

On a scattering problem for Sturm-Liouville equation with a rational function of spectral parameter in boundary condition

Aynur Çöl

Abstract. We consider the Sturm-Liouville equation on the half line $[0, \infty)$ with a rational function of spectral parameter in the boundary condition and investigate the corresponding scattering problem. Scattering data is obtained and its properties are examined.

Key Words and Phrases: Sturm-Liouville equation; scattering data; spectral parameter.

2020 Mathematics Subject Classifications: Primary 34B24, 34B07, 34L25

1. Introduction

Consider the boundary value problem generated by the differential equation and boundary condition:

$$-v''(x) + \{q(x) - \lambda^2\}v(x) = 0, \quad (0 \leq x < \infty) \quad (1)$$

$$v'(0) - f(\lambda)v(0) = 0, \quad (2)$$

where λ is a spectral parameter, $q(x)$ is real valued function with the condition

$$\int_0^\infty (1+x) |q(x)| dx < \infty \quad (3)$$

and

$$f(\lambda) = \frac{b_0 + b_1\lambda^2 + b_2\lambda^4}{a_0 + a_1\lambda^2 + a_2\lambda^4}$$

for $\alpha_i, \beta_j \in \mathbb{R}$ ($i, j = 0, 1, 2$)

$$a_1b_0 - b_0a_1 \geq 0, \quad a_2b_1 - b_1a_2 \geq 0, \quad a_2b_0 - b_2a_0 = 0. \quad (4)$$

Spectral problems often appear in mathematics, mechanics, physics and other branches of natural sciences. Direct scattering problem deals with the determination of spectral characteristics for given boundary value problem when $q(x)$ is known. In the case that boundary condition didn't contain spectral parameter, scattering problem for equation (1) was solved by Marchenko [1] and Levitan [2]. In spectral theory, problems with spectral parameters in equations and boundary conditions are extremely important. Sturm-Liouville problems with spectral parameter-dependent boundary conditions arise in studies of heat conduction problems and vibrating string problems. Fulton and Pruess showed a kind of heat conduction problems in [3]. Many examples of spectral problems which arise in mechanical engineering and contain eigen parameter in the boundary conditions were presented in the book [4]. Spectral problem for second order differential operator pencil on the axis was studied in [5]. Problems with boundary conditions depending on spectral parameter were examined in finite interval by several authors [6, 7, 8, 9, 10, 11, 12] and on the half line by [13, 14, 15, 16, 17, 18, 19].

The aim of this paper is to present scattering problem for Sturm-Liouville operator involving fourth order spectral parameter in the boundary condition and investigate the properties of scattering data. More precisely, we will extend the Marchenko method to a more general situation in which the boundary condition contains a rational function of spectral parameter.

The remaining paper is organized as follows: In section 2, the required results for boundary value problem (1)-(3) are provided. In Section 3, scattering problem is presented and properties of scattering data are investigated.

2. Preliminaries

This section provides results from the work [1].

As known from [1], if the condition (3) holds, the equation (1) has a unique solution $e(\lambda, x)$ which satisfies the asymptotic behavior, for $Im\lambda \geq 0$,

$$\lim_{x \rightarrow +\infty} e^{-i\lambda x} e(\lambda, x) = 1.$$

This is called Jost solution and can be expressed by

$$e(\lambda, x) = e^{i\lambda x} + \int_x^{\infty} K(x, t) e^{i\lambda t} dt, \quad (5)$$

where the kernel function $K(x, t)$ satisfies the inequality

$$|K(x, t)| \leq \frac{1}{2} \Omega \left(\frac{x+t}{2} \right) \exp \left\{ \Omega_1(x) - \Omega_1 \left(\frac{x+t}{2} \right) \right\}$$

and the functions $\Omega(x)$ and $\Omega_1(x)$ have the following notations:

$$\Omega(x) \equiv \int_x^\infty |q(t)| dt, \quad \Omega_1(x) \equiv \int_x^\infty \Omega(x) dt.$$

Also,

$$K(x, x) = \frac{1}{2} \int_x^\infty q(t) dt. \quad (6)$$

Moreover, $e(\lambda, x)$ is an analytic function of λ in the upper half plane ($Im\lambda > 0$) and is continuous on the real line. For $Im\lambda \geq 0$, the following estimates hold:

$$|e(\lambda, x)| \leq \exp\{-Im\lambda x + \Omega_1(x)\}, \quad (7)$$

$$|e(\lambda, x) - e^{i\lambda x}| \leq \left\{ \Omega_1(x) - \Omega_1\left(x + \frac{1}{|\lambda|}\right) \right\} \exp\{-Im\lambda x + \Omega_1(x)\} \quad (8)$$

and

$$|e'(\lambda, x) - i\lambda e^{i\lambda x}| \leq \Omega(x) \exp\{-Im\lambda x + \Omega_1(x)\}. \quad (9)$$

The functions $e(\lambda, x)$ and $e(-\lambda, x)$ form a fundamental system of solutions of equation (1) for real $\lambda \neq 0$, and their Wronskian is equal to $2i\lambda$:

$$W\{e(\lambda, x), e(-\lambda, x)\} = e'(\lambda, x) e(-\lambda, x) - e(\lambda, x) e'(-\lambda, x) = 2i\lambda.$$

Denote by $\sigma(\lambda, x)$ the solution of (1) satisfying the conditions

$$\sigma(\lambda, 0) = a_0 + a_1\lambda^2 + a_2\lambda^4, \quad \sigma'(\lambda, 0) = b_0 + b_1\lambda^2 + b_2\lambda^4.$$

It is evident that the solution $\sigma(\lambda, x)$ satisfies the boundary condition (2).

3. Scattering data

The direct scattering problem consists of the determination the scattering data when $q(x)$ is known. This section concerns the scattering problem for the boundary value problem (1)-(3) and therefore, we shall obtain scattering data for (1)-(3) and analyze its properties.

Lemma 3.1. *The following identity holds:*

$$\frac{2i\lambda\sigma(\lambda, x)}{P(\lambda)} = \overline{e(\lambda, x)} - S(\lambda) e(\lambda, x) \quad (10)$$

for all real $\lambda \neq 0$, and

$$S(\lambda) = \frac{P(-\lambda)}{P(\lambda)}, \quad (11)$$

$$S(-\lambda) = \overline{S(\lambda)}, \quad |S(\lambda)| = 1, \quad (12)$$

where

$$P(\lambda) = (a_0 + a_1\lambda^2 + a_2\lambda^4) e'(\lambda, 0) - (b_0 + b_1\lambda^2 + b_2\lambda^4) e(\lambda, 0). \quad (13)$$

Proof. $e(\lambda, x)$ and $e(-\lambda, x)$ constitute the fundamental solution system of the equation (1) for all real $\lambda \neq 0$. Therefore, we can represent the function $\sigma(\lambda, x)$ as a linear combination of these functions:

$$\sigma(\lambda, x) = \zeta(\lambda)e(\lambda, x) + \eta(\lambda)e(-\lambda, x). \quad (14)$$

The coefficient functions $\zeta(\lambda)$ and $\eta(\lambda)$ are obtained by taking account of the following equalities

$$\begin{aligned} W[e(\lambda, x), \sigma(\lambda, x)] &= \eta(\lambda)2i\lambda \\ &= (a_0 + a_1\lambda^2 + a_2\lambda^4) e'(\lambda, 0) - (b_0 + b_1\lambda^2 + b_2\lambda^4) e(\lambda, 0) \\ W[e(-\lambda, x), \sigma(\lambda, x)] &= -\zeta(\lambda)2i\lambda \\ &= (a_0 + a_1\lambda^2 + a_2\lambda^4) e'(-\lambda, 0) - (b_0 + b_1\lambda^2 + b_2\lambda^4) e(-\lambda, 0), \end{aligned}$$

and substituted in (14). Hence, we deduce that

$$\sigma(\lambda, x) = -\frac{P(-\lambda)}{2i\lambda}e(\lambda, x) + \frac{P(\lambda)}{2i\lambda}e(-\lambda, x), \quad (15)$$

where the function $P(\lambda)$ is defined by (13).

Let us show $P(\lambda) \neq 0$ for all real $\lambda \neq 0$. Suppose the contrary, then there exists $\mu_0 \in \mathbb{R}$, $\mu_0 \neq 0$, such that

$$e'(\mu_0, 0) = f(\mu_0)e(\mu_0, 0).$$

On the other side, we have $W[e(\mu_0, 0), e(-\mu_0, 0)] = 2i\mu_0$. Hence

$$|e(\lambda_0, 0)|^2 \left(f(\mu_0) - \overline{f(\mu_0)} \right) = 2i\mu_0$$

and it follows $0 = 2i\mu_0$. This is a contradiction since $\mu_0 \neq 0$. Thus, by dividing equality (15) by $\frac{1}{2i\lambda}P(\lambda)$, we find (10) where $S(\lambda)$ is defined with (11).

In order to complete proof, we shall show that $S(\lambda)$ satisfies the conditions in (12). For real $\lambda \neq 0$, $\overline{P(\lambda)} = P(-\lambda)$ and hence, it follows that $\overline{S(\lambda)} = S(-\lambda)$. Also,

$$|S(\lambda)| = \left| \frac{P(-\lambda)}{P(\lambda)} \right| = \left| \frac{\overline{P(\lambda)}}{P(\lambda)} \right| = 1$$

holds for all real $\lambda \neq 0$, and so it completes the proof. \square

The function $S(\lambda)$ defined by (11) is called the scattering function of the boundary value problem (1)-(3).

Let us examine properties of $P(\lambda)$ on the upper half-plane.

Lemma 3.2. *The function $P(\lambda)$ may have only a finite number of zeros on the upper half plane. All zeros are simple and lie on the imaginary axis.*

Proof. By the proof of Lemma (3.1), we have $P(\lambda) \neq 0$ for all real $\lambda \neq 0$, and the point $\lambda = 0$ is the possible zero of $P(\lambda)$. Since $e(\lambda, 0)$ and $e'(\lambda, 0)$ are analytic in the upper plane $Im\lambda > 0$, it follows from the expression $P(\lambda)$ that it has the same property. Hence, we have that the zeros of $P(\lambda)$ are at most countable. Now, we show that the set of zeros is bounded. Assume the contrary, i.e. let the set of zeros be unbounded. Then, there exists the numbers λ_k such that $P(\lambda_k) = 0$ for $Im\lambda_k > 0$ and $|\lambda_k| \rightarrow \infty$, and we have

$$e'(\lambda_k, 0) = f(\lambda_k)e(\lambda_k, 0).$$

With the inequality (9)

$$|f(\lambda_k)e(\lambda_k, 0) - i\lambda_k| \leq \Omega(0) \exp\{\Omega_1(0)\}.$$

Hence

$$|\lambda_k| \leq |f(\lambda_k)e(\lambda_k, 0)| + \Omega(0) \exp\{\Omega_1(0)\}.$$

Since the equality (8) and $\lim_{k \rightarrow +\infty} e(\lambda_k, 0) = 1$, the right side of the equality has a finite limit. We arrived the contradiction. This shows that the set $\{\lambda_k\}$ is bounded. Thus, the set of zeros of $P(\lambda)$ is bounded and form at most countable set having zero the only possible limit point.

Next, we shall present that zeros of $P(\lambda)$ lie on the imaginary axis. Suppose that λ_1 and λ_2 are zeros of $P(\lambda)$. Hence, they satisfy the equation (1):

$$-e''(\lambda_1, x) + q(x)e(\lambda_1, x) = \lambda_1^2 e(\lambda_1, x) \quad (16)$$

$$-\overline{e''(\lambda_2, x)} + q(x)\overline{e(\lambda_2, x)} = \overline{\lambda_2^2}e(\lambda_2, x). \quad (17)$$

We multiply (16) by $\overline{e(\lambda_2, x)}$ and (17) by $e(\lambda_1, x)$, subtract the second from the first, and finally integrate this result according to x over $(0, \infty)$. As a result, we find

$$\left(\lambda_1^2 - \overline{\lambda_2^2} \right) \int_0^\infty e(\lambda_1, x) \overline{e(\lambda_2, x)} dx - W \left[e(\lambda_1, x), \overline{e(\lambda_2, x)} \right] \Big|_{x=0} = 0. \quad (18)$$

On the other side, we have

$$W \left[e(\lambda_1, x), \overline{e(\lambda_2, x)} \right] \Big|_{x=0} = \left(f(\lambda_1) - \overline{f(\lambda_2)} \right) e(\lambda_1, 0) \overline{e(\lambda_2, 0)}$$

since λ_j ($j = 1, 2$) is a zero to $P(\lambda)$. Letting $\lambda_1 = \lambda_2 = \lambda$, $a(\lambda) := a_0 + a_1\lambda^2 + a_2\lambda^4$ and substituting in (18), the following is obtained

$$(\lambda^2 - \bar{\lambda}^2) \left[\frac{|e(\lambda, 0)|^2}{|a(\lambda)|^2} \{ (a_1 b_0 - a_0 b_1) + (a_2 b_1 - a_1 b_2) |\lambda|^4 \} + \int_0^\infty |e(\lambda, x)|^2 dx \right] = 0.$$

Because of the the condition (4), the expression in the parentheses is positive and it implies $\lambda^2 = \bar{\lambda}^2$. This shows that λ is pure imaginary, i.e. $\lambda = i\mu$, where $\mu \geq 0$.

Now, we shall prove that there are only finitely many zeros. Let δ denote the infimum of the distances between two neighboring zeros of $P(\lambda)$ and show $\delta > 0$. Suppose the contrary and let $\{i\lambda_k\}$ and $\{i\hat{\lambda}_k\}$ be two sequences of zeros of the function $P(\lambda)$ such that

$$\lim_{k \rightarrow \infty} (\hat{\lambda}_k - \lambda_k) = 0, \quad 0 < \lambda_k \leq \hat{\lambda}_k, \quad \max_k \hat{\lambda}_k < M.$$

Then, it follows from the estimate (8) that, for A large enough, the inequality

$$e(i\lambda, x) > \frac{1}{2} e^{-\lambda x}$$

holds uniformly with respect to $x \in [A, \infty)$ and $\lambda \in [0, \infty)$. Thus, we get

$$\int_A^\infty e(i\hat{\lambda}_k, x) \overline{e(i\lambda_k, x)} dx > \frac{1}{4} \frac{e^{-A(\hat{\lambda}_k + \lambda_k)}}{(\hat{\lambda}_k + \lambda_k)} > \frac{e^{-2AM}}{8M}. \quad (19)$$

On the other side, the equality (18) yields

$$\begin{aligned} 0 &= \int_0^\infty e(i\hat{\lambda}_k, x) \overline{e(i\lambda_k, x)} dx + \frac{e(i\hat{\lambda}_k, 0) \overline{e(i\lambda_k, 0)}}{a(i\hat{\lambda}_k) \overline{a(i\lambda_k)}} \{ (a_1 b_0 - a_0 b_1) + (a_2 b_1 - a_1 b_2) (\hat{\lambda}_k \lambda_k)^2 \} \\ &= \int_0^A e(i\hat{\lambda}_k, x) \left[\overline{e(i\lambda_k, x)} - \overline{e(i\hat{\lambda}_k, x)} \right] dx + \int_0^A e(i\hat{\lambda}_k, x) \overline{e(i\lambda_k, x)} dx \\ &\quad + \int_A^\infty e(i\hat{\lambda}_k, x) \overline{e(i\lambda_k, x)} dx + \frac{e(i\hat{\lambda}_k, 0) \overline{e(i\lambda_k, 0)}}{a(i\hat{\lambda}_k) \overline{a(i\lambda_k)}} \{ (a_1 b_0 - a_0 b_1) + (a_2 b_1 - a_1 b_2) (\hat{\lambda}_k \lambda_k)^2 \} \end{aligned}$$

and letting $k \rightarrow \infty$, we obtain

$$\lim_{k \rightarrow \infty} \int_A^\infty e(i\hat{\lambda}_k, x) \overline{e(i\lambda_k, x)} dx \leq 0 \quad (20)$$

since

$$\lim_{k \rightarrow \infty} \left[\overline{e(i\lambda_k, x)} - \overline{e(i\hat{\lambda}_k, x)} \right] = 0$$

holds uniformly with respect to $x \in [0, A]$. Comparing (19) and (20), we obtain a contradiction. Therefore, it follows $\delta > 0$ and so, this shows that the function $P(\lambda)$ has only a finite number of zeros: $i\lambda_k$, $k = 1, \dots, n$.

To complete the proof, let us show that all zeros of the function $P(\lambda)$ are simple. By the derivation of the equation

$$-e''(\lambda, x) + q(x)e(\lambda, x) = \lambda^2 e(\lambda, x) \quad (21)$$

with respect to λ , we obtain

$$-\dot{e}''(\lambda, x) + q(x)\dot{e}(\lambda, x) = \lambda^2 \dot{e}(\lambda, x) + 2\lambda e(\lambda, x), \quad (22)$$

where the dot shows differentiation with respect to λ . Multiplying (21) by $\dot{e}(\lambda, x)$ and (22) by $e(\lambda, x)$ and subtracting the second from the first and integrating this relation with respect to x over $(0, \infty)$, we get

$$2\lambda \int_0^\infty e^2(\lambda, x) dx + W[e(\lambda, x), \dot{e}(\lambda, x)] \Big|_{x=0} = 0.$$

Let λ be a zero of the function $P(\lambda)$. Using the expression of the function $P(\lambda)$, the following result is obtained that

$$\begin{aligned} & W[e(\lambda, x), \dot{e}(\lambda, x)] \Big|_{x=0} \\ &= -\frac{\dot{P}(\lambda)e(\lambda, 0)}{a(\lambda)} + \frac{e^2(\lambda, 0)}{a^2(\lambda)} 2\lambda [(a_1 b_0 - a_0 b_1) + (a_2 b_1 - a_1 b_2) \lambda^4] \end{aligned}$$

and hence, we find that

$$\frac{\dot{P}(\lambda)e(\lambda, 0)}{a(\lambda)} = 2\lambda \left\{ \int_0^\infty e^2(\lambda, x) dx + \frac{e^2(\lambda, 0)}{a^2(\lambda)} [(a_1 b_0 - a_0 b_1) + (a_2 b_1 - a_1 b_2) \lambda^4] \right\}. \quad (23)$$

If we substitute $\lambda = i\mu_k$, $\mu_k > 0$, in (23) and multiply $-i$, then we get that the right side of the equality is positive. Therefore, $P(i\mu_k) \neq 0$, i.e. the zeros of $P(\lambda)$ are simple. The lemma is proved. \square

Denote

$$m_k^{-2} \equiv \int_0^\infty |e(i\lambda_k, x)|^2 dx + \frac{|e(i\lambda_k, 0)|^2}{|a(i\lambda_k)|^2} [(a_1 b_0 - a_0 b_1) + (a_2 b_1 - a_1 b_2) \lambda_k^4].$$

The numbers m_k , $k = 1, \dots, n$ are called *norming numbers* for the boundary value problem (1)-(3).

Definition 3.3. The collection $\{S(\lambda); i\lambda_1, \dots, i\lambda_n; m_1, \dots, m_n\}$ is called the scattering data of the boundary value problem (1)-(3).

With the help of the solution (5), we get

$$\begin{aligned} P(\lambda) &= (a_0 + a_1\lambda^2 + a_2\lambda^4) \left\{ i\lambda - K(0,0) + \int_0^\infty K_x(0,t) e^{i\lambda t} dt \right\} \\ &\quad - (b_0 + b_1\lambda^2 + b_2\lambda^4) \left\{ 1 + \int_0^\infty K(0,t) e^{i\lambda t} dt \right\} \\ &= \lambda^5 [ia_2 + O\left(\frac{1}{\lambda}\right)] \end{aligned}$$

if $a_2 \neq 0$ as $|\lambda| \rightarrow \infty$. In a similar way, it follows that

$$\begin{aligned} P(-\lambda) &= (a_0 + a_1\lambda^2 + a_2\lambda^4) \left\{ -i\lambda - K(0,0) + \int_0^\infty K_x(0,t) e^{-i\lambda t} dt \right\} \\ &\quad - (b_0 + b_1\lambda^2 + b_2\lambda^4) \left\{ 1 + \int_0^\infty K(0,t) e^{-i\lambda t} dt \right\} \\ &= \lambda^5 [-ia_2 + O\left(\frac{1}{\lambda}\right)]. \end{aligned}$$

Taking these into account, we conclude that

$$-1 - S(\lambda) = O\left(\frac{1}{\lambda}\right), \quad |\lambda| \rightarrow \infty.$$

In the case that $a_2 = 0$, we get

$$P(\lambda) = \lambda^4 [-b_2 + O\left(\frac{1}{\lambda}\right)]$$

and

$$P(-\lambda) = \lambda^4 [-b_2 + O\left(\frac{1}{\lambda}\right)]$$

as $|\lambda| \rightarrow \infty$. Hence, the following result is obtained

$$1 - S(\lambda) = O\left(\frac{1}{\lambda}\right), \quad |\lambda| \rightarrow \infty.$$

Let us define

$$S_0(\lambda) = \begin{cases} 1, & a_2 = 0 \\ -1, & a_2 \neq 0. \end{cases}$$

$S_0(\lambda) - S(\lambda) \in L_2(-\infty, \infty)$ and the function

$$F_S(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} (S_0(\lambda) - S(\lambda)) e^{i\lambda x} d\lambda$$

belongs to the space $L_2(-\infty, \infty)$.

References

- [1] V.A. Marchenko. Sturm-Liouville operators and applications. Birkhäuser, Basel, 1986.
- [2] B.M. Levitan. Inverse Sturm-Liouville problems. VSP, Zeist, 1987. Translated from the Russian by O. Efimov.
- [3] C.T. Fulton, S. Pruess. Numerical methods for a singular eigenvalue problem with eigenparameter in the boundary conditions. *J. Math. Anal. Appl.*, 71(2): 431-462, 1979.
- [4] L. Collatz. Eigenwertaufgaben mit technischen Anwendungen. Akad. Verlagsgesellschaft Geest & Portig, Leipzig, 1963, Germany.
- [5] R.F. Efendiev. Spectral analysis for one class of second-order indefinite non-self-adjoint differential operator pencil. *Applicable Analysis*, 90(12): 1837-1849, 2011.
- [6] C.T. Fulton. Two-point boundary value problems with eigenvalue parameter contained in the boundary conditions. *Proceedings of the Royal Society of Edinburgh: Section A Mathematics*, 77(3-4): 293-308, 1977.
- [7] P.A. Binding, P.J. Browne, B.A. Watson. Sturm Liouville problems with boundary conditions rationally dependent on the eigenparameter, II. *Journal of Computational and Applied Mathematics*, 148: 147-168, 2002.
- [8] V. Pivovarchik. Direct and inverse problem for a damped string. *J. Operator Theory*, 42(1): 189-220, 1999.
- [9] M.V. Chugunova. Inverse spectral problem for the Sturm-Liouville operator with eigenvalue parameter dependent boundary conditions. *Oper. Theory Adv. Appl.*, 123: 187-194, 2001.
- [10] A. Chernozhukova, G. Freiling. A uniqueness theorem for the boundary value problems with non-linear dependence on the spectral parameter in the boundary conditions. *Inverse Problems in Science and Engineering*, 17: 777-785, 2009.

- [11] L.I. Mammadova, I.M. Nabiev. Spectral properties of the Sturm–Liouville operator with a spectral parameter quadratically included in the boundary condition. *Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki*, 30(2): 237–248, 2020.
- [12] Ch.G. Ibadzadeh, L.I. Mammadova, I.M. Nabiev. Inverse problem of spectral analysis for diffusion operator with nonseparated boundary conditions and spectral parameter in boundary condition. *Azerbaijan Journal of Mathematics*, 9(1): 171-189, 2019.
- [13] E.A. Pocheikina-Fedotova. The inverse boundary value problem on the half-axis for a second order equation. *Izv. Vyssh. Uchebn. Zaved. Mat.*, 7: 75-84, 1972.
- [14] Kh.R. Mamedov. Uniqueness of the solution to the inverse problem of scattering theory for the Sturm–Liouville operator with a spectral parameter in the boundary condition. *Mathematical Notes*, 74(1): 142-146, 2003.
- [15] Kh.R. Mamedov, N.P. Kosar. Inverse scattering problem for Sturm-Liouville operator with nonlinear dependence on the spectral parameter in the boundary condition. *Math. Meth. Appl. Sci.*, 34: 231-241, 2011.
- [16] Kh.R. Mamedov, H. Menken. On the inverse problem of scattering theory for a differential operator of the second order. *North-Holland Mathematics Studies*, 197: 185-194, 2004.
- [17] H. Menken, Kh.R. Mamedov. On the inverse problem of the scattering theory for a boundary-value problem. *Geometry, Integrability and Quantization*, 1: 226–236, 2006.
- [18] K.R. Mamedov, F.A. Cetinkaya. Boundary value problem for a Sturm-Liouville operator with piecewise continuous coefficient. *Hacettepe Journal of Mathematics and Statistics*, 44(4): 867-874, 2015.
- [19] A. Çöl. Inverse spectral problem for Sturm-Liouville operator with discontinuous coefficient and cubic polynomials of spectral parameter in boundary condition. *Adv Differ Equ.*, 2015: 132, 2015.

Aynur Çöl
Sinop University, Sinop, Turkey
E-mail: aynurcol@sinop.edu.tr

Received 12 December 2022

Accepted 27 December 2022