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Two Fold Expansion Formula For a Non Self Adjoint
Boundary Value Problem
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Abstract. We investigate the Sturm-Liouville operator with a nonlinear spectral parameter in
boundary condition in the space Ls (0,00) . Unlike other studies, the condition is non self-adjoint.
For the problem, the scattering data is defined, the resolvent operator is constructed and in terms
of scattering data the two-fold expansion formula is obtained by using Titchmarsh method.
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1. Introduction

In this paper, we consider on the half line [0, 00) the differential equation

Uy) = —y" +V()y = p’y, (1)
with nonlinear dependence on the spectral parameter in the boundary condition
U(y) = y'(0) + (Bo + Bip + Bap”) y(0) = 0. 2)

Here p is a spectral parameter, V() is real valued function, (1+ )|V (x) € Ly (0,00) and
Bj(j = 0,1,2) are real numbers.

The Sturm-Liouville equations with a nonlinear spectral parameter in the boundary
condition arise in various problems of mathematical physics. The application to the heat
conduction problem as a special case of this problem is given in [1]. The physical ap-
plication of expansions problem for differential equation on the half line [0, 00) with the
boundary condition depending on the spectral parameter is considered in the works of
T.Regge [2],[3]. The Regge problem on the half line has been studied in [4]- [6]. Spectral
analysis for the boundary value problem when the spectral parameter appearing in the
boundary condition is examined in [7],[8].

In this paper, we study the spectral analysis of the boundary value problem (1)-(2).
By using the Jost solution of equation (1) and Titchmarsh’s method in [9],[10], we con-
struct the resolvent operator and we obtain two-fold expansion formula according to the
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scattering data. For the classical Sturm-Liouville operator, a similar problem has been
studied completely (see[9]-[12] and the references therein).

Expansion formulas according to the eigenfuctions for the equation (1) with different
types of boundary conditions are obtained in [13]- [16] . The scattering theory for boundary
value problem (1)-(2) are studied in [14]. In this case, the boundary value problem (1)-(2)
is not selfadjoint and it may have a complex eigenvalue (see [12] - [17]). For this reason,
the scattering data of problem (1)-(2) is differently defined.

By %, let us indicate the set of functions that satisfy the following condition:

1.) The functions y(x),y'(z) are absolute continuous on each the interval [0, ] (Vb > 0),

2.) L(y) € L2(0,00),

3.) (2) is provided for each fixed p.

Let L, is operator with domain %, = %(L,) such that for L,y = {(y). If p runs
through the set of all point of the p-plane , then we obtain a family of non-selfadjoint
singular operators L, depending on the parameter p (see [18]).

f(x,p) is the solution of the Eq. (1) possessing the asymptotics f(z,p) — €% as
x — oo and for any p, (Imp > 0) the solution f(z,p) can be represented in the form

[e o]

f(z,p) = e*” —i—/ L(x,t)etdt. (3)

x

The kernel L(z,t) satisfies the inequality

Lot < o3 e {or) - a5}

where
o) = / g)]dt, o1(z) = / o(t)dt.

The solution f(x, p) is an analytic function of p in the upper half plane and is continuous
on the real line. The following estimates are valid in the half plane Imp > 0 :

|/, p)| < exp{—Impx + o1(2)},

|z, p) — €] < {01(96) —ora+ ﬁw)} eap {~Impz + 01(2)}
|f(, p) —ipe™| < o(x)exp {—Impz + o1 ()} .

For real p # 0 the functions f(z,p) and f(z,—p) form a fundamental solution system of
equation (1) and their Wronskian is

W{f(l‘,p), f($a —P)} = f/(l‘,p)f(l', _p) - f(l’,p)f/(l‘, _p) = 2ip.

Similarly, we denote by f(z,p) the solution of equation (1) in the half plane I'mp > 0
possessing the asymptotics;
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Fla.p) = e (1+6(1)),  Fla.p) = e (ip+a(1)),

as p — 00,

fla,p) =" <1 +0 <|;1),)> . [, p) = —ipe'” <1 +0 <|;|>> :

as |p| — oo. The existence and properties of these solutions are studied in ([12], p.299).

Let (z, p) be the special solution of the equation (1) under the initial-value conditions

0(0,p) =1, ¢'(0,p) = — (Bo+ Bip + B2p) -
Analogously to the Lemma 1 in [14] is like that

2ipp(z,p)
= f@,—p) = S(p)f(z,p),

for any real number p # 0 . Thus the identity is valid:

_ f/(oa _P) + (BO + Blp + BZPQ) f(07 _p) )

S(P) f’(O,P) + (60 + Bip+ 52p2) f(O, P)

Denote
Fl(p) = f/(07 _p) + (60 + 519 + ﬁQPQ) f(0> _p)7

F(p) = f'(0,p) + (Bo + Bip + B2p”) £(0, p).

We shall define scattering function S(p) for the problem (1)-(2). The scattering func-
tion S(p) determines the asymptotics for x — oo of normalized eigenfunctions of the
operator L.

~

For the solution f(x,p), we have

2ipp(zip) _ 5\ Flo) .
“Fo) (z,p) ﬁ(p)f( . P)s

where

F(p) = f(0,p) + (Bo + Bip + B2p?) F(0, p).

The roots of the equation F'(p) = 0 in the half plane Imp > 0 form a finite set of complex
numbers and non pure imaginary . The multiplicity m; of a root p; (j = 1,2,...,n) of the
equation F'(p) = 0 is called the multiplicity of the singular value p;.

From the relation S(p), it is obtained

1
S(p) =1+ 0(;), as|p| — oo.
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Denote

fj(x)—%/ @—1]epdp—z§ep§F(p)ep,

where j =1,2,...,n.
We shall call the polynomial

Pj(x) = e i fi(x), j=1,2,...,n.

The functions f;(x) j = 1,2,...,n is the characteristic of the operator L, on the discrete
spectrum.

The set of values {S(p), p;, Pj(x)} (j = 1,2,...,n) is called the scattering data of the
boundary value problem (1)- (2). This set provides a complete description of the infinite
behavior of all the eigenfunctions of the problem (1)-(2).

2. The Construction of Resolvent Operator

It is possible to construct the resolvent operator by using the above results. Assume
that p is not a spectrum point of operator L,. Then there exists resolvent operator
R, = (L — pI)~!. Let’s find the expression of the operator R,.

Theorem 2.1. For I'mp > 0 and F(p) # 0, all numbers p belong to the resolvent set of
the operator R,. The resolvent R, is the integral operator

Rw=/KWMW®% (4)
0

with the kernel,

1 f(x.p)p(t,p), 0<t<um,
K@Lm__HM{wwmﬁwm,xgt % (5)
Moreover
K (2,1, )| < |;((i})|ezp{fmp|x ), (6)
where

c(z) = cexp{xo(0) +01(0)},
c > 0 is an arbitrary constant.

Proof. Let g(x) € 9, and assume that it is a finite function at infinity. To construct the
resolvent operator, we need to solve the boundary value problem
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—y" + q(z)y = p’y + g(x), (7)
y'(0) + (Bo + Brp + B2p?) y(0) = 0. (8)

By using Lagrange method to the properties of solutions of equation (1), we find (4). Here
K(z,t,p) has the form (5). Then, from the explicit expression of functions f(z,p) and
o(z, p) for K(z,t,p), we get (6). Theorem is proved. O

Lemma 2.2. Let g(x) be continuously differentiable finite function. Then, the following
1s valid:

r 1
[ K@t pg0i = 25+ S ) )
p: P
0
where
Ki(z,p) = /K:Etp ) {—g"(t) + q(t)g(t)} dt.

Proof. The below equality is valid:
—K"(x,t,p) + q(2)K (z,t, p) — p* K (2,t, p) = 6(x — 1),
Here §(z) is Dirac-delta function. By multiplying both sides of last equation by g(z) and
integrating from zero to infinity, we get
(0.9} oo

—/K”(x,t,p)g(t)dw/q(t)K(m,t p)g p2/K z,t,p)g /5 (z —t)g
0 0

0 0

From this equation, (9) is obtained. Lemma is proved. O

3. The Expansion Formula According To The Eigenfunctions

Let us I'p denotes the circle of radius R and center is zero which contour is positive
oriented. Let us F(l) denotes contour be half arc of I'g that doesn’t include points =z

(2 )

satisfying the conditions Imz > € and let I'j;”. be half arc that does not include I'mz < —¢

points of I'r and we define I'p . = I‘(l) U Fg%)g, it is clear that I'g . is positive oriented.
r®

'y, denotes negative oriented curve formed with Imz = ¢ lines and be arcs including
points z satisfying the conditions [Imz| < e and let’s represent these domains by 2 and

9, respectively. It is clear that I’ Re = I'RU Fg)a. Then, we can use the property of the
integration
/ = / + / . (10)
FR,E FR FS)
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Let us call

It follows that, we have
(@), 1]
glx 1 ~
P(x,p) =—=5"+ /K(%t,p)g(t)dt
0

Now multiplying both sides of the equality by %m.p and integrating over p the contour
I'r ¢, we obtain

1 1 g(z)
5 | Po@p)dp=—o— / po / /K:rtp )dt o dp,  (11)

FR,e FR,g 1—‘R €

where

Using the residue calculus, we get

1

27i
FR 5

pd(x, p)dp => _ Res[pg(z, p)] + ZRes [o6(x, p)] - (12)

2

According to the equation (10), we get

21
Tr. (3>

1
== [ po(z,p)dp /p¢$pdp+/p¢fﬂp (13)

Using formula (3), let us calculate the integral on the right hand side of the last equality:

1 1 g(z) 1 1 7 -
= —— [ ZFdp+— [ = | K
i pg(z, p)dp 57 ; dp+2m_ p (x,t,p)g(t)dt » dp
I'r I'r I'r 0
~g(@)+ 5, [ 05
- Y 271 p? P
I'r
= —g(z), (14)
im —— [ pé(z, p)dp = — i (6(z, p+i0) — b, p — i0)] d (15)
le%o 5 | pel@pdp=o— [ plo,p ,p—i0)] dp.
€ r® —0o0

RE

Taking into consideration(14) and (15) into (13), we have
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! pd(z, p)dp = —g(x )+L / plo(z,p+i0) — ¢(z, p — i0)] dp.

21
FR,& —0o0

2mi

Using this equation in (12), we obtain

g(z) = - Z Res [po(x, p)] + Z Res [pg(x, p)] (16)
+% plo(x, p+1i0) — ¢(z, p — i0)] dp.

Now multiplying both sides of equality (3) by = 5 and integrating over p the contour I'p,
we have

g(x) /
—~dp — K(z,t t)dt » dp.
2ri /¢ C2mi P> 2m (2,8, p)5(t) P

FR B FR,E

By similar calculations, we easily see that

[e.e]

}ijwwmn§ijw@mn+;ﬁ/Wwap+w>mpr»mza
9 9

—00

Therefore, we get the expansion formula with respect to eigenfunctions as

= = Res[d(x,p)] = ) Resld(x,p)] (17)
9 9
tom [ [0la,p+i0) — o(x, p— i0)] dp,

—00

[e.o]

1 . .
=3 Resiola,p)) = 3 Reslola,p)) + 5 [ [6(ep+10) = (e p— 0] dp. - (18)
9 7 —00
Now, let’s convert formulas (17) and (18). Let ¥(x,p) be the solution of the Eq. (1)
satisfying the initial conditions

Y(0,p) =0, '(0,p) =1,
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It is clear that

W{SD(%P),W%P)} = @l(oap)w(om)—w(oap)@b/
= -1,

and

f(z,p) = f(0,p)p(x, p) + F(p).

Then, according to (5), we have

K(2,t,p) = = £(0, p)ol, )l p)+{ Zﬁ“”?%’p

Fp)

Therefore, we get

oo

sb(w,p):—ifOp /sotp t)dt + ¢ (z, p)

0
+ o, p) / (., p)g(t)dr.

By defininition of functions ¢(z, p) and ¢(z, p) , it is clear that

_ @Z)(‘T’P)Sﬁ(tvp)a 0 <t< Z,
Vet p) = { oz, p)o(t,p), o <t< oo

o\

and we have

{ /sotp dt+<pfcp/¢tp()d

0
From this, it follows that

o0

(0, p)

©(t, p)

0}.

Reslpote. ) = ~Res L0 ot ) [ otts phatoyi

"

0
Let

o0

©(9,p) = /<p(t, p)g(t)dt.

0

Then, the estimate holds

Reslpo(a. )] = ~ResT ) po(a, p)p(a. ).

D F(p)
53
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We assume that I'mp > 0, each px € Z is zeros of equation F(p) = 0 with multiplicity
mg, (k=1,2,...,n).

Let’s denote My (p) = (Z:Lf’i)gf fbﬁ?’pf;). Then for pr, € Z by the residue formula, we have

n mp—1
Res|pg(x,p)] == { <jp> pMi(p)p(x, p)e(9, p)} o (20)

k=1

Further, we can obtain an analogous formula for Imp < 0, each p, € 2 in the following
form:

n d mg—1 B
Reslp(@, p)] = - ; { <dp> pMy.(p)e(z, p)e(g, p)} " (21)

where

We denote by pr € 2 the roots of the equation Fj(p) = 0 with multiplicity my (k =

0,2,...,n.)
Since,

. . 2ip 7

¢(z,p+10) — p(x,p —i0) = ——————~p(,p) | ¢(t,p)g(t)dt (22)
FI(P)‘F(:O) 0/
= _za(gﬁr(p)¢(x’ p)e(f,p),
we have
1 e’} . . 1 0 p2
5 | Plela,p+i0) = o(z,p—i0)]dp = W@(% p)e(f, p)dp.

Substituting (20), (21) and (22) in (17), (18) respectively, we obtain two-fold expansion
formulas in the following form

n mg—1
flz) = — {(;}) pMk(p)w(x,p)cp(f,p)}lppk
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n mg—1
0 = — 1{(52) pMk(p)w(w,p)w(f,p)}lp:pk

n mg—1
_ 2. (dd > pMk(p)@($7P)<P(fa ,0)} |p:p7c

P
1 Vi p?
+ ”Z 7Fl(p)F(p)cp(:v,p)<P(f,p)dp-

for pr, € 2, pr, € 2. Tt can be shown that the integrals on the right hand side converge in
the metric of the space L2(0, 00).
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