 1
<L*) is bounded, then L has a bounded inverse L' determined in (2 1 .
Thus, we prove the following theorem:

Theorem 1. The problem (1) and (2) and its conjugate system (8), unconditionally are everywhere
well-defined.

The § — fundamental solution of the problem (1), (2) is the function

f($ay):(f0,0($ay)a 7f1,0(xay)vf0,l( z,y )
fl,l (.,$,y),f2,0 ('aJ:?y)v f(')'?x’y)v ) 152’

That for each fixed point = € G is the solution of the system of equations

Vi) 06 == (=)0l —2)0 ()
Vggf (r)=—(r—2z)0 (1T —2),
Viaf) (&) = (z1—2)0(&—y) (12)
Vouf) (©)=—-0(¢—y),
Viof =—(z1— ),
Voof =1.

The system (12) for each = € G isa special case of the system (8) for

Y1) =—(1—2)0(r—2)0({—y),
e
1,1 =1 —x -y
Yon (€)= —0(E—y) | (1
o1 = — (1 — ),
oo =1.
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Therefore the existence and uniqueness of the § — fundamental solution f € Héz’l) of
problem (1), (2) follows from theorem 1.
Then we prove the following theorem:

5. Existence and uniqueness of ¢ fundamental solution and representation of the
solution

Theorem 2. The Cauchy and Goursat type problem (1), (2), unconditionally is everywhere well-
defined and has a unique 0 - fundamental solution f (x,y) € I—Lg?’l) , and its solution u €
ng?,l) (G), 1<p< o0, is represented in the form

u(z,y) = / /G F (7.6, 2,y) o (7, €) drde + /G fo0 (7, 2,9) @20 (7) dr+

+ [ fii§my)er () dE+ [ for (€, z,y) wo1 (§) dé+

GQ GQ
+f1,0 (%) ©1,0 + fo,0 () o,0- (14)
Proof. By theorem 1 the operator L* has a bounded inverse on H(EQ’” . Therefore, the op-
erator L has a bounded inverse determined in H. ](;2’1) . This in particular means that the problem

(1), (2) for asmall ¢ € H,, has a unique solution u € Wf’l) (G) and this time

] <M H@HHP, M = const .

Wt (@)

The validity of the equality (14) follows directly from identity (5) allowing for (12) and repre-
sentation of functions u € WZSZ” (G).

The authors of [4,5,6,7] also dealt with the application of the # fundamental solution to vari-
ous problems
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