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Abstract. We investigate the Sturm-Liouville operator with a nonlinear spectral parameter in
boundary condition in the space L2 (0,∞) . Unlike other studies, the condition is non self-adjoint.
For the problem, the scattering data is defined, the resolvent operator is constructed and in terms
of scattering data the two-fold expansion formula is obtained by using Titchmarsh method.
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1. Introduction

In this paper, we consider on the half line [0,∞) the differential equation

ℓ(y) ≡ −y′′ + V (x)y = ρ2y, (1)

with nonlinear dependence on the spectral parameter in the boundary condition

U(y) ≡ y′(0) +
(
β0 + β1ρ+ β2ρ

2
)
y(0) = 0. (2)

Here ρ is a spectral parameter, V (x) is real valued function, (1+ x)|V (x) ∈ L1 (0,∞) and
βj(j = 0, 1, 2) are real numbers.

The Sturm-Liouville equations with a nonlinear spectral parameter in the boundary
condition arise in various problems of mathematical physics. The application to the heat
conduction problem as a special case of this problem is given in [1]. The physical ap-
plication of expansions problem for differential equation on the half line [0,∞) with the
boundary condition depending on the spectral parameter is considered in the works of
T.Regge [2],[3]. The Regge problem on the half line has been studied in [4]- [6]. Spectral
analysis for the boundary value problem when the spectral parameter appearing in the
boundary condition is examined in [7],[8].

In this paper, we study the spectral analysis of the boundary value problem (1)-(2).
By using the Jost solution of equation (1) and Titchmarsh’s method in [9],[10], we con-
struct the resolvent operator and we obtain two-fold expansion formula according to the
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scattering data. For the classical Sturm-Liouville operator, a similar problem has been
studied completely (see[9]-[12] and the references therein).

Expansion formulas according to the eigenfuctions for the equation (1) with different
types of boundary conditions are obtained in [13]- [16] . The scattering theory for boundary
value problem (1)-(2) are studied in [14]. In this case, the boundary value problem (1)-(2)
is not selfadjoint and it may have a complex eigenvalue (see [12] - [17]). For this reason,
the scattering data of problem (1)-(2) is differently defined.

By Dρ, let us indicate the set of functions that satisfy the following condition:
1.) The functions y(x), y′(x) are absolute continuous on each the interval [0, b] (∀b > 0),
2.) ℓ(y) ∈ L2(0,∞),
3.) (2) is provided for each fixed ρ.
Let Lρ is operator with domain Dρ = D(Lρ) such that for Lρy = ℓ(y). If ρ runs

through the set of all point of the ρ-plane , then we obtain a family of non-selfadjoint
singular operators Lρ depending on the parameter ρ (see [18]).

f(x, ρ) is the solution of the Eq. (1) possessing the asymptotics f(x, ρ) → eiρx as
x→ ∞ and for any ρ, (Imρ ≥ 0) the solution f(x, ρ) can be represented in the form

f(x, ρ) = eiρx +

∫ ∞

x
L(x, t)eiρtdt. (3)

The kernel L(x, t) satisfies the inequality

|L(x, t)| ≤ 1

2
σ(
x+ t

2
) exp

{
σ1(x)− σ1(

x+ t

2
)

}
,

where

σ(x) =

∫ ∞

x
|q(t)|dt, σ1(x) =

∫ ∞

x
σ(t)dt.

The solution f(x, ρ) is an analytic function of ρ in the upper half plane and is continuous
on the real line. The following estimates are valid in the half plane Imρ ≥ 0 :

|f(x, ρ)| ≤ exp {−Imρx+ σ1(x)} ,

∣∣f(x, ρ)− eiρx
∣∣ ≤ {

σ1(x)− σ1(x+
1

|ρ|
)

}
exp {−Imρx+ σ1(x)} ,

∣∣f ′(x, ρ)− iρeiρx
∣∣ ≤ σ(x)exp {−Imρx+ σ1(x)} .

For real ρ ̸= 0 the functions f(x, ρ) and f(x,−ρ) form a fundamental solution system of
equation (1) and their Wronskian is

W {f(x, ρ), f(x,−ρ)} = f ′(x, ρ)f(x,−ρ)− f(x, ρ)f ′(x,−ρ) = 2iρ.

Similarly, we denote by f̂(x, ρ) the solution of equation (1) in the half plane Imρ > 0
possessing the asymptotics;

47



f̂(x, ρ) = e−iρx (1 + ō(1)) , f̂ ′(x, ρ) = e−iρx (iρ+ ō(1)) ,

as ρ→ ∞,

f̂(x, ρ) = e−iρx

(
1 +O

(
1

|ρ|

))
, f̂ ′(x, ρ) = −iρeiρx

(
1 +O

(
1

|ρ|

))
,

as |ρ| → ∞. The existence and properties of these solutions are studied in ([12], p.299).

Let φ(x, ρ) be the special solution of the equation (1) under the initial-value conditions

φ(0, ρ) = 1, φ′(0, ρ) = −
(
β0 + β1ρ+ β2ρ

2
)
.

Analogously to the Lemma 1 in [14] is like that

2iρφ(x, ρ)

F (ρ)
= f(x,−ρ)− S(ρ)f(x, ρ),

for any real number ρ ̸= 0 . Thus the identity is valid:

S(ρ) =
f ′(0,−ρ) +

(
β0 + β1ρ+ β2ρ

2
)
f(0,−ρ)

f ′(0, ρ) + (β0 + β1ρ+ β2ρ2) f(0, ρ)
.

Denote
F1(ρ) ≡ f ′(0,−ρ) +

(
β0 + β1ρ+ β2ρ

2
)
f(0,−ρ),

F (ρ) ≡ f ′(0, ρ) +
(
β0 + β1ρ+ β2ρ

2
)
f(0, ρ).

We shall define scattering function S(ρ) for the problem (1)-(2). The scattering func-
tion S(ρ) determines the asymptotics for x → ∞ of normalized eigenfunctions of the
operator Lρ.

For the solution f̂(x, ρ), we have

2iρφ(xiρ)

F (ρ)
= f̂(x, ρ)− F (ρ)

F̂ (ρ)
f(x, ρ),

where

F̂ (ρ) = f̂ ′(0, ρ) +
(
β0 + β1ρ+ β2ρ

2
)
f̂(0, ρ).

The roots of the equation F (ρ) = 0 in the half plane Imρ > 0 form a finite set of complex
numbers and non pure imaginary . The multiplicity mj of a root ρj (j = 1, 2, ..., n) of the
equation F (ρ) = 0 is called the multiplicity of the singular value ρj .

From the relation S(ρ), it is obtained

S(ρ) = 1 +O(
1

ρ
), as |ρ| → ∞.
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Denote

fj(x) =
1

2π

∞∫
−∞

[
F̂ (ρ)

F (ρ)
− 1

]
eiρxdρ = iRes

ρ=ρj

F̂ (ρ)

F (ρ)
eiρx,

where j = 1, 2, ..., n.

We shall call the polynomial

Pj(x) = e−iρjxfj(x), j = 1, 2, ..., n.

The functions fj(x) j = 1, 2, ..., n is the characteristic of the operator Lρ on the discrete
spectrum.

The set of values {S(ρ), ρj , Pj(x)} (j = 1, 2, ..., n) is called the scattering data of the
boundary value problem (1)- (2). This set provides a complete description of the infinite
behavior of all the eigenfunctions of the problem (1)-(2).

2. The Construction of Resolvent Operator

It is possible to construct the resolvent operator by using the above results. Assume
that ρ is not a spectrum point of operator Lρ. Then there exists resolvent operator
Rρ = (L− ρI)−1. Let’s find the expression of the operator Rρ.

Theorem 2.1. For Imρ ≥ 0 and F (ρ) ̸= 0 , all numbers ρ belong to the resolvent set of
the operator Rρ. The resolvent Rρ is the integral operator

Rρg =

∞∫
0

K(x, t, ρ)g(t)dt, (4)

with the kernel,

K(x, t, ρ) = − 1

F (ρ)

{
f(x, ρ)φ(t, ρ), 0 ≤ t ≤ x,
φ(x, ρ)f(t, ρ), x ≤ t ≤ ∞.

(5)

Moreover

|K(x, t, ρ)| ≤ c(x)

|F (ρ)|
exp {Imρ|x− t|} , (6)

where

c(x) = c exp {xσ(0) + σ1(0)} ,

c > 0 is an arbitrary constant.

Proof. Let g(x) ∈ Dρ and assume that it is a finite function at infinity. To construct the
resolvent operator, we need to solve the boundary value problem
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−y′′ + q(x)y = ρ2y + g(x), (7)

y′(0) +
(
β0 + β1ρ+ β2ρ

2
)
y(0) = 0. (8)

By using Lagrange method to the properties of solutions of equation (1), we find (4). Here
K(x, t, ρ) has the form (5). Then, from the explicit expression of functions f(x, ρ) and
φ(x, ρ) for K(x, t, ρ), we get (6). Theorem is proved.

Lemma 2.2. Let g(x) be continuously differentiable finite function. Then, the following
is valid:

∞∫
0

K(x, t, ρ)g(t)dt = −g(x)
ρ2

+
1

ρ2
K1(x, ρ), (9)

where

K1(x, ρ) =

∞∫
0

K(x, t, ρ)(t)
{
−g′′(t) + q(t)g(t)

}
dt.

Proof. The below equality is valid:

−K ′′(x, t, ρ) + q(x)K(x, t, ρ)− ρ2K(x, t, ρ) = δ(x− t),

Here δ(x) is Dirac-delta function. By multiplying both sides of last equation by g(x) and
integrating from zero to infinity, we get

−
∞∫
0

K ′′(x, t, ρ)g(t)dt+

∞∫
0

q(t)K(x, t, ρ)g(t)dt− ρ2
∞∫
0

K(x, t, ρ)g(t)dt =

∞∫
0

δ(x− t)g(t)dt.

From this equation, (9) is obtained. Lemma is proved.

3. The Expansion Formula According To The Eigenfunctions

Let us ΓR denotes the circle of radius R and center is zero which contour is positive

oriented. Let us Γ
(1)
R,ε denotes contour be half arc of ΓR that doesn’t include points z

satisfying the conditions Imz > ε and let Γ
(2)
R,ε be half arc that does not include Imz < −ε

points of ΓR and we define ΓR,ε ≡ Γ
(1)
R,ε ∪ Γ

(2)
R,ε, it is clear that ΓR,ε is positive oriented.

Γ
(3)
R,ε denotes negative oriented curve formed with Imz = ±ε lines and be arcs including

points z satisfying the conditions |Imz| < ε and let’s represent these domains by D and

D̄ , respectively. It is clear that ΓR,ε = ΓR ∪ Γ
(3)
R,ε. Then, we can use the property of the

integration ∫
ΓR,ε

=

∫
ΓR

+

∫
Γ
(3)
R,ε

. (10)
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Let us call

ϕ(x, ρ) =

∞∫
0

K(x, t, ρ)g(t)dt.

It follows that, we have

ϕ(x, ρ) = −g(x)
ρ2

+
1

ρ2

∞∫
0

K(x, t, ρ) ˜g(t)dt.

Now multiplying both sides of the equality by 1
2πiρ and integrating over ρ the contour

ΓR,ε, we obtain

1

2πi

∫
ΓR,ε

ρϕ(x, ρ)dρ = − 1

2πi

∫
ΓR,ε

g(x)

ρ
dρ+

1

2πi

∫
ΓR,ε

1

ρ


∞∫
0

K(x, t, ρ)g̃(t)dt

 dρ, (11)

where
g̃(t) = −g′′(t) + q(t)g(t).

Using the residue calculus, we get

1

2πi

∫
ΓR,ε

ρϕ(x, ρ)dρ =
∑
D

Res [ρϕ(x, ρ)] +
∑
D̄

Res [ρϕ(x, ρ)] . (12)

According to the equation (10), we get

1

2πi

∫
ΓR,ε

ρϕ(x, ρ)dρ =
1

2πi

∫
ΓR

ρϕ(x, ρ)dρ+
1

2πi

∫
Γ
(3)
R,ε

ρϕ(x, ρ)dρ. (13)

Using formula (3), let us calculate the integral on the right hand side of the last equality:

1

2πi

∫
ΓR

ρϕ(x, ρ)dρ = − 1

2πi

∫
ΓR

g(x)

ρ
dρ+

1

2πi

∫
ΓR

1

ρ


∞∫
0

K(x, t, ρ)g̃(t)dt

 dρ

= −g(x) + 1

2πi

∫
ΓR

O(
1

ρ2
)dρ

= −g(x), (14)

lim
R→∞
ε→0

1

2πi

∫
Γ
(3)
R,ε

ρϕ(x, ρ)dρ =
1

2πi

∞∫
−∞

ρ [ϕ(x, ρ+ i0)− ϕ(x, ρ− i0)] dρ. (15)

Taking into consideration(14) and (15) into (13), we have
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1

2πi

∫
ΓR,ε

ρϕ(x, ρ)dρ = −g(x) + 1

2πi

∞∫
−∞

ρ [ϕ(x, ρ+ i0)− ϕ(x, ρ− i0)] dρ.

Using this equation in (12), we obtain

g(x) = −
∑
D

Res [ρϕ(x, ρ)] +
∑
D̄

Res [ρϕ(x, ρ)] (16)

+
1

2πi

∞∫
−∞

ρ [ϕ(x, ρ+ i0)− ϕ(x, ρ− i0)] dρ.

Now multiplying both sides of equality (3) by 1
2πi and integrating over ρ the contour ΓR,ε,

we have

1

2πi

∫
ΓR,ε

ϕ(x, ρ)dρ = − 1

2πi

∫
ΓR,ε

g(x)

ρ2
dρ +

1

2πi

∫
ΓR,ε


∞∫
0

1

ρ2
K(x, t, ρ)g̃(t)dt

 dρ.

By similar calculations, we easily see that

−
∑
D

Res[ϕ(x, ρ)]−
∑
D̄

Res[ϕ(x, ρ)] +
1

2πi

∞∫
−∞

[ϕ(x, ρ+ i0)− ϕ(x, ρ− i0)] dρ = 0.

Therefore, we get the expansion formula with respect to eigenfunctions as

g(x) = −
∑
D

Res[ϕ(x, ρ)]−
∑
D̃

Res[ϕ(x, ρ)] (17)

+
1

2πi

∞∫
−∞

[ϕ(x, ρ+ i0)− ϕ(x, ρ− i0)] dρ,

0 = −
∑
D

Res[ϕ(x, ρ)]−
∑
D̄

Res[ϕ(x, ρ)] +
1

2πi

∞∫
−∞

[ϕ(x, ρ+ i0)− ϕ(x, ρ− i0)] dρ. (18)

Now, let’s convert formulas (17) and (18). Let Ψ(x, ρ) be the solution of the Eq. (1)
satisfying the initial conditions

ψ(0, ρ) = 0, ψ′(0, ρ) = 1.
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It is clear that

W {φ(x, ρ), ψ(x, ρ)} = φ′(0, ρ)ψ(0, ρ)− φ(0, ρ)ψ′(0, ρ)

= −1,

and

f(x, ρ) = f(0, ρ)φ(x, ρ) + F (ρ).

Then, according to (5), we have

K(x, t, ρ) = − 1

F (ρ)
f(0, ρ)φ(x, ρ)φ(t, ρ) +

{
ψ(x, ρ)φ(t, ρ), x ≤ t,
φ(x, ρ)ψ(t, ρ), t ≤ x.

(19)

Therefore, we get

ϕ(x, ρ) =− 1

F (ρ)
f(0, ρ)φ(x, ρ)

∞∫
0

φ(t, ρ)g(t)dt+ ψ(x, ρ)

x∫
0

φ(t, ρ)g(t)dt

+ φ(x, ρ)

∞∫
x

ψ(t, ρ)g(t)dt.

By defininition of functions φ(x, ρ) and ψ(x, ρ) , it is clear that

Ψ(x, t, ρ) =

{
ψ(x, ρ)φ(t, ρ), 0 ≤ t ≤ x,
φ(x, ρ)ψ(t, ρ), x ≤ t ≤ ∞.

and we have

Res

ψ(x, ρ)
x∫

0

φ(t, ρ)g(t)dt+ φ(x, ρ)

∞∫
x

ψ(t, ρ)g(t)dt = 0

 .

From this, it follows that

Res
D

[ρϕ(x, ρ)] = −Res
D

f(0, ρ)

F (ρ)
ρφ(x, ρ)

∞∫
0

φ(t, ρ)g(t)dt.

Let

φ(g, ρ) =

∞∫
0

φ(t, ρ)g(t)dt.

Then, the estimate holds

Res
D

[ρϕ(x, ρ)] = −Res
D

f(0, ρ)

F (ρ)
ρφ(x, ρ)φ(g, ρ).
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We assume that Imρ ≥ 0, each ρk ∈ D is zeros of equation F (ρ) = 0 with multiplicity
mk, (k = 1, 2, ..., n) .

Let’s denote Mk(ρ) =
(ρ−ρk)

mk

(mk−1)!
f(0,ρ)
F (ρ) . Then for ρk ∈ D by the residue formula, we have

Res
D

[ρϕ(x, ρ)] = −
n∑

k=1

{(
d

dρ

)mk−1

ρMk(ρ)φ(x, ρ)φ(g, ρ)

}∣∣
ρ=ρk

. (20)

Further, we can obtain an analogous formula for Imρ ≤ 0, each ρ̄k ∈ D̄ in the following
form:

Res
D̄

[ρϕ(x, ρ)] = −
n∑

k=1

{(
d

dρ

)mk−1

ρM̄k(ρ)φ(x, ρ)φ(g, ρ)

}∣∣
ρ=ρ̄k

, (21)

where

M̄k(ρ) =
(ρ− ρ̄k)

mk−1

(mk − 1)!

f(0, ρ)

F (ρ)
.

We denote by ρ̄k ∈ D̄ the roots of the equation F1(ρ) = 0 with multiplicity mk (k =
0, 2, ..., n.)

Since,

ϕ(x, ρ+ i0)− ϕ(x, ρ− i0) = − 2iρ

F1(ρ)F (ρ)
φ(x, ρ)

∞∫
0

φ(t, ρ)g(t)dt (22)

= − 2iρ

F1(ρ)F (ρ)
φ(x, ρ)φ(f, ρ),

we have

1

2πi

∞∫
−∞

ρ [ϕ(x, ρ+ i0)− ϕ(x, ρ− i0)] dρ =
1

2π

∞∫
−∞

ρ2

F1(ρ)F (ρ)
φ(x, ρ)φ(f, ρ)dρ.

Substituting (20), (21) and (22) in (17), (18) respectively, we obtain two-fold expansion
formulas in the following form

f(x) = −
n∑

k=1

{(
d

dρ

)mk−1

ρMk(ρ)φ(x, ρ)φ(f, ρ)

}
|ρ=ρk

−
n∑

k=1

{(
d

dρ

)mk−1

ρM̄k(ρ)φ(x, ρ)φ(f, ρ)

}
|ρ=ρ̄k

+
1

π

∞∫
−∞

ρ2

F1(ρ)F (ρ)
φ(x, ρ)φ(f, ρ)dρ.
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0 = −
n∑

k=1

{(
d

dρ

)mk−1

ρMk(ρ)φ(x, ρ)φ(f, ρ)

}
|ρ=ρk

−
n∑

k=1

{(
d

dρ

)mk−1

ρM̄k(ρ)φ(x, ρ)φ(f, ρ)

}
|ρ=ρ̄k

+
1

π

∞∫
−∞

ρ2

F1(ρ)F (ρ)
φ(x, ρ)φ(f, ρ)dρ.

for ρk ∈ D , ρ̄k ∈ D̄ . It can be shown that the integrals on the right hand side converge in
the metric of the space L2(0,∞).
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