Journal of Contemporary Applied Mathematics
V. 12, No 2, 2022, December
ISSN  2222-5/98

A problem on Determining the Unknown Coefficient and
Free Term of a Linearized Benney-Luke Equation with
not Self-Adjoint Boundary Conditions

Veliyeva K. Bahar

Abstract. We study an inverse problem for a linearized Benney-Luke equation with not self-
adjoint boundary conditions. At first the initial problem is reduced to the equivalent problem (in a
certain sense) for which a theorem on the existence and uniqueness is proved. Furthermore, based
on these facts the existence and uniqueness of the classic solution of the initial problem is proved.
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1. Introduction

Many problems of mathematical physics, continuum mechanics are boundary value
problem reduced to integration of a differential equation or a system of partial equations
for the given boundary and initial conditions. Many problems of gas dynamics, theory of
elasticity, theory of plates and shells are reduced to consideration of higher order partial
differential equations [1]. Fourth order differential equations (see: [2, 3]) are of great
interest in terms of applications. Benny-Luke type partial differential equations have
applications in mathematical physics (see [3]).

The problems in which together with the solution of this or another differential equa-
tion it is required also to determine coefficients of the equation itself or the right-hand side
of the equation, in mathematics or in mathematical modeling are called inverse problems.
Theory of inverse problems for differential equations is a dynamically developing section of
modern science. Recently, inverse problems have arisen in various fields of human activity,
such as seismology, exploration of minerals, biology, medicine, quality control of indus-
trial products, etc. and this lists them among current problems of modern mathematics.
Various inverse problems were studied for separate types of partial differential equations
in a number of works. Here we note first of all the works of A.N. Tikhonov [4], M.M.
Lavrentev [5,6], V.K. Ivanov [7] and their followers. You can read more about this in the
monograph of A.M. Denisov [8].

http://journalcam.com 57 © 2011 JCAM Al rights reserved.



Theory of inverse problems for fourth order differential equations are still under-
researched. The works [9-12] have been devoted to boundary value problems for Benny-
Luke equation.

The goal of this paper is to prove the existence and uniqueness of the solution to the
inverse boundary value problem for a Benny-Luke equation with not sel-adjoint boundary
conditions.

2. Statement of the problem and its reduction to an equivalent problem

Let Dy = {(x,t) : 0 <z <1, 0<t <T} In the rectangle Dy we consider
the following inverse boundary value problem: find the triple {u(x,t),a(t),b(t)} of the
function wu(z,t), a(t) ,b(t) satisfying the equation [ 3]

Ut (T, 1) — Uz (2, ) + QUgrze (2, 1) — Buger(x,t) = alt)u(z,t) +b(t)g(x,t) + f(z,t) , (1)

with nonlocal initial conditions

u(z,0) = p(z) —i—/OTpl(t)u(ac,t) dt , ui(z,0) = ¢(x) —I—/OTpg(t)u(a:,t) dt (0<z<1), (2)
with not self-adjoint boundary conditions
u(1,t) = 0,uz(0,t) = ugp(1,t) | uge(1,t) =0, Upgr(0,1) = Uger(1,8) (0<t<T) (3)
and with additional conditions

w0,t) = hi(t)  (0<t<1), (4)

u<;t> “hot)  (0<z<1) (5)

where o« > 0, § > 0 are fixed numbers, f(z,t), g(x,t), p(z), ¥(x), pi(t),p2(t), hi(t) ,
ha(t) and the given functions.

Denote

C~'4’2(DT) = {u(:r,t) cu(z,t) € CH(Dr) , uye (2, 1),
Uttrg (T4 1), Upgr (T, 1), Upgar (2, 1) € C(Dr)}.

Definition. Under the classic solution of the inverse boundary value problem (1)-(5)
we understand the triple {u(z,t),a(t),b(t)} of the functions u(z,t) € C*2(Dr), a(t) €
C10,T], b(t) € C[0,T] satisfying equation (1) and conditions (2)-(5) in the usual sense.

Along with the inverse boundary value problem (1)-(5) we consider the follow-
ing auxiliary inverse boundary value problem: it is required to determine the triple
{u(z,t),a(t),b(t)} of the functions u(zx,t) € C*2(Dr), a(t) € C[0,T] , b(t)(t) € C[0,T],
from the relations (1)-(5) ,

hlll(t) - uz:v(07 t) + au$zzx(07 t) - Buzztt(07 t) =
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= a(t)hi(t) +b(t)g(0,1) + f(0,8) (0 <t =T), (6)

RA(t) — gy <;t> + QUszes <;t> — Bgas (;t> _
— a(t)ha(t) + b(t)g (;t> Ly @t) O<t=T). -

The following theorem is proved in the same way [13]
Theorem 1. Let QO(-%'), w(x) € C[Ov 1] ) Pl(t)7 PQ(t) € C[O7T]7 f(xat)7 g(l’,t) €

C(Dr),

hilt) € C2[0,T] (i = 1,2), h(t) = hi(t) g(5. ) — ha(t)g(0,£) #0 (0 < t < T)

f(z,t),g(x,t) € C(Dr)and the following matching condition be fulfilled

/P1 Yha(t)dt, »(0) = /P2 (t)ha(t
so(i)—hz - [ mema. v (3 )zhgm)— /OTP2<t>h2<t>dt

Then the following statements are valid:
A. Each classic solution {u(z,t),a(t),b(t)} of the problem (1)-( 5) is also the solution

of the problem (1)-(3),(6), (7);
B. Each solution {u(z,t),a(t),b(t)} of the problem (1)-(3), (6),(7) such that

<Hp1(t)HC[0,T} + T |lp2(®)ll cpo.1) + ”a(t)HC[O,T]> T <1,

is the solution of (1)-(5).

3. Solvability of the inverse boundary value problem.
It is known [14] that the sequences of functions
Xo(z) =2(1 —x), Xop_1(x) =4(1 —x)cos \gx, Xop(z) =4sin gz (k=1,2,...), (8)

Yo(x) =1, Yop_1(x) = cos \gz, Yor(x) =xsinA\yx (K =1,2,...) 9)
form a biorthogonal system, and the system 8) forms a Riesz basis in L3(0, 1), where \; =
2km (k = 1,2,...). Then the arbitrary function ¥(z) € L2(0,1) expands in biorthogonal

series:

Vz) = Jo Xo(z +Zl92k 1 Xog—1( Zﬁzk Xok(z
k=1
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where

1 1 1
Jo 2/ Vo Yo (z)dx, Vop—1 :/ Vop—1 Yop—1 (z)dx , o1 =/ Vop—1 Yor—1 (z)dx .
0 0 0

It is known [15] that if
d(x) € C*710,1], 93 (x) € Ly(0,1),
92 (1) =0, 9ZFV(0) =9I (1) (s=0,i—1 ),

then -
Z 2i 2 }H (2z) ‘
P (o ) 21" L2(0,1)’
o [\2i 2 }’ (24) - 9(2i—1) 2
;1: (oo )* < 5 ‘19 (z)x + 29 (x)‘L2<o,1>'

Under the assumptions

d(z) € C¥[0,1], 9P+ (z) € Ly(0,1),

92)(1) =0, 92 D0) =9 V(1) (i>1,s=0,7 ),
the validity of the following estimations [15] is estabilished:

o 12041 1 (2i+1)( 2
;()\k V2-1) =5 ‘19 )‘L2(0,1)7
= 2i+1 2 } (2z+1 (24)
kZl(Ak P ) < 5 Hfa (2)z + (20 + 1)@ (z )‘LQ(O .

To study the problem (1)-(3), (6),(7) we consider the following space.
Denote by BST [15] the totality of all functions u (x,t) of the form

t) = Zuk (t)Xk T
k=0
considered on a Dy, for which all the functions uy (t) € C[0,T] and

Jr(u) = [luo(®)ll o +

+ (i <>\2 Huzkl(t)HC[o,T]>2> 5 + <i ()\2 Hu?’f(t)”C[O,T])

k=1 k=1

On this set we calculate the norm as follows: ||u(z, t)HBgT = J»(u).
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where the functions Xy (z) (k=0,1,2,...) were determined by the relations (8).
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Let E32. denote a space of such vector-functions {u(z,t),a(t)} that u(z,t) € BQT,
a(t) € C[0,T). Let’s supply this space with the norm

Iell g, = e Dl + la(®)legory-
Obviously, BS’T and E:5F are Banach spaces.
Since the system (8) forms the Riesz basis Ly (0, 1), and the system (8) and (9) forms

a biorthogonal in Ls (0,1) system of functions, then we will look for the first component
u (z,t) of the solution {u(z,t),a(t)} of the problem (1)-(3), (6) in the form

u(z,t) = uo ( +Zu2k 1(t) Xog—1 ( +Zu2k ) Xog (z (12)

where

1
uo(t):/o u(z, t)Yo(z)dz,

1 1
U%ﬂﬂzzz;u@;ﬂYﬂﬂxﬁm,U%U)zié (e ) Yar(2)dz (E=1,2,..),  (13)

is the solution of the following problem:

ug(t) = Fo (tu,a,b) (0<t<T), (14)
uly, 1 (1) + Brugp_1(t) = H15A,§F2“ (tiu,a,0) (0<t<T, k=1,2,.), (15)
usy () + Biuar (1) = Hlﬁ/\,%F% (t;u,a,b) +
206 (1 + 2207 26 e

Uspe_1(t) + OO<t<T k=1,2,..), (16)

PR
1+ BN Y

T T
uk(o) :(Pk+/() p1(t)uk(t)dt, u;(O):T/Jk—I—/O pg() ()dt (k’IO,l,Q,...), (17)

AL+ aAg)

7F su,a) = alt)u b ,
1+ 83 k(tu, a) = a(t)ug(t) +0(t)gx(t) + fi(t)

Bi =

:/ f(z,t)Yy(x)dx, gk(t):/ g(x, )Yy (z)dz,
0 0

1 1
o = /0 ()i (2)ds, g = /0 b(o)Yi(@)de (k=0,1,.).

61



Solving the problem (14)-(17) we fined:

T T t
Uo(t) = gOo-i-/O P1 (t)uo(t) dt+ <1/10 + /0 p2<t>U0(t) dt) t+A (t—T)F()(T; u, a, b)d’i‘, (18)

T
ugg—1(t) = <902k1 +/0 p1(t)ugk—1(t) dt) cos Bit +

1 T
+ A <¢2k—1 + /0 p2(t)ugk—1(t) dt) sin (1t +
1 t
ey /O Foe 1 (73,0, b) sin Be(t — 7)dr, (19)
i
T 1 T
ugy(t) = <<P2k +/0 p1(t)uok(t) dt) cos Bt + A (1/}% +/0 pa(t)uar(t) dt) sin St +

Ak(14 2002 + aBA})
(1+BA2)3

T

[t <¢2k—1 +/0 p1(t)uzk-1(t) dt> sin Byt +
T

+ </31k sin Bt — t cos 5kt> ﬁlk <¢2k—1 + /0 po(t)ugr_1(t) dt) +

t
+Bk(1—|1—,3)\2)/0 FQk(T;U,CL,b) sinﬁk(t — T)d’7‘+
k

1 t T
+Bk(1+BA2)/0 </0 Fao—1(8; u, a, b) sin B (t — €) d€> sin By (t — 7) dT} +
k
t
m%} Fo_1(T;u,a,b)sin A (t — 7)dT. (20)
k

After substituting the expression u(t)(k = 0,1,...) in (12), for determining the com-
ponent u(z, t)of the solution of the problem (1)-(3), (6) ,(7) we obtain:

T

ae.t)= (o0 + | ool dt + (vo+ [ patomatt ) e+
+/Ot(t P Fy(rua, b)dT) Xo(a)+

00 T
+ Z { (g&gk_l + / p1(t)ugg—1(t) dt> cos [t +
k=1 0

1 T
+ Bk <¢2k—1 +/0 p2(t)uzk—1(t) dt) sin Byt +
1 t
T, P a st = 7 X a(a)+
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+ i { (@21@ + /OT p1(t)ugk(t) dt> cos Byt +

k=1

1 T
+ B (%k + /0 p2(t)uar(t) dt) sin Byt +

Ak(14 2002 + aBA})
(1+BA2)3

T
[t <<P2k1 + /0 p1(t)u2r—1(t) dt) sin Byt +

+ (1 sin Byt — t cos 51&5) ! (¢2k 1+ /TP2(t)U2k 1(1) dt) +
Br Bk 0 -

t
+5k(1_|1_5)\2)/0 For(T;u,a,b)sin By (t — 7)dr +
k
3 T
+M /o </0 Foga (&, a,0) sin i (t = ) d€> sin B (t — 7) dT} -
k

t
+ ﬁk:(ff)\ﬁk/wﬁ/o For_1(7;u,a,b)sin A\, (t — T)dT} Xop(z). (21)
k

Now from (6) and (7) , allowing for (12), we have:
o) =01 {o (5:0) 0400 - 10.0) ~ 0.0 (150~ 7 (5:¢) ) +
23 (20(51) = 08900 (OF + aNDuaa(0) + miuzk_lun} @
k=1
b(t) = [h(t)) {h1<t> (1501 (3:1) ) ~ rat0 ) — 0.0+

+22 (P (8) - (—=1)% = 2ha(£)) (A} + aXp)uar—1 () + BAjuby_y (¢ ))} : (23)
Further, from (15), allowing for (19), we obtain:

(AR + X uok—1(t) + BAjusp_y (t) = Fop—1(t;u, a,b) — uby_ (t) =

= L)\]%szq(t; u,a,b) — Brug_1(t) =
1+ 8X2
/3)\2 T
= - 5 For—1t;u,a,b) — 3 <<S02k—1 +/ p1(t)ugg—1(t) dt> cos Bt +
+ B} 0

1 T
/Bk <¢2k 1+ / pQ(t)UQk_l(t) dt) sin Bt +
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ﬁkmm/ Fae-ati v 0, D) in i — m)dr ) (24)

For obtaining an equation for the second and third component a(t) and b(t) of the
solution {u(z,t),a(t),b(t)} of the problem (1)-(3), (6), (7), we substitute the expression
(24) in (22) and (23):

att) =]~ {a (1) ()~ 1000~ 0.0 (150~ £ (5.0) ) +

+2g (29 (;t) - (—1)kg(0,t)) [ BA;AQ Fop_1(t:u, a, b)—

T T
—B; (<902k—1 +/ p1(t)ugp—1(t)d ) cos Bt + A <¢2k 1 +/ pa(t)ugp_1 (1) dt) sin Byt +
0

N M/ﬂt Fop1 (731, a, b) sin By(t — T)dT)ﬂ } (25)

b0) = )™ {m) (1500 - 1 (5:¢) ) = te)hie) — 0.0)+

00 i 5)\2
23 (0 (- - 2ha(0) |k s P i)~

T ) .
—Br <<902k—1 + / p1(t)ugk—1(t) dt> cos Byt + — <1/12k_1 + / p2(t)ugk—1(t) dt> sin Byt +
0 Bk 0

N M/Dt Fop_1 (v u, a,b) sin By (t — ﬂm)ﬂ } (26)

Thus, the solution of the problem (1)-(3), (6),(7) is reduced to the solution of the
system (21), (25), (26) with respect to the unknown functions u(z,t),a(t) and b(t).

The following lemma is very important for studying the uniqueness of the solution to
the problem (1)-(3), (6),(7)

Lemma 1. If {u(z,t),a(t),a(t)} is any solution of the problem (1)-(3), (6), then the
functions ug(t) (k = 0,1,2,...), determined by the relation (12), satisfy on [0,T] the
denumerable system (17) (18) and (19).

Obviously, if u(t fo x,t)Yi(x)dxr (k=0,1,...)is the solution of the system (18),
(19) and (20), then the triple {u(z,t), a(t)} of the functions u(z,t) = Y22, ur(t) Xi(z),a(t)
and b(t) is the solution of the system (21), (25),(25

From Lemma 1 we have the following corollary

Corollary 1. Let the system (20), (24),(26) have a unique solution. Then the
problem (1)-(3), (6),(7) may have at most one solution, i.e. if the problem (1)-(3), (6)
,(7) has a solution, this solution is a unique solution.
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Now in the space E3. we consider the operator

O(u,a) = {P1(u,a), P2(u,a)} ,

where
o

Q4 (u,a) = u(x,t) Z x), Pa(u,a) = a(t),
k=0

Uo(t), Ugg—1(t), uor(t) , a(t) and b(t) are equal to the right side of (18), (19) , (20), (25)
and (26), respectively.

It is easy to see that

L1
14+ BX2 ~ BAY

,/1+ A < B < \/1+a/\k, V1

Taking into account this relation, we find:

14 B2 > BA,

/1+B

T 3
I ()02 < ol + T ol + TV ( I <T>|2df) T

+ (‘Pl(t)Hc[o,T} +T sz(t)‘c[o,T}) T HUO(t)Hc[o,T} + 17 ||a(t)HC[0,T} ||U0(t)||c[0,T] +

. :
SV IO leior ([l (Par) (27)

(Z A Mk ( o) > <Z A% lpar-1l) ) +34/ 125 (Z()‘ihb%—l |)2> +
k=1 k=1

k=1

1
2

+ (HPI @llego,r + Hp2(t)HC[O,T]> T <Z(/\2 Hu%l(t)HC[O,T])Q) +
=
2

k=1
T 0 0o %

+Z\/ 125 VT (/0 ;()\z’f%—l (1) |)2d7'> +T' [|a(®)ll o1y (;()‘2 ||U2k—1(t)HC[O,T])2> +

T o0 3
+ VT b))l oy (/ > (A g2 (7) \)2d7> ) (28)
0 k=1
oo()\5\|fé (@)l )2)2§4<w(>\5\ |)2>2+4\/ <OO k| Y2 ]) >2+
(; k [|UW2k Co,T] ; k 192k ; 2k
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o0

+ (le(t)HC[O,T] + HpZ(t)HC[O,T]) T (Z(AZ |u2k(t)||C[O,T])2) +

k=1

T o0 3 1
ﬁ( I |>2df> T la®llogor (Z A2||u2k<t>ucm>2> N
k=1

k=1

(
T o0 %
+VT 16l 0,19 (/0 (A7 | go (7

k=1

T (;(AZW%—H)Q) +<\/ Sl +T> \ o <; Ak [Yor-1]) ) +

- :
+5) (TW</ >0 ok >\>d7> "

+T% |la(®)ll cpo 1y <Z()\2 Hqul(t)HC[O,T])2> )] +

41420+ ap
7+( /30; af)

k=1

1
00 2
+4T (HPl(t)HC[o,T] + Hp2(t)HC[0,T}) (Z(/\i Hu2k1(t)HC[U,T])2) +

k=1
6 [1+3
3V s

1

T o0 5
VT (/ Z()\% | fok—1 (7) |)2d7'> T [la(®)] oo,y (
0 k=1
T o0 3
+VT16(8) | oo 1y (/0 > (A gar-1 () ’)2d7> } ; (29)
k=1
JoOletom < [0 {Hg (5:) 010 - 0.0 - 50,00 (k50 £ (5.0 )
+2H2'g( )‘+|gOt cor (ZA )

{ ! —;a {(Z(Az ’@21@1\)2) 2 + # (Z(Ai W%’l DQ) +

2

(>\2||U2k—1(t)”cm,ﬂ)2> +

o

k=1

clo,1]

k=1 k=1

o0 3
+T (le(mc[o,ﬂ + ||P2(t)||c[o,T]> < (A2 ||U2k—1(t)”0[0,T})2> +

k=1
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5 (/ Z M| for—1 (1) |)%d T) +T'[|a(®)| comy (Z(Ai |U2k—1(t)||C[O7T])2> +
k=1

1

T oo o0 3
VT [16(t) | o017 (/ > (N lgae-1 (7)) T) (Z NIl far—1 (D)l oo ) +
0 k=1 k—

1
+1o() | 0.7 E:)‘kng%l ”COT| ;
(0,77 . [
—1

(30)

—_

NI

+ lla(®)ll o, (Z(Ai HU2I<:—1(75)||C[0,T])2>

k=1

_|_
clo,1)

mee) (50~ £ (5:1) ) =m0 - £0.0)

0] < 01

1
00 2
F2[[[a (&) + 2 |h2 ()l 10,17 (Z A;ZQ) X

k=1
x {1;‘” {(Z(Azmklﬁ) + % (Z@mm_lw) +
k=1 k=1

1

2

+T (le(t)’C[O,T]"i_HPQ ||C[0T]> (Z (A7 luar—1( HC[OT)2> +
k=1

L1
"B

(/ Z A | o ( 7’) +T la ()l 0,7 (Z()\z|U2k—1(t)||0[07:r])2> +

k=1

N

- :
VT 5 e ( /O S (2] gk (7) |>2d7>
k=1

+< (A f2e—1 Bl oo ) +

E—t

(31)
Assume that the data of the problem (1)-(3), (6),(7) satisfy the following condition:

NI
NI

+ lla(®)ll o, (Z(Ai HU2I<:—1(75)||C[0,T])2>

k=1

o)l o, (Z()\i 19261 ()| 0,79 |)

k=1

l.a>0,8>0,pi(t) € C[0,T](i =1,2) .
2.p(z) € C0,1], P (2) € L2(0,1), »(1) = 0,¢'(0) = ¢'(1),
¢"(1) = 0,¢"(0) = ¢"(1), (1) =0.
3.4p(x) € C[0,1], W (z) € Ly(0,1), 1(1) =0, ¢/(0) = ¢'(1), ¥"(1) = 0,4 (0) = "' (1).
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Then from (27)- (31) we find:
(. )l < A1(T) + Bi(D) lalt) ooz . D) g, +

FCUT) e, 1)l g, + Da(D) 5O cqo (32)
6 llero ) < A2(T) + Bo(T) ol cpor Iula Dl g, +
+Co(T)) (e, 1) g, + Da(T) POl cro - (33)
B0 .3y < 43T+ B a0 oo 1 N, )l 53, +
+C(T) [, Ol g, + Da() Dl o) - (34)
where
A(T) = @)1+ TNl ooy + TVT 1@ Dy + V2| @)
w2 s 0@, T o Ol ot s [0 @) + 460@)

T( p)

Lo | faol,8) + 2a(@ Ol o) +

4
"5
ot (V2075 o

6 /T(1
”fxx Z, t HL2 (Dr) ) B ( +ﬁ) foz‘(xat)HL2(DT)7

fv1+ v +300a)

4(1 4+ 2+
+( 04045( 5

ZE

_|_

L2(0,1)

T
v
+ﬂ

Bl(T):T2+£ 1+8 <1 3(1+20¢—|—0¢B)T>,

p TR
Ci(T) =4 <le(t)|c[o,T} + HpQ(t)HC[O,T]) T,

Hgmx z,t) + 2g. (v t)HLz (D7)

D\(T) =TVT |lg(z. )|l 1,(pyy +

2(1+ B) T |T(1+B)

950 2 Oll acory + 5\ g 90 Oll sy +
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g\/ ra O yopy s
1= )00 a0 o0 ()
-mHﬂg( )‘+m0t (}:A )
{152 [le0 o, ., wT [0,
) et Ollctor], )}} ,
cwzﬂ<§§Ak%) (1;;lvqjyir+l>
2lo (1) | o],
X (1:1 )‘1;2) 5 (le(t)HC[o,T] + HpQ(t)’C[O,T}> T,

)lomal,, (E)
(1 T(1+ )

“| 3 - [ oz (2, )l Ly(pr) + H”f @ Bl HL (0,1)) ’

+
clo, 1]

1

Ba(T) =2 | [n()]

2o (5.1)] + lac0.0)

Co(T) = 2||[()]

co,1)

+19(0,1)]

e

Do(T) = 2| Ih(8) |

0,7

1

as(m) = o { (o) (150~ 1 (5:¢) ) = )00 - 70.0)

+
clo.7]

+2 [l (8)] + 2|2 (®)llcpo.m (iA ) {”O‘[Hw oo Vol 0@, 0+
k=1

a+p) + 1D, )}} ,

1
I3 a
_ s l+a [1+8
Bs(T) =2 (a0 | I 0]+ 210l o (;A ) ( P \/QTH)
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e(m) =2 o) 2

-

D(T) = 2| B N O]+ 2 o6 ego (Z Aﬁ) x

k=1

. (; POEB) ) Ol oy + Hufmm,t)\C[O,T]HLQ(OJJ -
From the inequalities (32)- (34) we conclude:
I )l + 8@ o1+ [0)]| < AT +BE) la®llcgo It Dl , +
O(T) llu(a, D)l g, + D) 5Ol epo z7 (35)

where
A(T) = Ai1(T) + A2(T) + As(T), B(T) = B1(T) + B2(T) + Bs(T)

C(T) = Cy(T) + Co(T) + C3(T), D(T) = Di(T) + Do(T) + D3(T)

So, we proved the following theorem
Theorem 2. Let the conditions 1-6 and

(A(T)+2)(B(THA(T)+2)+C(T)+D(T)) < 1. (36)

be fulfilled.

Then the problem (1)-(3), (6),(7) has in the sphere K = Kg(|| z||gs, < R = A(T) +2)
from E;:; a unique solution..

Proof. In the space E% we consider the equation

z=®z, (37)

where z = {u,a}, the components ®;(u, a,b) (i = 1,2) of the operator ®(u, a,b) are deter-
mined by the right hand side of the equation (21), (25), (26), respectively.

Let us consider the operator ®(u,a) in the sphere K = K from E3. Similar to (35)
we obtain that for any z, z1, 29 € K the following estimations are valid:

192[| gy < A(T)+B(T) lla(®)llogo,77 1@, D)l g3 . +C(T) lu(@, D)l g3 . +D(T) [6(8) 010,77 <
< A(T) + B(T)(A(T + 2)? + C(T)(A(T) 4 2) + D(T)(A(T) + 2) =
= A(T) + (A(t) + 2)(B(T)(A(T) + 2) + C(T") + D(T) ), (38)
@21 — ®25]] g5 < BT)R (Jlar(t) = a2(O)lpo.zy + et (.8) — waa, D)l g, ) +
+O(T) [ur (2, t) = uz(, )| g3 . + D(T) [01.(E) = b2l o,y - (39)
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Then, allowing for (36), from the estimates (38), (39) it follows that the operator ®
acts in the sphere K = Kpr and is compressive. Therefore, in the sphere K = Kp the
operator ® has a unique fixed point {u,a}, that is the solution of the equation (37), i.e
it is a unique solution of the system (21), (25),(26) in the sphere K = Kp.

The function wu(z,t), as an element of the space BS’T, has continuous derivatives
u(x,t), ugp(x,t), Upe(x,t), Uppe (2, 1), Upgwe(x,t) in Dp.

Similar to [10], we can how that w;(z,t), uy(z,t), uw(x,t), uys(,t), Uz (x,t) are
continuous in Dr.

It is easy to verify that equation (1) and conditions (2), (3) and (6),(7) are satisfied in
the usual sense. So, {u(z,t),a(t),b(t)} is the solution of the problem (1)-(3), (6), (7), and
by the corollary of Lemma 1, it is unique. The theorem is proved.

By means of Theorem 1 we prove the following theorem

Theorem 3. Let all the conditions of Theorem 2 and the matching conditions

/P1 Var()dt, o(0) = /P2 Vhot
so@):hz(m— [ moma v (; )=h§<o>— /OTP2<t>h2<t>dt

(o1 ®llom + T l2@)llcpoin + AT) +2) T < 1

and

be fullfield.
Then the problem (1)-(5) has in the sphere K = Kg(|| 2 ||E:5r < R=A(T) +2) from
E% a unique classic solution.
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