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A problem on Determining the Unknown Coefficient and
Free Term of a Linearized Benney-Luke Equation with
not Self-Adjoint Boundary Conditions

Veliyeva K. Bahar

Abstract. We study an inverse problem for a linearized Benney-Luke equation with not self-
adjoint boundary conditions. At first the initial problem is reduced to the equivalent problem (in a
certain sense) for which a theorem on the existence and uniqueness is proved. Furthermore, based
on these facts the existence and uniqueness of the classic solution of the initial problem is proved.
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1. Introduction

Many problems of mathematical physics, continuum mechanics are boundary value
problem reduced to integration of a differential equation or a system of partial equations
for the given boundary and initial conditions. Many problems of gas dynamics, theory of
elasticity, theory of plates and shells are reduced to consideration of higher order partial
differential equations [1]. Fourth order differential equations (see: [2, 3]) are of great
interest in terms of applications. Benny-Luke type partial differential equations have
applications in mathematical physics (see [3]).

The problems in which together with the solution of this or another differential equa-
tion it is required also to determine coefficients of the equation itself or the right-hand side
of the equation, in mathematics or in mathematical modeling are called inverse problems.
Theory of inverse problems for differential equations is a dynamically developing section of
modern science. Recently, inverse problems have arisen in various fields of human activity,
such as seismology, exploration of minerals, biology, medicine, quality control of indus-
trial products, etc. and this lists them among current problems of modern mathematics.
Various inverse problems were studied for separate types of partial differential equations
in a number of works. Here we note first of all the works of A.N. Tikhonov [4], M.M.
Lavrentev [5,6], V.K. Ivanov [7] and their followers. You can read more about this in the
monograph of A.M. Denisov [8].
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Theory of inverse problems for fourth order differential equations are still under-
researched. The works [9-12] have been devoted to boundary value problems for Benny-
Luke equation.

The goal of this paper is to prove the existence and uniqueness of the solution to the
inverse boundary value problem for a Benny-Luke equation with not sel-adjoint boundary
conditions.

2. Statement of the problem and its reduction to an equivalent problem

Let DT = {(x, t) : 0 ≤ x ≤ 1, 0 ≤ t ≤ T}. In the rectangle DT we consider
the following inverse boundary value problem: find the triple {u(x, t), a(t), b(t)} of the
function u(x, t), a(t) , b(t) satisfying the equation [ 3]

utt(x, t)− uxx(x, t) + αuxxxx(x, t)− βuxxtt(x, t) = a(t)u(x, t) + b(t)g(x, t) + f(x, t) , (1)

with nonlocal initial conditions

u(x, 0) = φ(x)+

∫ T

0
p1(t)u(x, t) dt , ut(x, 0) = ψ(x) +

∫ T

0
p2(t)u(x, t) dt (0 ≤ x ≤ 1), (2)

with not self-adjoint boundary conditions

u(1, t) = 0, ux(0, t) = ux(1, t) , uxx(1, t) = 0, uxxx(0, t) = uxxx(1, t) (0 ≤ t ≤ T ) (3)

and with additional conditions

u(0, t) = h1(t) (0 ≤ t ≤ 1), (4)

u

(
1

2
, t

)
= h2(t) (0 ≤ x ≤ 1) (5)

where α > 0, β > 0 are fixed numbers, f(x, t), g(x, t), φ(x), ψ(x), p1(t) , p2(t), h1(t) ,
h2(t) and the given functions.

Denote
C̃4,2(DT ) =

{
u(x, t) : u(x, t) ∈ C2(DT ) , uttx(x, t),

uttxx(x, t), uxxx(x, t), uxxxx(x, t) ∈ C(DT )} .

Definition. Under the classic solution of the inverse boundary value problem (1)-(5)
we understand the triple {u(x, t), a(t), b(t)} of the functions u(x, t) ∈ C̃4,2(DT ), a(t) ∈
C[0, T ], b(t) ∈ C[0, T ] satisfying equation (1) and conditions (2)-(5) in the usual sense.

Along with the inverse boundary value problem (1)-(5) we consider the follow-
ing auxiliary inverse boundary value problem: it is required to determine the triple
{u(x, t), a(t), b(t)} of the functions u(x, t) ∈ C̃4,2(DT ), a(t) ∈ C[0, T ] , b(t)(t) ∈ C[0, T ],
from the relations (1)-(5) ,

h′′1(t)− uxx(0, t) + αuxxxx(0, t)− βuxxtt(0, t) =
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= a(t)h1(t) + b(t)g(0, t) + f(0, t) (0 ≤ t = T ), (6)

h′′2(t)− uxx

(
1

2
, t

)
+ αuxxxx

(
1

2
, t

)
− βuxxtt

(
1

2
, t

)
=

= a(t)h2(t) + b(t)g

(
1

2
, t

)
+ f

(
1

2
, t

)
(0 ≤ t = T ) , (7)

The following theorem is proved in the same way [13]

Theorem 1. Let φ(x), ψ(x) ∈ C [0, 1] , P1(t), P2(t) ∈ C [0, T ] , f(x, t), g(x, t) ∈
C(DT ),

hi(t) ∈ C2 [0, T ] (i = 1, 2), h(t) ≡ h1(t) g(
1

2
, t)− h2(t)g(0, t) ̸= 0 (0 ≤ t ≤ T )

f(x, t), g(x, t) ∈ C(DT )and the following matching condition be fulfilled

φ(0) = h(0)−
∫ T

0
P1(t)h1(t)dt, φ(0) = h′1(0)−

∫ T

0
P2(t)h2(t)dt,

φ

(
1

2

)
= h2(0)−

∫ T

0
P1(t)h1(t)dt, ψ

(
1

2

)
= h′2(0)−

∫ T

0
P2(t)h2(t)dt

Then the following statements are valid:

A. Each classic solution {u(x, t), a(t), b(t)} of the problem (1)-( 5) is also the solution
of the problem (1)-(3),(6), (7);

B. Each solution {u(x, t), a(t), b(t)} of the problem (1)-(3), (6),(7) such that(
∥p1(t)∥C[0,T ] + T ∥p2(t)∥C[0,T ] + ∥a(t)∥C[0,T ]

)
T 2 < 1,

is the solution of (1)-(5).

3. Solvability of the inverse boundary value problem.

It is known [14] that the sequences of functions

X0(x) = 2(1− x), X2k−1(x) = 4(1− x) cosλkx, X2k(x) = 4 sinλkx (k = 1, 2, ...), (8)

Y0(x) = 1, Y2k−1(x) = cosλkx, Y2k(x) = x sinλkx (k = 1, 2, ...) (9)

form a biorthogonal system, and the system 8) forms a Riesz basis in L2(0, 1), where λk =
2kπ (k = 1, 2, ...). Then the arbitrary function ϑ(x) ∈ L2(0, 1) expands in biorthogonal
series:

ϑ(x) = ϑ0X0(x) +
∞∑
k=1

ϑ2k−1 X2k−1(x) +
∞∑
k=1

ϑ2k X2k(x) ,
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where

ϑ0 =

∫ 1

0
ϑ0 Y0 (x)dx , ϑ2k−1 =

∫ 1

0
ϑ2k−1 Y2k−1 (x)dx , ϑ2k−1 =

∫ 1

0
ϑ2k−1 Y2k−1 (x)dx .

It is known [15] that if

ϑ(x) ∈ C2i−1[0, 1], ϑ(2i)(x) ∈ L2(0, 1) ,

ϑ(2s)(1) = 0, ϑ(2s+1)(0) = ϑ(2s)(1) (s = 0, i− 1 ),

then
∞∑
k=1

(
λ2ik ϑ2k−1

)2 ≤ 1

2

∥∥∥ϑ(2i)(x)∥∥∥2
L2(0,1)

,

∞∑
k=1

(
λ2ik ϑ2k

)2 ≤ 1

2

∥∥∥ϑ(2i)(x)x+ 2iϑ(2i−1)(x)
∥∥∥2
L2(0,1)

. (10)

Under the assumptions

ϑ(x) ∈ C2i[0, 1], ϑ(2i+1)(x) ∈ L2(0, 1) ,

ϑ(2s)(1) = 0, ϑ(2s−1)(0) = ϑ(2s−1)(1) (i ≥ 1, s = 0, i ),

the validity of the following estimations [15] is estabilished:

∞∑
k=1

(
λ2i+1
k ϑ2k−1

)2 ≤ 1

2

∥∥∥ϑ(2i+1)(x)
∥∥∥2
L2(0,1)

,

∞∑
k=1

(
λ2i+1
k ϑ2k

)2 ≤ 1

2

∥∥∥ϑ(2i+1)(x)x+ (2i+ 1)ϑ(2i)(x)
∥∥∥2
L2(0,1)

. (11)

To study the problem (1)-(3), (6),(7) we consider the following space.
Denote by B5

2,T [15] the totality of all functions u (x, t) of the form

u (x, t) =

∞∑
k=0

uk (t)Xk (x) ,

considered on a DT , for which all the functions uk (t) ∈ C[0, T ] and

JT (u) ≡ ∥u0(t)∥C[0,T ]+

+

( ∞∑
k=1

(
λ5k ∥u2k−1(t)∥C[0,T ]

)2) 1
2

+

( ∞∑
k=1

(
λ5k ∥u2k(t)∥C[0,T ]

)2) 1
2

,

where the functions Xk (x) (k = 0, 1, 2, ...) were determined by the relations (8).
On this set we calculate the norm as follows: ∥u(x, t)∥B5

2,T
= J”(u).
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Let E5
T denote a space of such vector-functions {u(x, t), a(t)} that u (x, t) ∈ B5

2,T ,
a (t) ∈ C[0, T ]. Let’s supply this space with the norm

∥z∥E5
T
= ∥u(x, t)∥B5

2,T
+ ∥a(t)∥C[0,T ] .

Obviously, B5
2,T and E5

T are Banach spaces.

Since the system (8) forms the Riesz basis L2 (0, 1), and the system (8) and (9) forms
a biorthogonal in L2 (0, 1) system of functions, then we will look for the first component
u (x, t) of the solution {u(x, t), a(t)} of the problem (1)-(3), (6) in the form

u (x, t) = u0 (t)X0 (x) +

∞∑
k=1

u2k−1 (t)X2k−1 (x) +

∞∑
k=1

u2k (t)X2k (x) , (12)

where

u0(t) =

∫ 1

0
u(x, t)Y0(x)dx,

u2k−1(t) =

∫ 1

0
u(x, t)Y2k−1(x)dx, u2k(t) =

∫ 1

0
u(x, t)Y2k(x)dx (k = 1, 2, ...) , (13)

is the solution of the following problem:

u′′0(t) = F0 (t;u, a, b) (0 ≤ t ≤ T ), (14)

u′′2k−1(t) + β2ku2k−1(t) =
1

1 + βλ2k
F2k−1 (t;u, a, b) (0 ≤ t ≤ T, k = 1, 2, ...), (15)

u′′2k (t) + β2ku2k (t) =
1

1 + βλ2k
F2k (t;u, a, b)+

+
2λk(1 + 2αλ2k)

1 + βλ2k
u2k−1(t) +

2βλk
1 + βλ2k

u′′2k−1(t) (0 ≤ t ≤ T, k = 1, 2, ...), (16)

uk(0) = φk +

∫ T

0
p1(t)uk(t) dt, u′k(0) = ψk +

∫ T

0
p2(t)uk(t) dt (k = 0, 1, 2, ...) , (17)

moreover,

β2k =
λ2k(1 + αλ2k)

1 + βλ2k
, Fk(t;u, a) = a(t)uk(t) + b(t)gk(t) + fk(t),

fk(t) =

∫ 1

0
f(x, t)Yk(x)dx, gk(t) =

∫ 1

0
g(x, t)Yk(x)dx,

φk =

∫ 1

0
φ(x)Yk(x)dx, ψk =

∫ 1

0
ψ(x)Yk(x)dx (k = 0, 1, ...).
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Solving the problem (14)-(17) we fined:

u0(t) = φ0+

∫ T

0
p1(t)u0(t) dt+

(
ψ0 +

∫ T

0
p2(t)u0(t) dt

)
t+

∫ t

0
(t−τ)F0(τ ;u, a, b)dτ, (18)

u2k−1(t) =

(
φ2k−1 +

∫ T

0
p1(t)u2k−1(t) dt

)
cosβkt+

+
1

βk

(
ψ2k−1 +

∫ T

0
p2(t)u2k−1(t) dt

)
sinβkt+

+
1

βk(1 + βλ2k)

∫ t

0
F2k−1(τ ;u, a, b) sinβk(t − τ)dτ, (19)

u2k(t) =

(
φ2k +

∫ T

0
p1(t)u2k(t) dt

)
cosβkt +

1

βk

(
ψ2k +

∫ T

0
p2(t)u2k(t) dt

)
sinβkt+

+
λk(1 + 2αλ2k + αβλ4k)

(1 + βλ2k)
3

[
t

(
φ2k−1 +

∫ T

0
p1(t)u2k−1(t) dt

)
sinβkt +

+

(
1

βk
sinβkt− t cosβkt

)
1

βk

(
ψ2k−1 +

∫ T

0
p2(t)u2k−1(t) dt

)
+

+
1

βk(1 + βλ2k)

∫ t

0
F2k(τ ;u, a, b) sinβk(t − τ)dτ +

+
1

βk(1 + βλ2k)

∫ t

0

(∫ τ

0
F2k−1(ξ;u, a, b) sinβk (t− ξ) dξ

)
sinβk (t− τ) dτ

]
+

+
2βλk

βk(1 + βλ2k)
2

∫ t

0
F2k−1(τ ;u, a, b) sinλk(t− τ)dτ. (20)

After substituting the expression uk(t)(k = 0, 1, ...) in (12), for determining the com-
ponent u(x, t)of the solution of the problem (1)-(3), (6) ,(7) we obtain:

u(x, t) =

(
φ0 +

∫ T

0
p1(t)u0(t) dt+

(
ψ0 +

∫ T

0
p2(t)u0(t) dt

)
t+

+

∫ t

0
(t− τ)F0(τ ;u, a, b)dτ

)
X0(x)+

+

∞∑
k=1

{(
φ2k−1 +

∫ T

0
p1(t)u2k−1(t) dt

)
cosβkt+

+
1

βk

(
ψ2k−1 +

∫ T

0
p2(t)u2k−1(t) dt

)
sinβkt +

+
1

βk(1 + βλ2k)

∫ t

0
F2k−1(τ ;u, a, b) sinβk(t − τ)dτ

}
X2k−1(x)+
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+

∞∑
k=1

{(
φ2k +

∫ T

0
p1(t)u2k(t) dt

)
cosβkt+

+
1

βk

(
ψ2k +

∫ T

0
p2(t)u2k(t) dt

)
sinβkt+

+
λk(1 + 2αλ2k + αβλ4k)

(1 + βλ2k)
3

[
t

(
φ2k−1 +

∫ T

0
p1(t)u2k−1(t) dt

)
sinβkt +

+

(
1

βk
sinβkt− t cosβkt

)
1

βk

(
ψ2k−1 +

∫ T

0
p2(t)u2k−1(t) dt

)
+

+
1

βk(1 + βλ2k)

∫ t

0
F2k(τ ;u, a, b) sinβk(t − τ)dτ +

+
1

βk(1 + βλ2k)

∫ t

0

(∫ τ

0
F2k−1(ξ;u, a, b) sinβk (t− ξ) dξ

)
sinβk (t− τ) dτ

]
+

+
2βλk

βk(1 + βλ2k)
2

∫ t

0
F2k−1(τ ;u, a, b) sinλk(t− τ)dτ

}
X2k(x). (21)

Now from (6) and (7) , allowing for (12), we have:

a(t) = [h(t)]−1

{
g

(
1

2
, t

)
(h′′1(t)− f(0, t))− g(0, t)

(
h′′2(t)− f

(
1

2
, t

))
+

+ 2

∞∑
k=1

(
2g

(
1

2
, t

)
− (−1)kg(0, t)

)
((λ2k + αλ4k)u2k−1(t) + βλ2ku

′′
2k−1(t))

}
, (22)

b(t) = [h(t)]−1

{
h1(t)

(
h′′2(t)− f

(
1

2
, t

))
− h2(t)(h

′′
1(t)− f(0, t))+

+2
∞∑
k=1

(h1(t) · (−1)k − 2h2(t))((λ
2
k + αλ4k)u2k−1(t) + βλ2ku

′′
2k−1(t))

}
. (23)

Further, from (15), allowing for (19), we obtain:

(λ2k + αλ4k)u2k−1(t) + βλ2ku
′′
2k−1(t) = F2k−1(t;u, a, b)− u′′2k−1(t) =

=
βλ2k

1 + βλ2k
F2k−1(t;u, a, b)− β2ku2k−1(t) =

=
βλ2k

1 + βλ2k
F2k−1t;u, a, b)− β2k

((
φ2k−1 +

∫ T

0
p1(t)u2k−1(t) dt

)
cosβkt+

+
1

βk

(
ψ2k−1 +

∫ T

0
p2(t)u2k−1(t) dt

)
sinβkt+
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+
1

βk(1 + βλ2k)

∫ t

0
F2k−1t;u, a, b) sinβk(t − τ)dτ

)
. (24)

For obtaining an equation for the second and third component a(t) and b(t) of the
solution {u(x, t), a(t), b(t)} of the problem (1)–(3), (6), (7), we substitute the expression
(24) in (22) and (23):

a(t) = [h(t)]−1

{
g

(
1

2
, t

)
(h′′1(t)− f(0, t))− g(0, t)

(
h′′2(t)− f

(
1

2
, t

))
+

+2

∞∑
k=1

(
2g

(
1

2
, t

)
− (−1)kg(0, t)

)[
βλ2k

1 + βλ2k
F2k−1(t;u, a, b)−

−β2k
((

φ2k−1 +

∫ T

0
p1(t)u2k−1(t) dt

)
cosβkt+

1

βk

(
ψ2k−1 +

∫ T

0
p2(t)u2k−1(t) dt

)
sinβkt+

+
1

βk(1 + βλ2k)

∫ t

0
F2k−1(τ ;u, a, b) sinβk(t − τ)dτ

))]}
, (25)

b(t) = [h(t)]−1

{
h1(t)

(
h′′2(t)− f

(
1

2
, t

))
− h2(t)(h

′′
1(t)− f(0, t))+

+2
∞∑
k=1

(h1(t) · (−1)k − 2h2(t))

[
βλ2k

1 + βλ2k
F2k−1(t;u, a, b)−

−β2k
((

φ2k−1 +

∫ T

0
p1(t)u2k−1(t) dt

)
cosβkt+

1

βk

(
ψ2k−1 +

∫ T

0
p2(t)u2k−1(t) dt

)
sinβkt+

+
1

βk(1 + βλ2k)

∫ t

0
F2k−1(τ ;u, a, b) sinβk(t − τ)dτ

))]}
. (26)

Thus, the solution of the problem (1)-(3), (6),(7) is reduced to the solution of the
system (21), (25), (26) with respect to the unknown functions u(x, t),a(t) and b(t).

The following lemma is very important for studying the uniqueness of the solution to
the problem (1)-(3), (6),(7)

Lemma 1. If {u(x, t), a(t), a(t)} is any solution of the problem (1)-(3), (6), then the
functions uk(t) (k = 0, 1, 2, . . .), determined by the relation (12), satisfy on [0, T ] the
denumerable system (17), (18) and (19).

Obviously, if uk(t) =
∫ 1
0 u(x, t)Yk(x)dx (k = 0, 1, ...) is the solution of the system (18),

(19) and (20), then the triple {u(x, t), a(t)} of the functions u(x, t) =
∑∞

k=0 uk(t)Xk(x),a(t)
and b(t) is the solution of the system (21), (25),(25

From Lemma 1 we have the following corollary

Corollary 1. Let the system (20), (24),(26) have a unique solution. Then the
problem (1)-(3), (6),(7) may have at most one solution, i.e. if the problem (1)-(3), (6)
,(7) has a solution, this solution is a unique solution.

64



Now in the space E5
T we consider the operator

Φ(u, a) = {Φ1(u, a),Φ2(u, a)} ,

where

Φ1(u, a) = ũ(x, t) =

∞∑
k=0

ũk(t)Xk(x),Φ2(u, a) = ã(t),

ũ0(t), ũ2k−1(t), ũ2k(t) , ã(t) and b̃(t) are equal to the right side of (18), (19) , (20), (25)
and (26), respectively.

It is easy to see that

1 + βλ2k > βλ2k,
1

1 + βλ2k
<

1

βλ2k
,

√
α

1 + β
λk ≤ βk ≤

√
1 + α

β
λk,

√
β

1 + α

1

λk
≤ 1

βk
≤
√

1 + β

α

1

λk
,

Taking into account this relation, we find:

∥ũ0 (t)∥C[0,T ] ≤ |φ0|+ T |ψ0|+ T
√
T

(∫ T

0
|f0 (τ)|2 dτ

) 1
2

+

+

(
∥p1(t)∥C[0,T ] + T ∥p2(t)∥C[0,T ]

)
T ∥u0(t)∥C[0,T ] + T 2 ∥a(t)∥C[0,T ] ∥u0(t)∥C[0,T ]+

+T
√
T ∥b(t)∥C[0,T ]

(∫ T

0
|g0 (τ)|2 dτ

) 1
2

, (27)

( ∞∑
k=1

(λ5k ∥ũ2k−1(t)∥C[0,T ])
2

) 1
2

≤ 3

( ∞∑
k=1

(λ5k |φ2k−1|)2
) 1

2

+3

√
1 + β

α

( ∞∑
k=1

(λ4k |ψ2k−1 |)2
)

+

+

(
∥p1(t)∥C[0,T ] + ∥p2(t)∥C[0,T ]

)
T

( ∞∑
k=1

(λ5k ∥u2k−1(t)∥C[0,T ])
2

) 1
2

+

+
3

β

√
1 + β

α

√T (∫ T

0

∞∑
k=1

(λ2k | f2k−1 (τ) |)2dτ

) 1
2

+T ∥a(t)∥C[0,T ]

( ∞∑
k=1

(λ5k ∥u2k−1(t)∥C[0,T ])
2

) 1
2

+

+
√
T ∥b(t)∥C[0,T ]

(∫ T

0

∞∑
k=1

(λ2k | g2k−1 (τ) |)2dτ

) 1
2

 , (28)

( ∞∑
k=1

(λ5k ∥ũ2k(t)∥C[0,T ])
2

) 1
2

≤ 4

( ∞∑
k=1

(λ5k |φ2k|)2
) 1

2

+ 4

√
1 + β

α

( ∞∑
k=1

(λ4k |ψ2k |)2
) 1

2

+
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+

(
∥p1(t)∥C[0,T ] + ∥p2(t)∥C[0,T ]

)
T

( ∞∑
k=1

(λ5k ∥u2k(t)∥C[0,T ])
2

) 1
2

+

+
3

β

√
1 + β

α

√T (∫ T

0

∞∑
k=1

(λ2k | f2k (τ) |)2dτ

) 1
2

+T ∥a(t)∥C[0,T ]

( ∞∑
k=1

(λ5k ∥u2k(t)∥C[0,T ])
2

) 1
2

+

+
√
T ∥b(t)∥C[0,T ]

(∫ T

0

∞∑
k=1

(λ2k | g2k (τ) |)2dτ

) 1
2

+

,+
4(1 + 2α+ αβ)

β3

T ( ∞∑
k=1

(λ5k |φ2k−1|)2
) 1

2

+

(√
1 + β

α
+ T

)√
1 + β

α

( ∞∑
k=1

(λ4k |ψ2k−1|)2
) 1

2

+

+
4

β

√
1 + β

α

T√T (∫ T

0

∞∑
k=1

(λ2k | f2k−1 (τ) |)2dτ

) 1
2

+

+T 2 ∥a(t)∥C[0,T ]

( ∞∑
k=1

(λ5k ∥u2k−1(t)∥C[0,T ])
2

) 1
2

+

+4T

(
∥p1(t)∥C[0,T ] + ∥p2(t)∥C[0,T ]

)( ∞∑
k=1

(λ5k ∥u2k−1(t)∥C[0,T ])
2

) 1
2

+

+
6

β

√
1 + β

α

√T (∫ T

0

∞∑
k=1

(λ2k | f2k−1 (τ) |)2dτ

) 1
2

+T ∥a(t)∥C[0,T ]

( ∞∑
k=1

(λ5k ∥u2k−1(t)∥C[0,T ])
2

) 1
2

+

+
√
T ∥b(t)∥C[0,T ]

(∫ T

0

∞∑
k=1

(λ2k | g2k−1 (τ) |)2dτ

) 1
2

 , (29)

∥ã(t)∥C[0,T ] ≤
∥∥∥[h(t)]−1

∥∥∥
C[0,T ]

{∥∥∥∥g(1

2
, t

)
(h′′1(t)− f(0, t))− g(0, t)

(
h′′2(t)− f

(
(
1

2
, t)

))∥∥∥∥
C[0,T ]

+

+2

∥∥∥∥2 ∣∣∣∣g(1

2
, t

)∣∣∣∣+ |g(0, t)|
∥∥∥∥
C[0,T ]

( ∞∑
k=1

λ−2
k

) 1
2

1 + α

β

( ∞∑
k=1

(λ5k |φ2k−1|)2
) 1

2

+

√
1 + β

α

( ∞∑
k=1

(λ4k |ψ2k−1 |)2
)

+

+T

(
∥p1(t)∥C[0,T ] + ∥p2(t)∥C[0,T ]

)( ∞∑
k=1

(λ5k ∥u2k−1(t)∥C[0,T ])
2

) 1
2

+
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+
1

β

√
1 + β

α

√T (∫ T

0

∞∑
k=1

(λ2k | f2k−1 (τ) |)2dτ

) 1
2

+T ∥a(t)∥C[0,T ]

( ∞∑
k=1

(λ5k ∥u2k−1(t)∥C[0,T ])
2

) 1
2

+

+
√
T ∥b(t)∥C[0,T ]

(∫ T

0

∞∑
k=1

(λ2k | g2k−1 (τ) |)2dτ

) 1
2

+

( ∞∑
k=1

(λ2k ∥f2k−1 (t)∥C[0,T ] |

) 1
2

+

+ ∥a(t)∥C[0,T ]

( ∞∑
k=1

(λ5k ∥u2k−1(t)∥C[0,T ])
2

) 1
2

+∥b(t)∥C[0,T ]

( ∞∑
k=1

(λ2k ∥g2k−1 (t)∥C[0,T ] |

) 1
2


 ,

(30)∥∥∥b̃(t)∥∥∥
C[0,T ]

≤
∥∥∥[h(t)]−1

∥∥∥
C[0,T ]

{∥∥∥∥h1(t)(h′′2(t)− f

(
1

2
, t

))
− h2(t)(h

′
1(t)− f(0, t))

∥∥∥∥
C[0,T ]

+

+2 ∥|h1(t)|+ 2 |h2(t)|∥C[0,T ]

( ∞∑
k=1

λ−2
k

) 1
2

×

×

1 + α

β

( ∞∑
k=1

(λ5k |φ2k−1|)2
) 1

2

+

√
1 + β

α

( ∞∑
k=1

(λ4k |ψ2k−1 |)2
)

+

+T

(
∥p1(t)∥C[0,T ] + ∥p2(t)∥C[0,T ]

)( ∞∑
k=1

(λ5k ∥u2k−1(t)∥C[0,T ])
2

) 1
2

+

+
1

β

√
1 + β

α

√T (∫ T

0

∞∑
k=1

(λ2k | f2k−1 (τ) |)2dτ

) 1
2

+T ∥a(t)∥C[0,T ]

( ∞∑
k=1

(λ5k ∥u2k−1(t)∥C[0,T ])
2

) 1
2

+

+
√
T ∥b(t)∥C[0,T ]

(∫ T

0

∞∑
k=1

(λ2k | g2k−1 (τ) |)2dτ

) 1
2

+

( ∞∑
k=1

(λ2k ∥f2k−1 (t)∥C[0,T ] |

) 1
2

+

+ ∥a(t)∥C[0,T ]

( ∞∑
k=1

(λ5k ∥u2k−1(t)∥C[0,T ])
2

) 1
2

+∥b(t)∥C[0,T ]

( ∞∑
k=1

(λ2k ∥g2k−1 (t)∥C[0,T ] |

) 1
2


 .

(31)

Assume that the data of the problem (1)-(3), (6),(7) satisfy the following condition:

1.α > 0, β > 0, pi(t) ∈ C[0, T ](i = 1, 2) .

2.φ(x) ∈ C4[0, 1], φ(5)(x) ∈ L2(0, 1), φ(1) = 0, φ′(0) = φ′(1),

φ′′(1) = 0, φ′′′(0) = φ′′′(1), φ(4)(1) = 0.

3.ψ(x) ∈ C3[0, 1], ψ(4)(x) ∈ L2(0, 1), ψ(1) = 0, ψ′(0) = ψ′(1), ψ′′(1) = 0, ψ′′′(0) = ψ′′′(1).
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4.f(x, t), fx(x, t) ∈ C(DT ), fxx(x, t) ∈ L2(DT ), f(1, t) = 0, fx(0, t) = fx(1, t) (0 ≤ t ≤ T ).

5.g(x, t), gx(x, t) ∈ C(DT ), gxx(x, t) ∈ L2(DT ), g(1, t) = 0, gx(0, t) = gx(1, t) (0 ≤ t ≤ T ).

6.hi(t) ∈ C2[0, T ] (i = 1, 2), h(t) ≡ h1(t)g

(
1

2
, t

)
− h2(t)g(0, t) ̸= 0 (0 ≤ t ≤ T ).

Then from (27)- (31) we find:

∥ũ(x, t)∥B5
2,T

≤ A1(T ) +B1(T ) ∥a(t)∥C[0,T ] ∥u(x, t)∥B5
2,T

+

+C1(T ) ∥u(x, t)∥B5
2,T

+D1(T ) ∥b(t)∥C[0,T ] , (32)

∥ã(t)∥C[0,T ] ≤ A2(T ) +B2(T ) ∥a(t)∥ C[0,T ] ∥u(x, t)∥B5
2,T

+

+C2(T )) ∥u(x, t)∥B5
2,T

+D2(T ) ∥b(t)∥C[0,T ] , (33)∥∥∥b̃(t)∥∥∥
C[0,T ]

≤ A3(T ) +B3(T ) ∥a(t)∥C[0,T ] ∥u(x, t)∥B5
2,T

+

+C3(T )) ∥u(x, t)∥B5
2,T

+D3(T ) ∥b(t)∥C[0,T ] , (34)

where

A1(T ) = ∥φ(x)∥L2(0,1)
+ T ∥ψ(x)∥L2(0,1)

+ T
√
T ∥f(x, t)∥L2(DT ) +

√
2
∥∥∥φ(5)(x)

∥∥∥
L2(0,1)

+

+

√
2(1 + β)

α

∥∥∥ψ(4)(x)
∥∥∥
L2(0,1)

+

√
2T (1 + β)

α
∥fxx(x, t)∥L2(DT )+

3√
2

∥∥∥φ(5)(x) + 4φ(3)(x)
∥∥∥
L2(0,1)

+

+
4√
2

√
1 + β

α

∥∥∥ψ(4)(x) + 3ψ(3)(x)
∥∥∥
L2(0,1)

+
4

β

√
T (1 + β)

2α
∥fxx(x, t) + 2fx(x, t)∥L2(DT )+

+
4(1 + 2α+ αβ)

β3

(
T√
2

∥∥∥φ(5)(x)
∥∥∥
L2(0,1)

+

(√
1 + β

α
+ T

)√
1 + β

2α

∥∥∥ψ(4)(x)
∥∥∥
L2(0,1)

+

+
T

β

√
T (1 + β)

2α
∥fxx(x, t)∥L2(DT )

)
+

6

β

√
T (1 + β)

α
∥fxx(x, t)∥L2(DT ) ,

B1(T ) = T 2 +
11T

β

√
1 + β

α

(
1 +

3(1 + 2α+ αβ)

β3
T

)
,

C1(T ) = 4

(
∥p1(t)∥C[0,T ] + ∥p2(t)∥C[0,T ]

)
T ,

D1(T ) = T
√
T ∥g(x, t)∥L2(DT ) +

4

β

√
T (1 + β)

2α
∥gxx(x, t) + 2gx(x, t)∥L2(DT )+

+

√
2(1 + β)

α
∥gxx(x, t)∥L2(DT ) +

T

β

√
T (1 + β)

2α
∥gxx(x, t)∥L2(DT )+
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+
6

β

√
T (1 + β)

α
∥gxx(x, t)∥L2(DT ) ,

A2(T ) =
∥∥∥[h(t)]−1

∥∥∥
C[0,T ]

{∥∥∥∥g(1

2
, t

)
(h′′1(t)− f(0, t))− g(0, t)

(
h′′2(t)− f

(
1

2
, t

))∥∥∥∥
C[0,T ]

+

+2

∥∥∥∥2 ∣∣∣∣g(1

2
, t

)∣∣∣∣+ |g(0, t)|
∥∥∥∥
C[0,T ]

( ∞∑
k=1

λ−2
k

) 1
2

{
1 + α

β

[∥∥∥φ(5)(x)
∥∥∥
L2(0,1)

+

√
1 + β

α

∥∥∥ψ(4)(x)
∥∥∥
L2(0,1)

+

+
1

β

√
T (1 + β)

α
∥fxx(x, t)∥L2(DT )

]
+
∥∥∥∥fxx(x, t)∥C[0,T ]

∥∥∥
L2(0,1)

}}
,

B2(T ) = 2
∥∥∥[h(t)]−1

∥∥∥
C[0,T ]

∥∥∥∥2 ∣∣∣∣g(1

2
, t

)∣∣∣∣+ |g(0, t)|
∥∥∥∥
C[0,T ]

( ∞∑
k=1

λ−2
k

) 1
2
(
1 + α

β2

√
1 + β

α
T + 1

)
,

C2(T ) = 2
∥∥∥[h(t)]−1

∥∥∥
C[0,T ]

∥∥∥∥2 ∣∣∣∣g(1

2
, t

)∣∣∣∣+ |g(0, t)|
∥∥∥∥
C[0,T ]

×

×

( ∞∑
k=1

λ−2
k

) 1
2
(
∥p1(t)∥C[0,T ] + ∥p2(t)∥C[0,T ]

)
T,

D2(T ) = 2
∥∥∥[h(t)]−1

∥∥∥
C[0,T ]

∥∥∥∥2 ∣∣∣∣g(1

2
, t

)∣∣∣∣+ |g(0, t)|
∥∥∥∥
C[0,T ]

( ∞∑
k=1

λ−2
k

) 1
2

×

×

(
1

β

√
T (1 + β)

α
∥fxx(x, t)∥L2(DT ) +

∥∥∥∥fxx(x, t)∥C[0,T ]

∥∥∥
L2(0,1)

)
,

A3(T ) =
∥∥∥[h(t)]−1

∥∥∥
C[0,T ]

{∥∥∥∥h1(t)(h′′2(t)− f

(
1

2
, t

))
− h2(t)(h

′
1(t)− f(0, t))

∥∥∥∥
C[0,T ]

+

+2 ∥|h1(t)|+ 2 |h2(t)|∥C[0,T ]

( ∞∑
k=1

λ−2
k

) 1
2
{
1 + α

β

[∥∥∥φ(5)(x)
∥∥∥
L2(0,1)

+

√
1 + β

α

∥∥∥ψ(4)(x)
∥∥∥
L2(0,1)

+

+
1

β

√
T (1 + β)

α
∥fxx(x, t)∥L2(DT )

]
+
∥∥∥∥fxx(x, t)∥C[0,T ]

∥∥∥
L2(0,1)

}}
,

B3(T ) = 2
∥∥∥[h(t)]−1

∥∥∥
C[0,T ]

∥|h1(t)|+ 2 |h2(t)|∥C[0,T ]

( ∞∑
k=1

λ−2
k

) 1
2
(
1 + α

β2

√
1 + β

α
T + 1

)
,
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C3(T ) = 2
∥∥∥[h(t)]−1

∥∥∥
C[0,T ]

∥|h1(t)|+ 2 |h2(t)|∥C[0,T ]

( ∞∑
k=1

λ−2
k

) 1
2
(
∥p1(t)∥C[0,T ] + ∥p2(t)∥C[0,T ]

)
T,

D3(T ) = 2
∥∥∥[h(t)]−1

∥∥∥
C[0,T ]

∥|h1(t)|+ 2 |h2(t)|∥C[0,T ]

( ∞∑
k=1

λ−2
k

) 1
2

×

×

(
1

β

√
T (1 + β)

α
∥fxx(x, t)∥L2(DT ) +

∥∥∥∥fxx(x, t)∥C[0,T ]

∥∥∥
L2(0,1)

)
.

From the inequalities (32)- (34) we conclude:

∥ũ(x, t)∥B5
2,T

+∥ã(t)∥C[0,T ]+
∥∥∥b̃(t)∥∥∥

C[0,T ]
≤ A(T )+B(T ) ∥a(t)∥C[0,T ] ∥u(x, t)∥B5

2,T
+

+C(T ) ∥u(x, t)∥B5
2,T

+D(T ) ∥b(t)∥C[0,T ] , (35)

where

A(T ) = A1(T ) +A2(T ) +A3(T ), B(T ) = B1(T ) +B2(T ) +B3(T )

C(T ) = C1(T ) + C2(T ) + C3(T ), D(T ) = D1(T ) +D2(T ) +D3(T )

So, we proved the following theorem
Theorem 2. Let the conditions 1-6 and

(A(T ) + 2)(B(T )A(T ) + 2) + C(T ) +D(T )) < 1 . (36)

be fulfilled.
Then the problem (1)-(3), (6),(7) has in the sphere K = KR(|| z ||E5

T
≤ R = A(T )+ 2)

from E5
T a unique solution..

Proof. In the space E5
T we consider the equation

z = Φz, (37)

where z = {u, a}, the components Φi(u, a, b) (i = 1, 2) of the operator Φ(u, a, b) are deter-
mined by the right hand side of the equation (21), (25), (26), respectively.

Let us consider the operator Φ(u, a) in the sphere K = KR from E5
T . Similar to (35)

we obtain that for any z, z1, z2 ∈ KR the following estimations are valid:

∥Φz∥E5
t
≤ A(T )+B(T ) ∥a(t)∥C[0,T ] ∥u(x, t)∥B5

2,T
+C(T ) ∥u(x, t)∥B5

2,T
+D(T ) ∥b(t)∥C[0,T ] ≤

≤ A(T ) +B(T )(A(T + 2)2 + C(T )(A(T ) + 2) +D(T )(A(T ) + 2) =

= A(T ) + (A(t) + 2)(B(T )(A(T ) + 2) + C(T ) +D(T ) ), (38)

∥Φz1 − Φz2∥E5
t
≤ B(T )R

(
∥a1(t)− a2(t)∥C[0,T ] + ∥u1(x, t)− u2(x, t)∥B5

2,T

)
+

+C(T ) ∥u1(x, t)− u2(x, t)∥B5
2,T

+D(T ) ∥b1(t)− b2(t)∥C[0,T ] . (39)
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Then, allowing for (36), from the estimates (38), (39) it follows that the operator Φ
acts in the sphere K = KR and is compressive. Therefore, in the sphere K = KR the
operator Φ has a unique fixed point {u, a}, that is the solution of the equation (37), i.e.
it is a unique solution of the system (21), (25),(26) in the sphere K = KR.

The function u(x, t), as an element of the space B5
2,T , has continuous derivatives

u(x, t), ux(x, t), uxx(x, t) , uxxx(x, t), uxxxx(x, t) in DT .

Similar to [10], we can how that ut(x, t), utt(x, t) , utt(x, t) , uttx(x, t), uttxx(x, t) are
continuous in DT .

It is easy to verify that equation (1) and conditions (2), (3) and (6),(7) are satisfied in
the usual sense. So, {u(x, t), a(t), b(t)} is the solution of the problem (1)-(3), (6), (7), and
by the corollary of Lemma 1, it is unique. The theorem is proved.

By means of Theorem 1 we prove the following theorem

Theorem 3. Let all the conditions of Theorem 2 and the matching conditions

φ(0) = h(0)−
∫ T

0
P1(t)h1(t)dt, φ(0) = h′1(0)−

∫ T

0
P2(t)h2(t)dt,

φ

(
1

2

)
= h2(0)−

∫ T

0
P1(t)h1(t)dt, ψ

(
1

2

)
= h′2(0)−

∫ T

0
P2(t)h2(t)dt

and (
∥p1(t)∥C[0,T ] + T ∥p2(t)∥C[0,T ] +A(T ) + 2

)
T 2 < 1

be fullfield.

Then the problem (1)-(5) has in the sphere K = KR(|| z ||E5
T
≤ R = A(T ) + 2) from

E5
T a unique classic solution.
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