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On a scattering problem for Sturm-Liouville equation
with a rational function of spectral parameter in bound-
ary condition

Aynur Col

Abstract. We consider the Sturm-Liouville equation on the half line [0, c0) with a rational func-
tion of spectral parameter in the boundary condition and investigate the corresponding scattering
problem. Scattering data is obtained and its properties are examined.
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1. Introduction

Consider the boundary value problem generated by the differential equation and
boundary condition:

—0"(z) + {g(x) = N}v(z) =0, (0 <z < o0) (1)
v'(0) = f (M) v(0) =0, (2)
where A is a spectral parameter, ¢ (z) is real valued function with the condition
/(1+x) g (2)] dz < oo 3)
0
and
bo + b1A% + boA*
FO) = 0 + b1 _ 2 .
ag + a1 A% 4 as A
for «;, 5j eR (Z,j =0, 1,2)
albo - b0a1 Z 0, agbl — b1a2 Z 0, a2b0 — b2a0 =0. (4)
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Spectral problems often appear in mathematics, mechanics, physics and other branches
of natural sciences. Direct scattering problem deals with the determination of spectral
characteristics for given boundary value problem when ¢(z) is known. In the case that
boundary condition didn’t contain spectral parameter, scattering problem for equation (1)
was solved by Marchenko [1] and Levitan [2]. In spectral theory, problems with spectral pa-
rameters in equations and boundary conditions are extremely important. Sturm-Liouville
problems with spectral parameter-dependent boundary conditions arise in studies of heat
conduction problems and vibrating string problems. Fulton and Pruess showed a kind
of heat conduction problems in [3]. Many examples of spectral problems which arise in
mechanical engineering and contain eigen parameter in the boundary conditions were pre-
sented in the book [4]. Spectral problem for second order differential operator pencil on
the axis was studied in [5]. Problems with boundary conditions depending on spectral
parameter were examined in finite interval by several authors [6, 7, 8, 9, 10, 11, 12] and
on the half line by [13, 14, 15, 16, 17, 18, 19].

The aim of this paper is to present scattering problem for Sturm-Liouville operator
involving fourth order spectral parameter in the boundary condition and investigate the
properties of scattering data. More precisely, we will extend the Marchenko method to
a more general situtaion in which the boundary condition contains a rational function of
spectral parameter.

The remaining paper is organized as follows: In section 2, the required results for
boundary value problem (1)-(3) are provided. In Section 3, scattering problem is presented
and properties of scattering data are investigated.

2. Preliminaries

This section provides results from the work [1].
As known from [1], if the condition (3) holds, the equation (1) has a unique solution
e(A, x) which satisfies the asymptotic behavior, for ImA > 0,

lim e e () z) = 1.
T—r+00

This is called Jost solution and can be expressed by
e\ z) = N 4 / K (2.1) e, (5)

where the kernel function K (x,t) satisfies the inequality

w5 foia-n (25}
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and the functions Q (z) and Q; (z) have the following notations:

o0

Q(x) = / ()] dt, Qi (x) = / 0 (x) dt.

T

Also,

K(z,z) = - / g (b) dt. (6)

Moreover, e (A, z) is an analytic function of A in the upper half plane (ImA > 0) and
is continuous on the real line. For ImA > 0, the following estimates hold:

le (A, x)| <exp{—ImAz+Q (z)}, (7)
AT 1
‘e()\,x)—e’\ < {Ql (x) — <m+’)\|>}emp{—lm)\:n+(21 ()} (8)

and ‘
e (N x) —ixe®

< Q(x)exp{—ImAx + Q; (z)}. 9)

The functions e (A, z) and e (— A, z) form a fundamental system of solutions of equation
(1) for real A # 0, and their Wronskian is equal to 2iA:

Wi{e(\x),e(=\x)} = (Naz)e(=\z)—e(\x)e (=N z) = 2\
Denote by o (A, x) the solution of (1) satisfying the conditions
o(X\,0) = ag + a1 X2 + agAt, o' (X,0) = by + b1 A2 + bt

It is evident that the solution o (A, z) satisfies the boundary condition (2).

3. Scattering data

The direct scattering problem consists of the determination the scattering data when
q(z) is known. This section concerns the scattering problem for the boundary value
problem (1)-(3) and therefore, we shall obtain scattering data for (1)-(3) and analyze its
properties.

Lemma 3.1. The following identity holds:

2iAo (A, x)
P

=e(Nx)—SN)e(\ ) (10)

for all real A # 0, and
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S(A) = P\ ) (11)
S(=A) =50, 1SV =1, (12)

where
P(\) = (ap + a1 A? + aaA\?) € (X, 0) — (by + b1A% + baAt)e (A, 0) . (13)

Proof. e (A, x) and e (—\, z) constitute the fundamental solution system of the equation (1)
for all real A # 0. Therefore, we can represent the function o (A, z) as a linear combination
of these functions:

o(x,\)=CNe\z)+nNe(=\z). (14)
The coefficient functions ((A) and n(\) are obtained by taking account of the following
equalities
Wie (N x),0 (A x)] =n(N\)2iA
= (a0 + a1A\? + asA?) € (X, 0) — (b + b1 A* + baAt)e (A, 0)
Wie(=M\x),0 (A z)] = —C(N)2iA
= (ap + a1A? + a2A?) € (=X, 0) — (bo + b1 A% + baAt)e (=), 0),

and substituted in (14). Hence, we deduce that

P(=2)
2\

P
2i\

o(Nz)=— e(\x)+ e(—\x), (15)
where the function P()) is defined by (13).
Let us show P(\) # 0 for all real A\ # 0. Suppose the contrary, then there exists
o € R, po # 0, such that
¢’ (110,0) = f(po)e (10, 0) -

On the other side, we have We(uo,0), e(—po,0)] = 2ipo. Hence

e (o, 0 (£(10) = F(0) ) = 2o

and it follows 0 = 2iug. This is a contradiction since pg # 0. Thus, by dividing equality
(15) by 5z P(A), we find (10) where S()) is defined with (11).

In order to complete proof, we shall show that S()) satisfies the conditions in (12).
For real A # 0, P(\) = P(—\) and hence, it follows that S(\) = S(—A\). Also,

P(=N)| _|PQ)
s01= | 357 = 769
holds for all real A # 0, and so it completes the proof. O
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The function S(A) defined by (11) is called the scattering function of the boundary
value problem (1)-(3).
Let us examine properties of P(\) on the upper half-plane.

Lemma 3.2. The function P(\) may have only a finite number of zeros on the upper half
plane. All zeros are simple and lie on the imaginary axis.

Proof. By the proof of Lemma (3.1), we have P(\) # 0 for all real A # 0, and the point
A = 0 is the possible zero of P()). Since e (\,0) and €’ (A,0) are analytic in the upper
plane ImA > 0, it follows from the expression P(\) that it has the same property. Hence,
we have that the zeros of P()\) are at most countable. Now, we show that the set of zeros
is bounded. Assume the contrary, i.e. let the set of zeros be unbounded. Then, there
exists the numbers Ay such that P(A\;) = 0 for ImA; > 0 and |A\x| — oo, and we have

e (A, 0) = f(Ar)e (Mg, 0) .
With the inequality (9)
|f(Ak)e (A, 0) — idg| < Q(0) exp {21 (0)}.
Hence

Akl < 1f(Ak)e (A, 0)] + €Q(0) exp {1 (0)} .

Since the equality (8) and limy_, 1 € (Ag,0) = 1, the right side of the equality has a finite
limit. We arrived the contradiction. This shows that the set {A;} is bounded. Thus,
the set of zeros of P(\) is bounded and form at most countable set having zero the only
possible limit point.

Next, we shall present that zeros of P(\) lie on the imaginary axis. Suppose that A
and A are zeros of P(\). Hence, they satisfy the equation (1):

—e" (A1, z) + q(z)e (A, z) = M%e (M, 2) (16)

—&" (g, ) + q(z)e (o, ) = Ao2e (2, ). (17)

We multiply (16) by e (A2, ) and (17) by e (A1, x), subtract the second from the first, and
finally integrate this result according to x over (0,00). As a result, we find

o0

)\1 _)\2 /6 Ala A27 )d(IJ—W |:€(A17$),€()\2,IL'):|
0

On the other side, we have

w [e (A, ) ,e ()\Q,ac)}



since A; (j = 1,2) is a zero to P(A). Letting \; = A2 = A, a(\) := ag + a1A? + a2A\* and
substituting in (18), the following is obtained

~2

o) [ L0

la(A)[? {(a1bo — aoby) + (azbs — alb?)’)‘|4} + / le(\,z)[Pdz| = 0.

)

Because of the the condition (4), the expression in the parentheses is positive and it implies
A2 = X°. This shows that \ is pure imaginary, i.e. A = ¢y, where p > 0.

Now, we shall prove that there are only finitely many zeros. Let § denote the infimum
of the distances between two neighboring zeros of P(\) and show 6 > 0. Suppose the

contrary and let {i\;} and {z/):k} be two sequences of zeros of the function P(\) such
that

lim (Xk — Ak) =0, 0< X< Xk, mamkxk < M.

k—o0

Then, it follows from the estimate (8) that, for A large enough, the inequality
1
e(iN,x) > 56_/\9”

holds uniformly with respect to = € [4,00) and A € [0,00). Thus, we get

o

R 1 67A(Ak+)\k) 672AM
/e (i)\k,:z;) e (idg, x)dr > = 1 > (19)
% ()\k + )\k> 8

On the other side, the equality (18) yields

(i}\\ka 0) e (iMr,0)
a(ire)a(idy)

A
z)\k, [ (1A, x) —e (sz,:p)] dx + /e (sz7x> e (ixk,x>d:c
0

+/e (i)\k, ) (1A, z)dx + (Z/\(]:;\Zg e(z(i)];];’()) {(albo —apby) + (agby — a1b2)(/)\\k)\k)2}
A

e z)\k, e (i\g, x)dz +

{(albo - aobl) + (a2b1 - a1b2)(/)\\k)\k)2}

[
-/

and letting k — 0o, we obtain

o0

lim [ e (zxk,x> e(idg, x)dr <0 (20)
k—o0
A
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since

k—o0

lim [e(z)\kzn) s (’L/)\\kl')] =0

holds uniformly with respect to x € [0, A]. Comparing (19) and (20), we obtain a contra-
diction. Therefore, it follows ¢ > 0 and so, this shows that the function P(\) has only a
finite number of zeros: i\g, k=1,...,n.

To complete the proof, let us show that all zeros of the function P(\) are simple. By
the derivation of the equation

—" (A z) + q(x)e (A, z) = Ne (N z) (21)
with respect to A, we obtain
—e" (A, x) + q(@)e (A x) = A2 (N, z) + 2Xe (A, 1), (22)

where the dot shows differentiation with respect to A\. Multiplying (21) by é (A, z) and
(22) by e (A, z) and subtracting the second from the first and integrating this relation with
respect to x over (0,00), we get

2)\/62 (A 2)de+We(ha),e(ha)|  =o.
0

=0

Let A be a zero of the function P(\). Using the expression of the function P()), the
following result is obtained that

Wie(A\x),é(A )

=0
P(Ne(\0) €2 ()0)

ST Ay e

and hence, we find that

2\ [(albo — aobl) + (a2b1 — ale))\4)]

P(\e (M0 7 2(\,0

PAe(XN0) _ oy /e2 (A x)dz + eag(AQ [(arbo — agby) + (asby — arba)AY)] . (23)
0

If we substitute A = iug, px > 0, in (23) and multiply —i, then we get that the right side

of the equality is positive. Therefore, P(iug) # 0, i.e. the zeros of P(\) are simple. The

lemma is proved. O
Denote
o [ e (idg, )%
ka = / |6 (Z)\k,l')’2 dzx + M [(albo — aobl) + (a2b1 — albg))\%)]
, |a(idg)]
The numbers my, k = 1,...,n are called norming numbers for the boundary value problem

(1)-(3)-
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Definition 3.3. The collection {S (X) ;i\1, ..., i\p; M1, ..., mp } is called the scattering data
of the boundary value problem (1)-(3).

With the help of the solution (5), we get

P(\) = (ao + a1 A% + az)\4) ix — K(0,0) + /K:v (0, 1) edt
0

—(bo + b1 A% + beA?) {1+/K(O,t) ei’\tdt}
0

= Nliaz + O <i>]

if ag # 0 as |A\| = oco. In a similar way, it follows that

P(=\) = (ap + a1)? + asA?) ¢ —iX — K(0,0) + /Ka: (0,) et
0

—(bo + b1 A2 + byAY) {1 + /K (0,1) e“tdt}

0
= )\5[—2'(12 + 0 l ]
A
Taking these into account, we conclude that
-1-5S\\) = O() Al = oo
In the case that as = 0, we get
4 1
P(\) =X [-ba+ O X ]

and

P(=A) = M[bs + O (i)]

as |\| = oco. Hence, the following result is obtained

1—5()\):0(/1\), A = 0.

80



Let us define

1, az =0
SO(A):{ -1 az#O.

So(A) — S(A) € Ly (—o0,00) and the function

o
1 .
Fs(@) = 5 [ (500 = S(0)eax
belongs to the space Ls (—00, 00).
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